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—— Abstract

The beacon model is a recent paradigm for guiding the trajectory of messages or small robotic
agents in complex environments. A beacon is a fixed point with an attraction pull that can move
points within a given polygon. Points move greedily towards a beacon: if unobstructed, they
move along a straight line to the beacon, and otherwise they slide on the edges of the polygon.
The Euclidean distance from a moving point to a beacon is monotonically decreasing. A given
beacon attracts a point if the point eventually reaches the beacon.

The problem of attracting all points within a polygon with a set of beacons can be viewed
as a variation of the art gallery problem. Unlike most variations, the beacon attraction has the
intriguing property of being asymmetric, leading to separate definitions of attraction region and
inverse attraction region. The attraction region of a beacon is the set of points that it attracts.
It is connected and can be computed in linear time for simple polygons. By contrast, it is known
that the inverse attraction region of a point — the set of beacon positions that attract it — could
have Q(n) disjoint connected components.

In this paper, we prove that, in spite of this, the total complexity of the inverse attraction
region of a point in a simple polygon is linear, and present a O(nlogn) time algorithm to
construct it. This improves upon the best previous algorithm which required O(n?) time and
O(n?) space. Furthermore we prove a matching Q(nlogn) lower bound for this task in the
algebraic computation tree model of computation, even if the polygon is monotone.
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Figure 1 Points on an edge e slide towards the orthogonal projection h of the beacon on the
supporting line of e.

1 Introduction

Consider a dense network of sensors. In practice, it is common that routing between two
nodes in the network is performed by greedy geographical routing, where a node sends the
message to its closest neighbor (by Euclidean distance) to the destination [11]. Depending
on the geometry of the network, greedy routing may not be successful between all pairs of
nodes. Thus, it is essential to determine nodes of the network for which this type of routing
works. In particular, given a node in the network, it is important to compute all nodes that
can successfully send a message to (or receive a message from) the input node. Motivated by
this application Biro et al. [3] introduced the beacon routing model.

Let P be a simple polygon with n vertices. A beacon b is a point in P that can induce
an attraction pull towards itself within P. The attraction of b causes points in P to move
towards b as long as their Euclidean distance is maximally decreasing. As a result, a point
p moves along the ray pb until it either reaches b or an edge of P. In the latter case, p
slides on the edge towards h, the orthogonal projection of b on the supporting line of the
edge (Figure 1). Note that among all points on the supporting line of the edge, h has the
minimum Euclidean distance to b.

We say b attracts p, if p eventually reaches b. Interestingly, beacon attraction is not
symmetric. The attraction region of b, denoted by AR(b), is the set of all points in P that b
attracts®. The dnverse attraction region of a point p, denoted by IAR(p), is the set of all
beacon positions in P that can attract p.

The study of beacon attraction problems in a geometric domain, initiated by Biro et
al. [3], finds its root in sensor networks, where the limited capabilities of sensors makes
it crucial to design simple mechanisms for guiding their motion and communication. For
instance, the beacon model can be used to represent the trajectory of small robotic agents in
a polygonal domain, or that of messages in a dense sensor network. Using greedy routing, the
trajectory of a robot (or a message) from a sender to a receiver closely follows the attraction
trajectory of a point (the sender) towards a beacon (the receiver). However, greedy routing
may not be successful between all pairs of nodes. Thus, it is essential to characterize for
which pairs of nodes of the network for which this type of routing works. In particular,
given a single node, it is important to compute the set of nodes that it can successfully
receive messages from (its attraction region), and the set of node that it can successfully
send messages to (its inverse attraction region).

In 2013, Biro et al. [5] showed that the attraction region AR(b) of a beacon b in a simple
polygon P is simple and connected, and presented a linear time algorithm to compute AR(b).

2 We consider the attraction region to be closed, i.e., b attracts all points on the boundary of AR(b).
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Computing the inverse attraction region has proven to be more challenging. It is known [5]
that the inverse attraction region TAR(p) of a point p is not necessarily connected and can
have ©(n) connected components. Kouhestani et al. [14] presented an algorithm to compute
IAR(p) in O(n?) time and O(n?) space. In the special cases of monotone and terrain polygons,
they showed improved algorithms with running times O(nlogn) and O(n) respectively.

