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Abstract
Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent
edges cross and any pair of independent edges cross at most once. According to the celebrated
Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton, the number of crossings
in G is at least c e3

n2 , for a suitable constant c > 0. In a seminal paper, Székely generalized
this result to multigraphs, establishing the lower bound c e3

mn2 , where m denotes the maximum
multiplicity of an edge in G. We get rid of the dependence on m by showing that, as in the
original Crossing Lemma, the number of crossings is at least c′ e3

n2 for some c′ > 0, provided that
the “lens” enclosed by every pair of parallel edges in G contains at least one vertex. This settles
a conjecture of Bekos, Kaufmann, and Raftopoulou.
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1 Introduction

A drawing of a graph G is a representation of G in the plane such that the vertices are
represented by points, the edges are represented by simple continuous arcs connecting the
corresponding pair of points without passing through any other point representing a vertex.
In notation and terminology we do not make any distinction between a vertex (edge) and
the point (resp., arc) representing it. Throughout this note we assume that any pair of edges
intersect in finitely many points and no three edges pass through the same point. A common
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interior point of two edges at which the first edge passes from one side of the second edge to
the other, is called a crossing.

A very “successful concept for measuring non-planarity" of graphs is the crossing number
of G [13], which is defined as the minimum number cr(G) of crossing points in any drawing
of G in the plane. For many interesting variants of the crossing number, see [10], [8].
Computing cr(G) is an NP-hard problem [4], which is equivalent to the existential theory of
reals [9].

The following statement, proved independently by Ajtai, Chvátal, Newborn, Szemerédi [1]
and Leighton [6], gives a lower bound on the crossing number of a graph in terms of its
number of vertices and number of edges.

I Lemma (Crossing Lemma, [1], [6]). For any graph G with n vertices and e > 4n edges, we
have

cr(G) ≥ 1
64

e3

n2 .

Apart from the exact value of the constant, the order of magnitude of this bound cannot
be improved. This lemma has many important applications, including simple proofs of the
Szemerédi-Trotter theorem [14] on the maximum number of incidences between n points
and n lines in the plane and of the best known upper bound on the number of halving lines
induced by n points, due to Dey [3].

The same problem was also considered for multigraphs G, in which two vertices can be
connected by several edges. As Székely [12] pointed out, if the multiplicity of an edge is at
most m, that is, any pair of vertices of G is connected by at most m “parallel” edges, then
the minimum number of crossings between the edges satisfies

cr(G) ≥ 1
64

e3

mn2 (1)

when e ≥ 4mn. For m = 1, this gives the Crossing Lemma, but as m increases, the bound is
getting weaker. It is not hard to see that this inequality is also tight up to a constant factor.
Indeed, consider any (simple) graph with n vertices and roughly e/m > 4n edges such that
it can be drawn with at most (e/m)3

n2 crossings, and replace each edge by m parallel edges
no pair of which share an interior point. The crossing number of the resulting multigraph
cannot exceed (e/m)3

n2 m2 = e3

mn2 .
It was suggested by Bekos, Kaufmann, and Raftopoulou [5] that the dependence on the

multiplicity might be eliminated if we restrict our attention to a special class of drawings.

I Definition 1. A drawing of a multigraph G in the plane is called branching, or a branching
topological multigraph, if the following conditions are satisfied.
(i) If two edges are parallel (have the same endpoints), then there is at least one vertex in

the interior and in the exterior of the simple closed curve formed by their union.
(ii) If two edges share at least one endpoint, they cannot cross.
(iii) If two edges do not share an endpoint, they can have at most one crossing.

Given a multigraph G, its branching crossing number is the smallest number crbr(G) of
crossing points in any branching drawing of G. If G has no such drawing, set crbr(G) =∞.

According to this definition, crbr(G) ≥ cr(G) for every graph or multigraph G, and if G
has no parallel edges, equality holds.

The main aim of this note is to settle the conjecture of Bekos, Kaufmann, and Raftopoulou.
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I Theorem 2. The branching crossing number of any multigraph G with n vertices and
e > 4n edges satisfies crbr(G) ≥ c e3

n2 , for an absolute constant c > 10−7.

