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Abstract
Peg Duotaire is a two-player version of the classical puzzle called Peg Solitaire. Players take
turns making peg-jumping moves, and the first player which is left without available moves loses
the game. Peg Duotaire has been studied from a combinatorial point of view and two versions
of the game have been considered, namely the single- and the multi-hop variant. On the other
hand, understanding the computational complexity of the game is explicitly mentioned as an
open problem in the literature. We close this problem and prove that both versions of the game
are PSPACE-complete. We also prove the PSPACE-completeness of other peg-jumping games
where two players control pegs of different colors.
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1 Introduction

Peg-Jumping games are games with one or more players that are played on boards of different
shapes. Each position of the board can host at most one peg, and a move consists of jumping
a peg over an (horizontally or vertically) adjacent peg into an empty position. The move
causes the peg that is jumped over to be removed from the board (see Figure 1). Arguably,
the most popular game in this class is the single-player puzzle called Peg Solitaire (also

© Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko Rossi;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@uniss.it
https://orcid.org/0000-0003-3169-4300
mailto:guala@mat.uniroma2.it
https://orcid.org/0000-0001-6976-5579
mailto:stefano.leucci@inf.ethz.ch
https://orcid.org/0000-0002-8848-7006
mailto:guido.proietti@univaq.it
https://orcid.org/0000-0003-1009-5552
mailto:r.mirko25@gmail.com
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

Figure 1 A move in peg-jumping games.

known as Hi-Q), in which the aim is to find a sequence of moves which reduces an initial
placement of pegs into a single peg (and thus, the goal is that of clearing the board). A
classical instance of the game has a cross-shaped board full of pegs except for the central
position. The Peg Solitaire is an ancient game and its history dates back to at least the 17th
century (see [2] for a comprehensive overview on the game).

Several other single-player peg-jumping games have been considered. For example, in
the Solitaire-Reachability [15], the goal is, given an initial configuration of pegs, to find a
sequence of moves that places any peg on a given target position (it is not required to remove
all the other pegs). Another prominent game in this class, with a slightly different flavor,
is the Solitaire-Army problem: given a desert region on a (usually infinite) board, and a
target position in this region, one wishes to find an initial configuration of pegs outside of
the desert that allows a peg to reach the target position through a valid sequence of moves.
In its classical formulation, introduced by J.H. Conway in 1961, the desert is a half-plane,
and the challenge is to understand what is the farthest distance in the desert that allows the
target position to be reached. Conway devised an elegant potential argument to show that
distance 5 cannot be reached on any finite board [18]. Other desert shapes have also been
considered, such as square- and rhombus-shaped deserts [8].

In this paper, we focus on 2-player peg-jumping games, mainly on Peg Duotaire, a game
introduced in [22], in which two players alternatively make a peg move and the winner is
the last player to move. Two versions of Peg Duotaire have been considered: the single-hop
Duotaire [22, 13], where each move consists of a single-hop jump, and the multi-hop Duotaire
[21], where a series of (single-hop) jumps with the same peg can be made on a given turn.
Both variants are impartial games, and they have been studied from a combinatorial point
of view, while the problem of understanding the computational complexity of Peg Duotaire
is mentioned as an open problem in the book by Hearn and Demaine (Section A.4 in [17])
and [21].

Our results

We study the problem of deciding whether the first player in a Peg Duotaire instance can
force a win. As our main result, we show that this problem is PSPACE-complete for both
versions of the game, namely the single- and the multi-hop variant. This closes the open
problem given in [17] and [21].

We also consider another peg-jumping game, namely a 2-player version of Solitaire-
Reachability. In this game, pegs are partitioned into white pegs (controlled by the first
player) and black pegs (controlled by the second player). A move of the first (resp., the
second) player consists of a jump involving only white (resp., black) pegs. However, pegs of
a given color can prevent jumps of pegs of the other color since they occupy positions of the
board. Moreover, each player has a target position that wants to reach with a peg (and the
two target positions might coincide). As a natural extension of Solitaire-Reachability, we
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assume that the winner is the first player that reaches its target position.1 However, different
types of winning conditions can be considered here. For example, we can assume –as usual
in the combinatorial game community– that the winner is the player that makes that last
move, or a combination of the two mentioned rules, e.g., a player wins by either reaching his
target position or by leaving his opponent with no available moves. We prove that all these
variants are PSPACE-complete.

Related Results

Despite of the simplicity of their rules [10, 11, 7, 5], peg-jumping games exhibit a non-trivial
combinatorial richness, and for this reason attracted the attention of many researchers over
their long history [6, 3, 4]. From a computational point of view, it has been shown that
single-player Peg Solitaire is NP-complete when the goal is to clear the entire board [23],
or when the task is to decide whether a given target position can be reached [15]. On the
other hand, deciding whether a given configuration can be transformed into a single peg is
polynomial-time solvable for rectangular boards of fixed (constant) height, since solvable
instances form a regular language [21, 22].

As far as 2-player peg-jumping games are concerned, single-hop Duotaire was introduced
in [22], and then studied in [13, 21], while the multi-hop variant has been introduced in [21],
where, besides other results, it is shown that even in the one-dimensional case, the set of
instances for which the first player wins cannot be described by a context-free language.

Another work which is close in spirit to our is [16], where the PSPACE-completeness has
been proved for another 2-player peg-jumping game called Konane, an ancient Hawaiian game
in which pegs are of two different colors, and a player moves a peg of his color by jumping it
over a peg of the opposite color in order to capture it. A peg may make multiple successive
jumps in a single move, as long as they are in a straight line (while no turns are allowed
within a single move). The first player that is unable to move wins. Due to the differences
of the rules, the reduction in [16] cannot be easily adapted to prove PSPACE-completeness
of the games we consider here. Finally, the present work contributes to the rich literature
investigating the computational complexity of combinatorial games [17, 14, 19, 1, 20, 9].