In this paper, we prove that, in spite of not being connected, the inverse attraction region
IAR(p) always has total complexity® O(n). Using this fact, we present the first optimal
O(nlogn) time algorithm for computing TAR(p) for any simple polygon P, improving upon
the previous best known O(n?) time algorithm. Since this task is at the heart of other
algorithms for solving beacon routing problems, this improves the time complexity of several
previously known algorithms such as approximating minimum beacon paths and computing
the weak attraction region of a region [5].

To prove the optimality of our algorithm, we show an Q(nlogn) lower bound in the
algebraic computation tree model and in the bounded degree algebraic decision tree model,
even in the case when the polygon is monotone.

Due to space limitations some of the proofs are omitted and can be found in the full
version of this paper [12].

Related work

Greedy routing has been studied extensively in the literature of sensor network as a local
(and therefore inexpensive) protocol for message sending. As a result, many applications in
wireless and sensor networks utilize greedy routing to choose the next hop in their message
sending protocol [10]. In the geometric domain, greedy routing has been studied in both
discrete and continuous spaces. Bose et al. [6] studied routing problems in ad hoc wireless
networks modeled as unit graphs and Kermarrec and Tan [11] presented an approximation
algorithm to decompose a polygon into minimum number of routable regions, i.e., regions in
which greedy routing always works. Beacon routing, discussed in this paper, is essentially
greedy routing in a polygonal environment representing an infinitely dense sensor network.

Several geometric problems related to the beacon model have been studied in recent
years. Biro et al. [3] studied the minimum number of beacons necessary to successfully
route between any pair of points in a simple n-gon P. This can be viewed as a variant of
the art gallery problem, where one wants to find the minimum number of beacons whose
attraction regions cover P. They proved that f%] beacons are sometimes necessary and
always sufficient, and showed that finding a minimum cardinality set of beacons to cover a
simple polygon is NP-hard. For polygons with holes, Biro et al. [4] showed that [2] —h — 1
beacons are sometimes necessary and (%1 + h — 1 beacons are always sufficient to guard a
polygon with A holes. Combinatorial results on the use of beacons in orthogonal polygons
have been studied by Bae et al. [1] and by Shermer [17]. Biro et al. [5] presented a polynomial
time algorithm for routing between two fixed points using a discrete set of candidate beacons
in a simple polygon and gave a 2-approximation algorithm where the beacons are placed
with no restrictions. Kouhestani et al. [15] give an O(nlogn) time algorithm for beacon
routing in a 1.5D polygonal terrain.

Kouhestani et al. [13] showed that the length of a successful beacon trajectory is less than
V/2 times the length of a shortest (geodesic) path. In contrast, if the polygon has internal
holes then the length of a successful beacon trajectory may be unbounded.

3 Total number of vertices and edges of all connected components.
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Figure 2 The angle between a straight movement towards the beacon and the following slide
movement is always greater than /2.

2 Preliminaries

A dead point d # b is defined as a point that remains stationary in the attraction pull of b.
The set of all points in P that eventually reach (and stay) on d is called the dead region of b
with respect to d. A split edge is defined as the boundary between two dead regions, or a
dead region and AR(b). In the latter case, we call the split edge a separation edge.

If beacon b attracts a point p, we use the term attraction trajectory, denoted by AT (p,b),
to indicate the movement path of a point p from its original location to b. The attraction
trajectory alternates between a straight movement towards the beacon (a pull edge) and a
sequence of consecutive sliding movements (slide edges), see Figure 2.

» Lemma 1. Consider the attraction trajectory AT (p,b) of a point p attracted by beacon b.
Let «v; denote the angle between the i-th pull edge and the next slide edge on AT(p,b). Then
v is greater than /2.

Note that, similarly, the angle between the i-th pull edge and the previous slide edge is
also greater than 7/2.

Let r be a reflex vertex of P with adjacent edges e; and e;. Let H; be the half-plane
orthogonal to e; at r, that contains e;. Let Hy be the half-plane orthogonal to ey at r, that
contains es. The deadwedge of r (deadwedge(r)) is defined as H; N Hy (Figure 3). Let b be a
beacon in the deadwedge of r. Let p be the ray from r in the direction br and let s be the
line segment between r and the first intersection of p with the boundary of P. Note that in
the attraction of b, points on different sides of s have different destinations. Thus, s is a split
edge for b. We say r introduces the split edge s for b to show this occurrence. Kouhestani et
al. [14] proved the following lemma.

» Lemma 2 (Kouhestani et al. [14]). A reflex vertex r introduces a split edge for the beacon
b if and only if b is inside the deadwedge of r.