Unfortunately, the standard proofs of the Crossing Lemma by inductional or probabilistic
arguments break down in this case, because the property that a drawing of G is branching is
not hereditary: it can be destroyed by deleting vertices from G.

The bisection width of an abstract graph is usually defined as the minimum number
of edges whose deletion separates the graph into two parts containing “roughly the same”
number of vertices. In analogy to this, we introduce the following new parameter of branching
topological multigraphs.

I Definition 3. The branching bisection width bbr(G) of a branching topological multi-
graph G with n vertices is the minimum number of edges whose removal splits G into two
branching topological multigraphs, G1 and G2, with no edge connecting them such that
|V (G1)|, |V (G2)| ≥ n/5.

A key element of the proof of Theorem 2 is the following statement establishing a
relationship between the branching bisection width and the number of crossings of a branching
topological multigraph.

I Theorem 4. Let G be a branching topological multigraph with n vertices of degrees
d1, d2, . . . , dn, and with c(G) crossings. Then the branching bisection width of G satisfies

bbr(G) ≤ 22

√√√√c(G) +
n∑

i=1
d2

i + n.

By definition, the number of crossings c(G) between the edges of G has to be at least as
large as the branching crossing number of the abstract underlying multigraph of G.

To prove Theorem 2, we will use Theorem 4 recursively. Therefore, it is crucially important
that in the definition of bbr(G), both parts that G is cut into should be branching topological
multigraphs themselves. If we are not careful, all vertices of V (G) that lie in the interior (or
in the exterior) of a closed curve formed by two parallel edges between u, v ∈ G1, say, may
end up in G2. This would violate for G1 condition (i) in the above definition of branching
topological multigraphs. That is why the proof of Theorem 4 is far more delicate than the
proof of the analogous statement for abstract graphs without multiple edges, obtained in [7].

For the proof of Theorem 2, we also need the following result.

I Theorem 5. Let G be a branching topological multigraph with n ≥ 3 vertices. Then the
number of edges of G satisfies e(G) ≤ n(n− 2), and this bound is tight.

Our strategy for proving Theorem 2 is the following. Suppose, for a contradiction, that
a multigraph G has a branching drawing in which the number of crossings is smaller than
what is required by the theorem. According to Theorem 4, this implies that the branching
bisection width of this drawing is small. Thus, we can cut the drawing into two smaller
branching topological multigraphs, G1 and G2, by deleting relatively few edges. We repeat
the same procedure for G1 and G2, and continue recursively until the size of every piece falls
under a carefully chosen threshold. The total number of edges removed during this procedure
is small, so that the small components altogether still contain a lot of edges. However, the
number of edges in the small components is bounded from above by Theorem 5, which leads
to the desired contradiction.

SoCG 2018
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Figure 1 Theorem 5 is tight for every n ≥ 3. Construction for n = 5.

Remarks.
1. Theorem 2 does not hold if we drop conditions (ii) and (iii) in the above definition, that

is, if we allow two edges to cross more than once. To see this, suppose that n is a multiple
of 3 and consider a tripartite topological multigraph G with V (G) = V1 ∪ V2 ∪ V3, where
all points of Vi belong to the line x = i and we have |Vi| = n/3 for i = 1, 2, 3. Connect
each point of V1 to every point of V3 by n/3 parallel edges: by one curve passing between
any two (cyclically) consecutive vertices of V2. We can draw these curves in such a way
that any two edges cross at most twice, so that the number of edges is e = e(G) = (n/3)3

and the total number of crossings is at most 2
(

e
2
)
< (n/3)6. On the other hand, the lower

bound in Theorem 2 is ce3/n2 > (c/39)n7, which is a contradiction if n is sufficiently
large.

2. In the definition of branching topological multigraphs, for symmetry we assumed that the
closed curve obtained by the concatenation of any pair of parallel edges in G has at least
one vertex in its interior and at least one vertex in its exterior; see condition (i). It would
have been sufficient to require that any such curve has at least one vertex in its interior,
that is, any lens enclosed by two parallel edges contains a vertex. Indeed, by placing an
isolated vertex v far away from the rest of the drawing, we can achieve that there is at
least one vertex (namely, v) in the exterior of every lens, and apply Theorem 2 to the
resulting graph with n+ 1 vertices.