Let p and ¢ be two points in a polygon P. We use pg to denote the straight-line segment
between these points. Denote the shortest path between p and ¢ in P (the geodesic path)

Figure 3 The deadwedge of r is shown by the red angle.
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as SP(p,q). The union of shortest paths from p to all vertices of P is called the shortest
path tree of p, and can be computed in linear time [9] when P is a simple polygon. In our
problem, we are only interested in shortest paths from p to reflex vertices of P. Therefore,
we delete all convex vertices and their adjacent edges in the shortest path tree of p to obtain
the pruned shortest path tree of p, denoted by SPT,(p).

A shortest path map for a given point p, denoted as SPM(p), is a subdivision of P into
regions such that shortest paths from p to all the points inside the same region pass through
the same set of vertices of P [16]. Typically, shortest path maps are considered in the context
of polygons with holes, where the subdivision represents grouping of the shortest paths of the
same topology, and the regions may have curved boundaries. In the case of a simple polygon,
the boundaries of SPM(p) are straight-line segments and consist solely of the edges of P and
extensions of the edges of SPT,.(p). If a triangulation of P is given, it can be computed in
linear time [9].

» Lemma 3. During the movement of p on its beacon trajectory, the shortest path distance
of p away from its original location monotonically increases.

3 The structure of inverse attraction regions

The O(n?) time algorithm of Kouhestani et al. [14] to compute the inverse attraction region
of a point p in a simple polygon P constructs a line arrangement A with quadratic complexity
that partitions P into regions, such that, either all or none of the points in a region attract
p. Arrangement A, contains three types of lines:

1. Supporting lines of the deadwedge for each reflex vertex of P,
2. Supporting lines of edges of SPT,(p),
3. Supporting lines of edges of P.

» Lemma 4 (Kouhestani et al. [14]). The boundary edges of IAR(p) lie on the lines of
arrangement A.

Let wv be an edge of SPT,(p), where u = parent(v). We associate three lines of the
arrangement A to uv: supporting line of wv and the two supporting lines of the deadwedge
of v. By focusing on the edge wv, we study the local effect of the reflex vertex v on IAR(p),
and we show that:

1. Exactly one of the associated lines to wo may contribute to the boundary of TAR(p). We
call this line the effective associated line of wv (Figure 4).

2. The effect of v on the inverse attraction region can be represented by at most two half-
planes, which we call the constraining half-planes of wv. These half-planes are bounded
by the effective associated line of ww.

3. Each constraining half-plane has a domain, which is a subpolygon of P that it affects.
The points of the constraining half-plane that are inside the domain subpolygon cannot
attract p (see the next section).

Our algorithm to compute the inverse attraction region uses SPM(p). For each region
of SPM(p), we compute the set of constraining half-planes with their domain subpolygons
containing the region. Then, we discard points of the region that cannot attract p by locating
points which belong to at least one of these constraining half-planes.
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Figure 4 An example of an inverse attraction region with effective associated lines to each reflex
vertex. Points in the colored region attract p. Here L., Ly, L., Lqg and L. are respectively the
associated lines of the reflex vertices a, b, ¢, d and e.

Constraining half-planes

Let wo be an edge of SPT,.(p), where u = parent(v). We extend uv from u until we reach w,
the first intersection with the boundary of P. Segment uw partitions P into two subpolygons.
Let P, be the subpolygon that contains p. Any path from p to any point in P\ P, passes
through ww. Thus a beacon outside of P, that attracts p, must be able to attract at least one
point on the line segment uw. In order to determine the local attraction behaviour caused
by the vertex v, and to find the effective line associated to uv, we focus on the attraction
pull on the points of ww (particularly the vertex u) rather than p. By doing so we detect
points that cannot attract u, or any point on uw, and mark them as points that cannot
attract p. In other words, for each edge wv € SPT,(p) we detect a set of points in P that
cannot attract u locally due to v. The attraction of these beacons either causes u to move to
a wrong subpolygon, or their attraction cannot move u past v (see the following two cases
for details). Later in Theorem 8, we show that this suffices to detect all points that cannot
attract p.

Let e; and es be the edges incident to v. Let H; be the half-plane, defined by a line
orthogonal to e; passing through v, which contains e;, and let Hy be the half-plane, defined
by a line orthogonal to ey passing through v, which contains e;. Depending on whether u is
in Hy U Hy, we consider two cases:

Case 1. Vertex u is not in Hy U Hy (Figure 5). We show that in this case the supporting
line of ww is the only line associated to v that may contribute to the boundary of IAR(p),
i.e., it is the effective line associated to wv. Let ¢ be an arbitrary point on the open edge
e1. As w is not in Hy U Hs, the angle between the line segments ug and o is less than 7/2.
Consider an arbitrary attraction trajectory that moves u straight towards ¢q. By Lemma 1,
any slide movement of this attraction trajectory on the edge e; moves away from v. Now
consider ¢ to be on the edge e5. Similarly any slide on the edge e; moves away from v. Thus,
the line segment wo can only be crossed once in an attraction trajectory of u (and, similarly,
of any other point on the line segment ww). Note that this crossing movement happens via a
pull edge. We use this observation to detect a set of points that do not attract u and thus
do not attract p.

Now consider the supporting line L of the edge wv. As w is not in Hy; U Hy, L partitions
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Figure 5 Vertex u ¢ H1UH>. Subpoly- Figure 6 Vertex u € H; U Hz. Subpolygon P; is
gon P» is the domain of the constraining the domain of the constraining half-plane Ho.
half-plane H;, and P; is the domain of the
constraining half-plane Hs.

the plane into two half-planes L; containing the edge e;, and Lo containing the edge es.

Without loss of generality, assume that the parent of u in SPT,.(p) lies inside Ly (refer to

Figure 5). Recall that ww partitions P into two subpolygons, and P, is the subpolygon
containing p. We define subpolygons P; and P, as follows. Let p; be the ray originating
at v, perpendicular to L in Lp, and let z; be the first intersection point of p; with the
boundary of P. Define P; as the subpolygon of P induced by vz7 that contains the edge
e1. Similarly, let ps be the ray originating at v, perpendicular to L inside Lo, and let z3 be
the first intersection point of py with the boundary of P. Define P, as the subpolygon of
P induced by vz5 that contains the edge e;. We provide the details of the following two
lemmas in the full version of this paper [12].

» Lemma 5. No point in P N Ly can attract p.
» Lemma 6. No point in Po N Ly can attract p.

In summary, in case 1, the effect of wv is expressed by two half-planes: Lo, affecting the
subpolygon P, and L, affecting the subpolygon P,. We call L; and Ly the constraining
half-planes of uv, and we call P; and P, the domain of the constraining half-planes Lo and

L+, respectively. Furthermore, we call P, N Ly and P, N Ly the constraining regions of uv.

Later we show that L is the only effective line associated to wv.

Case 2. Vertex u is in Hy U Hy (refer to Figure 6). Without loss of generality assume u can
see part of the edge e;. Similar to the previous case, we define the subpolygon FP,; let w be
the first intersection of the ray o0 with the boundary of P. Note that ww partitions P into
two subpolygons. Let P, be the subpolygon containing p. Now let p be the ray originating
at v, along the extension of edge es. Let z be the first intersection of p with the boundary of
P. We use P; to denote the subpolygon induced by vz that contains e;. We detect points in
P; that cannot move u (past v) into P;.

» Lemma 7. No point in Py N Hy can attract p.

In summary, in case 2, the effect of wo on TAR(p) can be expressed by the half-plane Hs.
We call Hs the constraining half-plane of wo, Py the domain of Hy and we call P N Hs the
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constraining region of uv. Later we show that the supporting line of Hs is the only effective
line associated to v.
By combining these two cases, we prove the following theorem.

» Theorem 8. A beacon b can attract a point p if and only if b is not in a constraining
region of any edge of SPT..(p).

Proof. By Lemmas 5, 6 and 7, if b is in the constraining region of an edge uv € SPT,(p)
then it does not attract p.

Now let b be a point that cannot attract p. We will show that b is in the constraining
region of at least one edge of SPT,(p). Let s be the separation edge of AR(b) such that b
and p are in different subpolygons induced by s (see, for example, Figure 6). Note that as
the attraction region of a beacon is connected [2], there is exactly one such separation edge.
Let v be the reflex vertex that introduces s and let u be the parent of v in SPT,(p). By
Lemma 2, b is in the deadwedge of v. In addition, as the attraction region of a beacon is
connected, b attracts v. We claim that b is in a constraining region of the edge uv € SPT,(p).
First, we show that b cannot attract u. Consider SP(p,u), the shortest path from p to u. If
SP(p,u) crosses s at some point ¢ then u cannot be the parent of v in SPT,.(p), because we
can reach v with a shorter path by following SP(p,u) from p to ¢ and then reaching v from
q. Therefore, SP(p,u) does not cross s, so p and u are in the same subpolygon of P induced
by s. As b does not attract p, we conclude that b does not attract u.