3. Throughout this paper, we assume for simplicity that a multigraph does not have loops,
that is, there are no edges whose endpoints are the same. It is easy to see that Theorem
2, with a slightly worse constant c, also holds for topological multigraphs G having
loops, provided that condition (ii) in the definition of branching topological multigraphs
remains valid. In this case, one can argue that the total number of loops cannot exceed
n. Subdividing every loop by an additional vertex, we get rid of all loops, and then we
can apply Theorem 2 to the resulting multigraph of at most 2n vertices.

The rest of this note is organized as follows. In Section 2, we establish Theorem 5. In
Section 3, we apply Theorems 4 and 5 to deduce Theorem 2. The proof of Theorem 4 is
given in Section 4.

2 The number of edges in branching topological multigraphs and
proof of Theorem 5

I Lemma 6. Let G be a branching topological multigraph with n ≥ 3 vertices and e edges, in
which no two edges cross each other. Then e ≤ 3n− 6.
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Proof. We can suppose without loss of generality that G is connected. Otherwise, we can
achieve this by adding some edges of multiplicity 1, without violating conditions (i)-(iii)
required for a drawing to be branching. We have a connected planar map with f faces, each
of which is simply connected and has size at least 3. (The size of a face is the number of
edges along its boundary, where an edge is counted twice if both of its sides belong to the
face.) As in the case of simple graphs, we have that 2e is equal to the sum of the sizes of the
faces, which is at least 3f . Hence, by Euler’s polyhedral formula,

2 = n− e+ f ≤ n− e+ 2
3e = n− 1

3e,

and the result follows. J

I Corollary 7. Let G be a branching topological multigraph with n ≥ 3 vertices and e edges.
Then for the number of crossings in G we have c(G) ≥ e− 3n+ 6.

Proof. By our assumptions, each crossing belongs to precisely two edges. At each crossing,
delete one of these two edges. The remaining topological graph G′ has at least e − c(G)
edges. Since G′ is a branching topological multigraph with no two crossing edges, we can
apply Lemma 6 to obtain e− c(G) ≤ 3n− 6. J

Proof of Theorem 5. Let G be a branching topological multigraph with n vertices. It is
sufficient to show that for the degree of every vertex v ∈ V (G) we have d(v) ≤ 2n− 4. This
implies that e(G) ≤ n(2n− 4)/2 = n(n− 2).

Let v1, v2, . . . , vn−1 denote the vertices of G different from v. Delete all edges of G that
are not incident to v. No two remaining edges cross each other. If v is not adjacent to
some vi ∈ V (G), then add a single edge vvi without creating a crossing. The resulting
topological multigraph, G′, is also branching. Starting with any edge connecting v to v1,
list all edges incident to v in clockwise order, and for each edge write down its endpoint
different from v. In this way, we obtain a sequence σ of length at least d(v), consisting of
the symbols v1, v2, . . . , vn−1, with possible repetition. Let σ′ denote the sequence of length
at least d(v) + 1 obtained from σ by adding an extra symbol v1 at the end.

Property A: No two consecutive symbols of σ′ are the same.

This is obvious for all but the last pair of symbols, otherwise the corresponding pair of
edges of G′ would form a simple closed Jordan curve with no vertex in its interior or in its
exterior, contradicting the fact that G′ is branching. The last two symbols of σ′ cannot be
the same either, because this would mean that σ starts and ends with v1, and in the same
way we arrive at a contradiction.

Property B: σ′ does not contain a subsequence of the type vi . . . vj . . . vi . . . vj for i 6= j.

Indeed, otherwise the closed curve formed by the pair of edges connecting v to vi would
cross the closed curve formed by the pair of edges connecting v to vj , contradicting the fact
that G′ is crossing-free.

A sequence with Properties A and B is called a Davenport-Schinzel sequence of order
2. It is known and easy to prove that any such sequence using n− 1 distinct symbols has
length at most 2n− 3; see [11], page 6. Therefore, we have d(v) + 1 ≤ 2n− 3, as required.