Consider the two cases: u is in Hy U Hy or not. We show that in each case, b is in a
constraining region of ww.

Case 1. Vertex u is not in Hy U Hy (refer to Figure 5). Let L be the supporting line of uv,
and similar to the previous case analysis let L, and Lo be the constraining half-planes, and
let P; and P be the domains of Ly and L1, respectively. Without loss of generality, assume
that b is in the half-plane Ls. We show that then b belongs to P;.

As b € Lo, the separation edge s extends from v into Ly, i.e., s € L;. Then the point p
and subpolygon P, lie on one side of s, and subpolygon P; lies on the other side of s. As
beacon b does not attract p, the point p and the beacon b lie on different sides of s, and thus
the beacon b and subpolygon P; lie on the same side of s.

We will show now that indeed b € P;. Beacon b attracts v and is in the deadwedge of v.
Thus, in the attraction of b, v will enter P; via a slide move. We claim that v cannot leave P}
afterwards. Consider the supporting line of p; which is a line orthogonal to wv at v. As u is
not in Hy U H, and the deadwedge of v is equal to H; N Hs, the deadwedge of v completely
lies to one side of the supporting line. Therefore, in the attraction of v by any beacon inside
the deadwedge of v, any point ¢ # v on Tz moves straight towards the beacon along the ray
qb. In other words, in the attraction pull of b no point inside P; can leave P;. Therefore,
b € P, and thus b € P; N Ly. By definition, b belongs to a constraining region of ww.

Case 2. Vertex u is in Hy; U Hy (refer to Figure 6). Without loss of generality let u € Hs.
Consider the separation edge s. As the beacon b does not attract u, they lie on the opposite
sides of s. As b is in the deadwedge of v, it is also in Hs, the constraining half-plane of
wo. Similar to the previous case, as b attracts v, AT (v,b) never crosses p to leave P; and
therefore, b is in P;. Thus, b € P, N Hy and it belongs to the constraining region of uv. <«

» Corollary 9. Consider the edge uv € SPT,.(p). If u is not in Hy UHy (case 1), then among
three associated lines to uv only the supporting line of wv may contribute to the boundary
of IAR(p). If w is in Hy U Hy (case 2), then among three associated lines to wv only the
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Figure 7 The charging scheme: vertex a is charged to the constraining half-plane C' of vertex v.
The inverse attraction region of p is the shaded region.

supporting line of Hy may contribute to the boundary of IAR(p), where Hy is the half-plane
orthogonal to the incident edge of v that w can partially see.

4 The complexity of the inverse attraction region

In this section we show that in a simple polygon P the complexity of IAR(p) is linear with
respect to the size of P.

We classify the vertices of the inverse attraction region into two groups: 1) vertices that
are on the boundary of P, and 2) internal vertices. We claim that there are at most a linear
number of vertices in each group. Throughout this section, without loss of generality, we
assume that no two constraining half-planes of different edges of the shortest path tree are
co-linear. Note that we can reach such a configuration with a small perturbation of the input
points, which may just add to the number of vertices of IAR(p).

Biro [2] showed that the inverse attraction region of a point in a simple polygon P is
convex with respect to? P. Therefore, we have at most two vertices of IAR(p) on each edge
of P, and thus there are at most a linear number of vertices in the first group.

We use the following property of the attraction trajectory to count the number of vertices
in group 2.

» Lemma 10. Let L be the effective line associated to the edge uv € SPT,.(p), where
u = parent(v). Let b be a beacon on L N deadwedge(v) that attracts p. Then the attraction
trajectory of p passes through both u and v.

Next we define an ordering on the constraining half-planes. Let C' be a constraining half-
plane of the edge uv € SPT,(p) (u = parent(v)), and let C’ be a constraining half-plane of the
edge u/v' € SPT,(p) (u' = parent(v')). We say C < C” if and only if |SP(p,v)| < |SP(p,v")]
(refer to Figure 7).

We use a charging scheme to count the number of internal vertices. An internal vertex
resulting from the intersection of two constraining half-planes C' and C” is charged to C’ if
C < ', otherwise it is charged to C. In the remaining of this section, we show that each
constraining half-plane is charged at most twice. Let Po and P/, denote the constraining
regions related to C' and C’, respectively. And let Lo and Lo denote the supporting lines of
C and (', respectively. In the previous section we showed that the line segments Lo N Po are
the only parts of Lo that may contribute to the boundary of IAR(p). Let s € Lo N Po be a
segment outside of the deadwedge of v. The next lemma shows that s does not appear on
the boundary of IAR(p), and we can ignore s when counting the internal vertices of IAR(p).

4 A subpolygon Q C P is convex with respect to the polygon P if the line segment connecting two arbitrary
points of @ either completely lies in @ or intersects P.
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Figure 8 A constraining half-plane may contribute O(n) vertices of group 2 to the inverse
attraction region. Here the inverse attraction region of p is colored.

» Lemma 11. Let s € Lo N Pe be a segment outside of the deadwedge of v. Then s (or a
part of s with a non-zero length) does not appear on the boundary of IAR(p).

We define Le = Lo N Pe N deadwedge(v) and Lerv = Lo N Por N deadwedge(v’). By
Lemma 11, Lo and Lo are the subset of Lo and Lo that may appear on the boundary of
IAR(p), therefore, the intersection points of all Lo and Lev are the only possible locations

for internal vertices of JAR(p). Consider an internal vertex a resulting from the intersection
of LC and LC/.

» Lemma 12. Let a = Lo N Lo be an internal vertex of IAR(p) and let C' < C (Figure 7).
Then all points on Le are in the domain of C".

We charge a to C if ¢’ < C, otherwise we charge it to C’. Assume a is charged to C. By
Lemma 12, all points on L¢ to one side of a belong to the domain of ¢ and therefore are
in C’. Thus, C cannot contribute any other internal vertices to this side of a. This implies
that C can be charged at most twice (once from each end) and as there are a linear number
of constraining half-planes, we have at most a linear number of vertices of group 2, and we
have the following theorem.

» Theorem 13. The inverse attraction region of a point p has linear complexity in a simple
polygon.

Note that, as illustrated in Figure 8, a constraining half-plane may contribute many
vertices of group 2 to the inverse attraction region, but nevertheless it is charged at most
twice.

5 Computing the inverse attraction region

In this section we show how to compute the inverse attraction region of a point inside a
simple polygon in O(nlogn) time.

Let region R; of the shortest path map SPM (p) consist of all points ¢ such that the last
segment of the shortest path from p to t is v;t (Figure 9). Vertex v; is called the base of R;.
Extend the edge of SPT,.(p) ending at v; until the first intersection z; with the boundary of
P. Call the segment w; = v;z; a window, and point z; — the end of the window; window w;
is a boundary segment of R;.

We will construct a part of the inverse attraction region of p inside each region of the
shortest path map SPM (p) independently. A point in a region of SPM(p) attracts p only if
its attraction can move p into the region through the corresponding window.
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Figure 9 R; is a region of SPM(p) with base v;. Segment w; is the window, and z; — its end.

» Lemma 14. Let R; be a region of SPM(p) with a base vertezx v;. If v; lies in some domain
subpolygon P,, then any point t in R; lies in P,.

Let R; be a region of SPM (p) with a base vertex v;, and let H; be the set of all constraining
half-planes corresponding to the domain subpolygons that contain the point v;. Denote Free;
to be the intersection of the complements of the half-planes in H;. Note, that Free; is a
convex set. In the following lemma we show that Free; N R; is exactly the set of points inside
R; that can attract p.

» Lemma 15. The set of points in R; that attract p is Free; N R;.

This results in the following algorithm for computing the inverse attraction region of p.
We compute the constraining half-planes of every edge of SPT,.(p) of p and the corresponding
domain subpolygons. Then, for every region R; of the shortest path map of p, we compute the
free region Free;, where v; is the base vertex of the region; and we add the intersection of R;
and Free; to the inverse attraction region of p. The pseudocode is presented in Algorithm 1.

Rather than computing each free space from scratch, we can compute and update free
spaces using the data structure of Brodal and Jacob [7]. Their data structure allows to
dynamically maintain the convex hull of a set of points and supports insertions and deletions in
amortized O(logn) time using O(n) space. In the dual space this is equivalent to maintaining
the intersection of n half-planes. In order to achieve a total O(nlogn) time, we need to
provide a way to traverse recursive visibility regions and guarantee that the number of
updates (insertions or deletions of half-planes) in the data structure is O(n). In the rest of
this section, we provide a proof for the following lemma.