To see that the bound in Theorem 5 is tight, place a regular n-gon on the equator E (a
great circle of a sphere), and connect any two consecutive vertices by a single circular arc

SoCG 2018
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along E. Connect every pair of nonconsecutive vertices by two half-circles orthogonal to E:
one in the Northern hemisphere and one in the Southern hemisphere. The total number of
edges of the resulting drawing is 2

(
n
2
)
− n = n(n− 2). See Fig. 1. J

3 Proof of Theorem 2 – using Theorems 4 and 5

Let G′ be a branching topological multigraph of n′ vertices and e′ > 4n′ edges. If e′ ≤ 108n′,
then it follows from Corollary 7 that G′ meets the requirements of Theorem 2.

To prove Theorem 2, suppose for contradiction that e′ > 108n′ and that the number of
crossings in G′ satisfies

c(G′) < c(e′)3/(n′)2,

for a small constant c > 0 to be specified later.
Let d denote the average degree of the vertices of G′, that is, d = 2e′/n′. For every vertex

v ∈ V (G) whose degree, d(v), is larger than d, split v into several vertices of degree at most
d, as follows. Let vw1, vw2, . . . , vwd(v) be the edges incident to v, listed in clockwise order.
Replace v by dd(v)/de new vertices, v1, v2, . . . , vdd(v)/de, placed in clockwise order on a very
small circle around v. By locally modifying the edges in a small neighborhood of v, connect
wj to vi if and only if d(i− 1) < j ≤ di. Obviously, this can be done in such a way that we
do not create any new crossing or two parallel edges that bound a region that contains no
vertex. At the end of the procedure, we obtain a branching topological multigraph G with
e = e′ edges, and n < 2n′ vertices, each of degree at most d = 2e′/n′ < 4e/n.

Thus, for the number of crossings in G, we have

c(G) = c(G′) < 4ce3/n2 (2)

We break G into smaller components, according to the following procedure.

Decomposition Algorithm

Step 0. Let G0 = G,G0
1 = G,M0 = 1,m0 = 1.

Suppose that we have already executed Step i, and that the resulting branching topolo-
gical graph, Gi, consists of Mi components, Gi

1, G
i
2, . . . , G

i
Mi

, each having at most (4/5)in

vertices. Assume without loss of generality that the first mi components of Gi have at least
(4/5)i+1n vertices and the remaining Mi −mi have fewer. Letting n(Gi

j) denote the number
of vertices of the component Gi

j , we have

(4/5)i+1n(G) ≤ n(Gi
j) ≤ (4/5)in(G), 1 ≤ j ≤ mi. (3)

Hence,

mi ≤ (5/4)i+1. (4)

Step i+ 1. If

(4/5)i <
1
2 ·

e

n2 , (5)

then stop. (5) is called the stopping rule.
Else, for j = 1, 2, . . . ,mi, delete bbr(Gi

j) edges from Gi
j , as guaranteed by Theorem 4,

such that Gi
j falls into two components, each of which is a branching topological graph with
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at most (4/5)n(Gi
j) vertices. Let Gi+1 denote the resulting topological graph on the original

set of n vertices. Clearly, each component of Gi+1 has at most (4/5)i+1n vertices.

Suppose that the Decomposition Algorithm terminates in Step k+ 1. If k > 0, then

(4/5)k <
1
2 ·

e

n2 ≤ (4/5)k−1. (6)

First, we give an upper bound on the total number of edges deleted from G. Using the
fact that, for any nonnegative numbers a1, a2, . . . , am,

m∑
j=1

√
aj ≤

√√√√m

m∑
j=1

aj , (7)

we obtain that, for any 0 ≤ i < k,

mi∑
j=1

√
c(Gi

j) ≤

√√√√mi

mi∑
j=1

c(Gi
j) ≤

√
(5/4)i+1

√
c(G) <

√
(5/4)i+1

√
4ce3/n2.