Algorithm 1 Inverse attraction region.

Input: Simple polygon P, and a point p € P.
Output: Inverse attraction region of p.
Compute SPT,(p) and SPM(p).
for each edge e € SPT,(p) do
Compute constraining half-planes of e and corresponding domain subpolygons.
end for
for each region R; of SPM(p) with base vertex v; do
Find all the domain subpolygons that contain v;, and compute Free;.
Intersect R with Free;, and add the resulting set to the inverse attraction region of p.
end for

return Inverse attraction region of p.
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» Lemma 16. Free spaces of the recursive visibility regions can be computed in a total time
of O(nlogn) using O(n) space.

Proof. Consider a region R; of SPM(p) with a base vertex v;. By Lemma 14 and The-
orem 8, the set of constraining half-planes that affect the inverse attraction region inside R;
corresponds to the domain subpolygons that contain v;.

Observe that the vertices of a domain subpolygon appear as one continuous interval along
the boundary of P, as there is only one boundary segment of the subpolygon that crosses
P. Then, when walking along the boundary of P, each domain subpolygon can be entered
and exited at most once. All the domain polygons can be computed in O(nlogn) time by
shooting n rays and computing their intersection points with the boundary of P [8].

Let the vertices of P be ordered in the counter-clockwise order. For each domain
subpolygon P,., mark the two endpoints (e.g., vertices v and z in Figure 6) of the boundary
edge that crosses P as the first and the last vertices of P, in accordance to the counter-
clockwise order. Then, to obtain the optimal running time, we modify the second for-loop
of the Algorithm 1 in the following way. Start at any vertex vy of P, find all the domain
subpolygons that contain vy, and initialize the dynamic convex hull data structure of Brodal
and Jacob [7] with the points dual to the lines supporting the constraining half-planes of the
corresponding domain subpolygons. If vy is a base vertex of some region Rg of SPM(p), then
compute the intersection of Ry and the free space Freep) that we obtain from the dynamic
convex hull data structure. Walk along the boundary of P in the counter-clockwise direction,
adding to the data structure the dual points to the supporting lines of domain polygons
being entered, removing from the data structure the dual points to the supporting lines of
domain polygons being exited, and computing the intersection of each region of SPM(p)
with the free space obtained from the data structure.

The correctness of the algorithm follows from Lemma 15, and the total running time is
O(nlogn). Indeed, there will be O(n) updates to the dynamic convex hull data structure,
each requiring O(logn) amortized time. Intersecting free spaces with regions of SPM (p) will
take O(nlogn) time in total, as the complexity of IAR(p) is linear. For the pseudocode of
the algorithm please refer to the full version of this paper [12]. <

5.1 Lower bound

The proof of the following theorem is based on a reduction from the problem of computing
the lower envelope of a set of lines, which has a lower bound of Q(nlogn) [18].

» Theorem 17. Computing the inverse attraction region of a point in a monotone (or a
simple polygon) has a lower bound of Q(nlogn).

Proof. Consider a set of lines L. Let [, and [; denote the lines in L with the biggest and
smallest slope, respectively. Note that the leftmost (rightmost) edge of the lower envelope of
L is part of Iy (Is).

Without loss of generality assume that the slopes of the lines in L are positive and
bounden from above by a small constant €. We construct a monotone polygon as follows.
The right part of the polygon is comprised of an axis aligned rectangle R that contains all
the intersection points of the lines in L (Figure 10). Note that R can be computed in linear
time. To the left of R, we construct a “zigzag” corridor in the following way. For each line [
in L, in an arbitrary order, we add a corridor perpendicular to [ which extends above the
next arbitrarily chosen line (Figure 11). We then add a corridor with slope 1 going downward
until it hits the next line. This process is continued for all lines in L.

Let the point p be the leftmost vertex of the upper chain of the corridor structure.
Consider the inverse attraction region of p in the resulting monotone polygon. A point in
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Figure 10 The final monotone polygon constructed for 3 lines.
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Figure 11 Adding a corridor for a line of L.

R can attract p, only if it is below all lines of L, i.e., only if it is below the lower envelope
of L. In addition the point needs to be above the line L,,, where L,, is the rightmost line
perpendicular to a lower edge of the corridors with a slope of —1 (refer to Figure 10). In
order to have all vertices of the lower envelope in the inverse attraction region, we need to
guarantee that L, is to the left of the leftmost vertex of the lower envelope, w. Let L, be a
line through w with a scope equal to —1. Let ¢ be the intersection of L, with l,. We start
the first corridor of the zigzag to the left of g. As the lines have similar slopes this guarantees
that L, is to the left of vertices of the lower envelope. Now it is straightforward to compute
the lower envelope of L in linear time given the inverse attraction region of p. |

We conclude with the main result of this paper.

» Theorem 18. The inverse attraction region of a point in a simple polygon can be computed
in ©(nlogn) time.

—— References

1 Sang Won Bae, Chan-Su Shin, and Antoine Vigneron. Tight bounds for beacon-based cover-
age in simple rectilinear polygons. In Proc. 12th Latin American Symposium on Theoretical
Informatics, 2016.

2 Michael Biro. Beacon-based routing and guarding. PhD thesis, Stony Brook University,
2013.

3 Michael Biro, Jie Gao, Justin Iwerks, Irina Kostitsyna, and Joseph S. B. Mitchell. Beacon-
based routing and coverage. In Abstr. 21st Fall Workshop on Computational Geometry,
2011.

55:13

SoCG 2018



55:14

An Optimal Algorithm to Compute the Inverse Beacon Attraction Region

10

11

12

13

14

15

16

17

18

Michael Biro, Jie Gao, Justin Iwerks, Irina Kostitsyna, and Joseph S. B. Mitchell. Com-
binatorics of beacon-based routing and coverage. In Proc. 25th Canadian Conference on
Computational Geometry, 2013.

Michael Biro, Justin Iwerks, Irina Kostitsyna, and Joseph S. B. Mitchell. Beacon-based
algorithms for geometric routing. In Proc. 13th Algorithms and Data Structures Symposium,
2013.

Prosenjit Bose, Pat Morin, Ivan Stojmenovi¢, and Jorge Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wirel. Netw., 7(6):609-616, 2001. doi:10.1023/A:
1012319418150.

Gerth S. Brodal and Riko Jacob. Dynamic planar convex hull. In Proc. 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002.

Bernard Chazelle and Leonidas J. Guibas. Visibility and intersection problems in plane
geometry. Discrete & Computational Geometry, 4(6):551-581, 1989.

Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1-4):209-233, 1987.

Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless net-
works. In Proceedings of the 6th Annual International Conference on Mobile Comput-
ing and Networking, MobiCom 00, pages 243-254, New York, NY, USA, 2000. ACM.
doi:10.1145/345910.345953.

Anne-Marie Kermarrec and Guang Tan. Greedy geographic routing in large-scale sensor
networks: A minimum network decomposition approach. IEEE/ACM Transactions on
Networking, 20:864-877, 2010.

Irina Kostitsyna, Bahram Kouhestani, Stefan Langerman, and David Rappaport. An
optimal algorithm to compute the inverse beacon attraction region. ArXiv e-prints,
http://arxiv.org/abs/1803.05946, 2018. arXiv:1803.05946.

Bahram Kouhestani, David Rappaport, and Kai Salomaa. The length of the beacon attrac-
tion trajectory. In Proc. 27th Canadian Conference on Computational Geometry, 2015.
Bahram Kouhestani, David Rappaport, and Kai Salomaa. On the inverse beacon attraction
region of a point. In Proc. 27th Canadian Conference on Computational Geometry, 2015.
Bahram Kouhestani, David Rappaport, and Kai Salomaa. Routing in a polygonal terrain
with the shortest beacon watchtower. International Journal of Computational Geometry &
Applications, 68:34-47, 2018.

Der-Tsai Lee and Franco P. Preparata. Euclidean shortest paths in the presence of recti-
linear barriers. Networks, 14(3):393-410, 1984.

Thomas Shermer. A combinatorial bound for beacon-based routing in orthogonal polygons.
In Proc. 27th Canadian Conference on Computational Geometry, 2015.

Andrew C. Yao. A lower bound to finding convex hulls. Journal of the ACM, 28(4):780-787,
1981.


http://dx.doi.org/10.1023/A:1012319418150
http://dx.doi.org/10.1023/A:1012319418150
http://dx.doi.org/10.1145/345910.345953
http://arxiv.org/abs/1803.05946
http://arxiv.org/abs/1803.05946

	Introduction
	Preliminaries
	The structure of inverse attraction regions
	The complexity of the inverse attraction region
	Computing the inverse attraction region
	Lower bound