Here, the last inequality follows from (2).
Denoting by d(v,Gi

j) the degree of vertex v in Gi
j , in view of (7) and (4), we have

mi∑
j=1

√ ∑
v∈V (Gi

j
)

d2(v,Gi
j) + n(Gi

j) ≤

√√√√√mi

 ∑
v∈V (Gi)

d2(v,Gi) + n


≤
√

(5/4)i+1
√

max
v∈V (Gi)

d(v,Gi) ·
∑

v∈V (Gi)

d(v,Gi) + n

≤
√

(5/4)i+1

√
4e
n

2e+ n <
√

(5/4)i+1 3e√
n
.

Thus, by Theorem 4, the total number of edges deleted during the decomposition procedure
is

k−1∑
i=0

mi∑
j=1

bbr(Gi
j) ≤ 22

k−1∑
i=0

mi∑
j=1

√
c(Gi

j) +
∑

v∈V (Gi
j
)

d2(v,Gi
j) + n(Gi

j)

≤ 22
k−1∑
i=0

mi∑
j=1

√
c(Gi

j) + 22
k−1∑
i=0

mi∑
j=1

√ ∑
v∈V (Gi

j
)

d2(v,Gi
j) + n(Gi

j)

≤ 22
(

k−1∑
i=0

√
(5/4)i+1

)(√
4ce3

n2 + 3e√
n

)
< 350 n√

e

(√
4ce3

n2 + 3e√
n

)
< 350(2

√
ce+ 3

√
en) < 350(2

√
ce+ 3

√
e(2e/108)) < e

2 ,

provided that c ≤ 10−7. In the last line, we used our assumption that e > 108n′ > (108/2)n.
The estimate for the term

∑k−1
i=0

√
(5/4)i+1 follows from (6).

So far we have proved that the number of edges of the graph Gk obtained in the final
step of the Decomposition Algorithm satisfies

e(Gk) > e

2 . (8)

SoCG 2018
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(Note that this inequality trivially holds if the algorithm terminates in the very first step,
i.e., when k = 0.)

Next we give a lower bound on e(Gk). The number of vertices of each connected component
of Gk satisfies

n(Gk
j ) ≤ (4/5)kn <

1
2 ·

e

n2n = e

2n, 1 ≤ j ≤Mk.

By Theorem 5,

e(Gk
j ) ≤ n2(Gk

j ) < n(Gk
j ) · e2n.

Therefore, for the total number of edges of Gk we have

e(Gk) =
Mk∑
j=1

e(Gk
j ) < e

2n

Mk∑
j=1

n(Gk
j ) = e

2 ,

contradicting (8). This completes the proof of Theorem 2. J

4 Branching bisection width vs. number of crossings – Proof of
Theorem 4

Suppose that there is a weight function w on a set V . Then for any subset S of V , let w(S)
denote the total weight of the elements of S. We will apply the following separator theorem.

I Lemma (Separator Theorem, (Alon-Seymour-Thomas [2])). Suppose that a graph G is drawn
in the plane with no crossings. Let V = {v1, . . . , vn} be the vertex set of G. Let w be a
nonnegative weight function on V . Then there is a simple closed curve Φ with the following
properties.
(i) Φ meets G only in vertices.
(ii) |Φ ∩ V | ≤ 3

√
n

(iii) Φ divides the plane into two regions, D1 and D2, let Vi = Di ∩ V . Then for i = 1, 2,

w(Vi) + 1
2w(Φ ∩ V ) ≤ 2

3w(V ).

Consider a branching drawing of G with exactly c(G) = crbr(G) crossings. Let V0 be the
set of isolated vertices of G, and let v1, v2, . . . , vm be the other vertices of G with degrees
d1, d2, . . . , dm, respectively. Introduce a new vertex at each crossing. Denote the set of these
vertices by VX .

For i = 1, 2 . . . ,m, replace vertex vi by a set Vi of vertices forming a very small di × di

piece of a square grid, in which each vertex is connected to its horizontal and vertical
neighbors. Let each edge incident to vi be hooked up to distinct vertices along one side of
the boundary of Vi without creating any crossing. These di vertices will be called the special
boundary vertices of Vi.

Note that we modified the drawing of the edges only in small neighborhoods of the grids
Vi, that is, in nonoverlapping small neighborhoods of the vertices of G, far from any crossing.

Thus, we obtain a (simple) topological graph H, of |VX |+
∑m

i=0 |Vi| ≤ c(G)+
∑m

i=1 d
2
i +n

vertices and with no crossing; see Fig. 2. For every 1 ≤ i ≤ m, assign weight 1/di to each
special boundary vertex of Vi. Assign weight 1 to every vertex of V0 and weight 0 to all
other vertices of H. Then w(Vi) = 1 for every 1 ≤ i ≤ n and w(v) = 1 for every v ∈ V0.
Consequently, w(V (H)) = n.
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Figure 2 Topological graph H.

Apply the Separator Theorem to H. Let Φ denote the closed curve satisfying the
conditions of the theorem. Let A(Φ) and B(Φ) denote the region interior and the exterior
of Φ, respectively. For 1 ≤ i ≤ m, let Ai = Vi ∩A(Φ), Bi = Vi ∩B(Φ), Ci = Vi ∩ Φ. Finally,
let CX = VX ∩ Φ.

I Definition 8. For any 1 ≤ i ≤ m, we say that
Vi is of type A if w(Ai) ≥ 5

6 ,
Vi is of type B if w(Bi) ≥ 5

6 ,
Vi is of type C, otherwise.

For every v ∈ V0,
v is of type A if v ∈ A(Φ),
v is of type B if v ∈ B(Φ),
v is of type C, if v ∈ Φ.

Define a partition V (G) = VA ∪ VB of the vertex set of G, as follows. For any 1 ≤ i ≤ m,
let vi ∈ VA (resp. vi ∈ VB) if Vi is of type A (resp. type B). Similarly, for every v ∈ V0,
let v ∈ VA (resp. v ∈ VB) if v is of type A (resp. type B). The remaining vertices will be
assigned either to VA or to VB so as to minimize

∣∣|VA| − |VB |
∣∣.

I Claim 9. n
5 ≤ |VA|, |VB | ≤ 4n

5

Proof. To prove the claim, define another partition V (H) = A∪B∪C such that A∩Vi = A∩Vi

and B ∩ Vi = B ∩ Vi for V0 and for every Vi of type C. If Vi is of type A (resp. type B),
then let Vi = Ai ⊂ A (resp. Vi = Bi ⊂ B), finally, let C = V (H)−A−B.

For any Vi of type A, we have w(Ai)− w(Ai) ≤ w(Ai)
5 . Similarly, for any Vi of type B,

we have w(Bi)− w(Bi) ≤ w(Bi)
5 . Therefore,

|w(A)− w(A)| ≤ 1
5 ·max{w(A), w(B)} ≤ 2n

15 .

Hence, n
5 ≤ w(A) ≤ 4n

5 and, analogously, n
5 ≤ w(B) ≤ 4n

5 . In particular, |w(A)−w(B)| ≤ 3n
5 .

Using the minimality of
∣∣|VA| − |VB |

∣∣, we obtain that
∣∣|VA| − |VB |

∣∣ ≤ 3n
5 , which implies

Claim 9. J

I Claim 10. For any 1 ≤ i ≤ n,
(i) if Vi is of type A (resp. of type B), then |Ci| ≥ w(Bi)di (resp. |Ci| ≥ w(Ai)di);
(ii) if Vi is of type C, then |Ci| ≥ di

6 .
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Φ Φ

Α(Φ)

Β(Φ) Α(Φ)

Β(Φ)

Β(Φ)

(a) (b)

Φ

Figure 3 Parts (a) and (b) show a grid of type A and C, respectively.

Proof. In Vi, every connected component belonging to Ai is separated from every connected
component belonging to Bi by vertices in Ci. There are w(Ai)di (resp. w(Bi)di) special
boundary vertices in Vi, which belong to Ai (resp. Bi). It can be shown by an easy case
analysis that the number of separating points |Ci| ≥ min{w(Ai), w(Bi)}di, and Claim 10
follows; see Fig. 3. J

I Claim 11. Let V = V (G). There is a closed curve Ψ, not passing through any vertex of
H, whose interior and exterior are denoted by A(Ψ) and B(Ψ), resp., such that
(i) V ∩A(Ψ) = VA,
(ii) V ∩B(Ψ) = VB,
(iii) the total number of edges of G intersected by Ψ is at most

18

√√√√c(G) +
n∑

i=1
d2

i + n.

Proof. For any 1 ≤ i ≤ m, we say that
Vi is of type 1 if |Ci| ≥ di/6,
Vi is of type 2 if |Ci| < di/6.

For every v ∈ V0,
v is of type 1 if v ∈ Φ,
v is of type 2 if v ∈ A(Φ) ∪B(Φ).

It follows from Claim 10 that if a set Vi or an isolated vertex v ∈ V0 is of type C, then it
is also of type 1.

Next, we modify the curve Φ in small neighborhoods of the grids Vi and of the isolated
vertices v ∈ V0 to make sure that the resulting curve Ψ satisfies the conditions in the claim.

Assume for simplicity that vi ∈ VA; the case vi ∈ VB can be treated analogously. If
vi is a vertex of degree at most 1 and Φ passes through vi, slightly perturb Φ in a small
neighborhood of vi (or slightly shift vi) so that after this change vi lies in the interior of Φ.
Suppose next that the degree of vi is at least 2. Let Si and S′i ⊂ Si be two closed squares
containing Vi in their interiors, and assume that Si (and, hence, S′i) is only slightly larger
than the convex hull of the vertices of Vi. We distinguish two cases.
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Φ Ψ

Si

iS’
D

Figure 4 Claim 11, Case 1.

Φ

Φ

Ψ

Ψ

D

Si
S’i

p’

p’
1

2
p
1

p
2

Figure 5 Claim 11, Case 2.

Case 1. Vi is of type 1. Let D be a small disk in S′i that belongs to the interior of Φ and
let p be its center. Let τ : Si → Si be a homeomorphism of Si to itself which keeps the
boundary of Si fixed and let τ(D) = S′i. Observe that every piece of Φ within the convex hull
of the vertices of Vi is mapped into an arc in the very narrow ring Si \S′i. In particular, if we
keep the vertices and the edges of the grid H[Vi] (as well as all other parts of the drawing)
fixed, after this local modification Φ will avoid all vertices of Vi and it may intersect only
those (at most di) edges incident to Vi which correspond to original edges of G and end at
some special boundary vertex of Vi. Moreover, after this modification, every vertex of Vi will
lie in A(Φ), in the interior of Φ.

Case 2. Vi is of type 2. In this case, by Claim 10, Vi is of type A.
Orient Φ arbitrarily. Let (p1, p

′
1), (p2, p

′
2), . . . denote the point pairs at which Φ enters and

leaves the convex hull of Vi, so that the arc between pjp
′
j lies inside the convex hull of Vi, for

every j. Note that both pj and p′j are vertices of Vi. In view of the fact that |Ci| ≤ di/6, we
know that the (graph) distance between pj and p′j (in H[Vi]) is at most di/6. More precisely,
for every j, the points pj and p′j divide the boundary of the convex hull of Vi into two arcs.
We call the shorter of these arcs the boundary interval defined by pj and p′j , and denote it
by [pj , p

′
j ]. By assumption, the length of [pj , p

′
j ]. the number of edges of H[Vi] comprising

[pj , p
′
j ], is at most di/6.

It is not hard to see that the curve Φ cannot came close to the center p of Vi and that
p belongs to the interior of Φ. Let D be a small disk centered at p. Then D also belongs
to the interior of Φ. Let τ : Si → Si be a homeomorphism of Si to itself such that (i) τ
keeps the boundary of Si fixed, (ii) τ(D) = S′i, (iii) τ(p) = p, and (iv) for any q ∈ Si, that
points p, q, and τ(q) are collinear. Observe that every piece (pj , p

′
j), of Φ within the convex

hull of the vertices of Vi is mapped into an arc in the very narrow ring Si \ S′i, along the
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corresponding boundary interval, [pj , p
′
j ], defined by pj and p′j . In particular, if we keep the

vertices and edges of the grid H[Vi] (as well as all other parts of the drawing) fixed, after
this local modification Φ will avoid all vertices of Vi and it may intersect only those (at
most di/6) edges incident to Vi which correspond to original edges of G and end at some
special boundary vertex of Vi in a boundary interval. Moreover, now every vertex of Vi will
lie inside Φ.

Repeat the above local modification for each Vi and for each v ∈ V0. The resulting curve,
Ψ, satisfies conditions (i) and (ii). It remains to show that it also satisfies (iii).

To see this, denote by EX the set of all edges of H adjacent to at least one element of
CX . For any 1 ≤ i ≤ m, define Ei ⊂ E(H) as follows. If Vi is of type 1, then let all edges of
H leaving Vi belong to Ei. If Vi is of type 2, then by Claim 10, it can be of type A or B, but
not C. Let Ei consist of all edges leaving Vi and crossed by Ψ.

For any 1 ≤ i ≤ m, let E′i denote the set of edges of G corresponding to the elements of
Ei (0 ≤ i ≤ m) and let E′X denote the set of edges corresponding to the elements of EX .

Clearly, we have |E′i| ≤ |Ei|, because distinct edges of G give rise to distinct edges of H.
Since VA and VB are on different sides of Ψ, it crosses all edges between VA and VB .

Obviously, |E′X | ≤ |EX | ≤ 4|CX |. By Claim 10, if Vi is of type 1, then |E′i| ≤ |Ei| = di ≤
6|Ci|. If Vi is of type 2, then |E′i| ≤ |Ei| = di ≤ |Ci|. Therefore,

|E(VA, VB)| ≤ | ∪n
i=0 E

′
i| ≤

n∑
i=0
|Ei| ≤ 6|C| ≤ 18

√√√√c(G) +
n∑

i=1
d2

i + n.

This finishes the proof of Claim 11. J

Now we are in a position to complete the proof of Theorem 4. Remove those edges of G
that are cut by Ψ. Let GA (resp. GB) be the subgraph of the resulting graph G′, induced
by VA (resp. VB), with the inherited drawing. Suppose that, e.g., GB is not a branching
topological graph. Then it has an empty lens, that is, a region bounded by two parallel edges
that does not contain any vertex of VB . There are two types of empty lenses: bounded and
unbounded. We show that there are at most

√
c(G) bounded empty lenses, and at most√

c(G) unbounded empty lenses in GB .
Suppose that e and e′ are two parallel edges between v and v′ which enclose a bounded

empty lens L. Then v and v′ are in the exterior of Ψ, and Ψ does not cross the edges e and
e′. As G was a branching topological multigraph, both L and its complement contain at
least one vertex of G in their interiors. Since L is empty in GB , it follows that all vertices of
G inside L must belong to VA, and, hence, must lie in the interior of Ψ. Thus, Ψ must lie
entirely inside the lens L.

Suppose now that f and f ′ are two other parallel edges between two vertices u and u′,
and they determine another bounded empty lens M . Arguing as above, we obtain that Ψ
must also lie entirely inside M . Then v and v′ are outside of M , and u and u′ are outside of
L. Therefore, these four edges determine four crossings. Any such crossing can belong to
only one pair of bounded empty lenses {L,M}, we conclude that for the number of bounded
empty lenses k in GB we have 4

(
f
2
)
≤ c(G), therefore, k ≤

√
c(G). Analogously, there are at

most
√
c(G) unbounded empty lenses in GB .

We can argue in exactly the same way for GA. Thus, altogether there are at most 4
√
c(G)

empty lenses in GA and GB . If we delete a boundary edge of each of them, then no empty
lens is left.
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Thus, by deleting the edges of G crossed by Ψ and then one boundary edge of each empty
lens, we obtain a decomposition of G into two branching topological multigraphs, and the
number of deleted edges is at most

18

√√√√c(G) +
n∑

i=1
d2

i + n+ 4
√
c(G) ≤ 22

√√√√c(G) +
n∑

i=1
d2

i + n.

This concludes the proof of Theorem 4. J
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