2 Single-Hop Duotaire

2.1 Overview
In this section we focus on Single-Hop Duotaire and we prove that the problem of deciding
whether the first player can force the win is PSPACE-complete.

Our reduction is from directed vertex geography (DVG). In this problem, we want to
decide whether the first player can force a win in the following game. We are given a directed
graph G and a distinguished vertex s ∈ V (G) that initially contains a token. Two players
take turns performing the following move: first the token is moved from its current vertex u

to a neighboring vertex v, traversing the edge (u, v) ∈ E(G), and then vertex u is deleted
from the graph. The first player who has no legal move loses the game (and the other player
wins).

The DVG problem is known to be PSPACE-complete even when G is planar, bipartite,
all the vertices have maximum degree 3, maximum indegree 2, and maximum outdegree 2

1 In this case, we can assume that a player with no available moves can skip his turn, and that the game
can end with a draw, whenever no player can move and no target position has been reached yet.
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Original Vertex

⇒
⇒

Equivalent Subgraph

Figure 2 Vertex transformation. Original verteces with outdegree 0 (on the left), and equivalent
subgraphs (on the right).

[12]. We will furthermore assume that vertex s has outdegree 2 and no incoming edges, while
all the vertices in V (G) \ {s} have either (i) indegree 1 and outdegree 2, (ii) indegree 2 and
outdegree 1, or (iii) indegree 1 and outdegree 1. It turns out that these assumptions can
be easily guaranteed by performing suitable transformations of the input graph, as we will
discuss in the sequel.

The idea is to consider a planar embedding of G on a grid from which we build an
equivalent instance of single-hop Duotaire where the token is simulated by a specific token peg
(see Figure 7 for an example of the input graph G and of the associated single-hop Duotaire
instance). We will simulate the behavior of the vertices of G using suitable gadgets: these
gadgets take the token peg as an input, which encodes the act of placing the token on the
associated DVG vertex (as a result of a previous move), and route it to a specific output,
which corresponds to selecting the next position of the token in DVG (and hence to selecting
an outgoing edge). The token peg will be transported from a vertex output (representing one
endpoint of an edge) to a vertex input (representing the other endpoint) using a wire gadget.

Moreover, in an isolated area of the board, we place two adjacent pegs that allow the
players to play a one-time extra move that we call dummy move. Except for this dummy
move, all the other moves available to the players at any given point in time will involve the
token peg.

2.2 Transforming the input DVG instance
Here we show how an instance of DVG on a planar, bipartite graph G in which all the
vertices have maximum degree 3, maximum indegree 2, and maximum outdegree 2, can be
transformed in order to further ensure that:

s has outdegree 2 and no incoming edges.
all the vertices in V (G) \ {s} have either (i) indegree 1 and outdegree 2, (ii) indegree 2
and outdegre 1, or (iii) indegree 1 and outdegree 1.

First of all, we delete from G all the edges entering in s, and we iteratively remove all the
other vertices of indegree 0. Then, while s has exactly one outgoing edge (s, s′), we perform
the following operation: we delete s from G, we move the token to s′, and we rename s′ to s.
It is easy to see that each such operation yields an equivalent instance in which the roles
of the two players are exchanged: Player 1 can force a win in the instance preceding the
operation iff Player 2 can win in the resulting instance (recall that Player 1 is always the
first player to move, and that PSPACE is closed under complement).

After the transformation, G contains exactly 1 vertex with indegree 0 (i.e., s), which
must also have outdegree 2. All the remaining vertices of G are either of one of the forms in
(i), (ii), (iii), or they have outdegree 0 and indegree in {1, 2}. In the latter case, they can be
replaced with the equivalent subgraphs shown in Figure 2.
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Figure 3 The gadget for a vertex with indegree 1 and outdegree 2.

2.3 Gadgets
Here we describe all the gadgets. Each gadget is meant to be played in one or more
prescribed ways and is designed to ensure that any player deviating from the intended play
will necessarily lose the game.

2.3.1 Vertices with outdegree two
In our reduction there are two kinds of vertices having outdegree 2, namely the starting
vertex s (having indegree 0), and vertices having indegree 1.

Let us consider the case of vertices with indegree 1 first, which are implemented as shown
in Figure 3. Players will be able to play the gadget whenever the token peg reaches the
position marked with the black arrow. W.l.o.g., we assume that, once the token peg is
in place, it is Player 1’s turn. The intended play of the gadget follows the solid lines via
alternating moves of the players. In particular, notice that Player 2 moves the token peg into
the center of the gadget, where the solid lines meet. At this point, Player 1 can choose to
jump over either the peg immediately above, or the peg immediately below. This corresponds
to choosing which of the two outgoing edges of the associated vertex in the DVG instance
the token traverses next. The following moves are straightforward and will bring the token
peg to one of the two positions marked with the white arrows. Notice that this last move is
performed by Player 1, and hence the turn will be up to Player 2.

We now argue that any deviation from the above strategy, will cause the deviating player
to lose. In particular, all the deviations in this gadget consist of using one of the pegs of the
gadget to jump over the token peg. However, if a player plays such a move he will bring the
board in a configuration where the only available move is the dummy move. The opponent
can then use this dummy move to win the game.

On the converse, if any player plays the dummy move instead of a move involving the
token peg, the opponent can respond making a move that jumps over the token peg, thus
reaching a configuration where no move is left available to the other player (thus winning
the game).

As far as the starting vertex s is concerned, it suffices to implement it in the same way
of vertices with indegree 1 we just described, with the only exception that a peg is initially
placed in the position marked by the black arrow.

2.3.2 Vertices with outdegree 1
We first discuss vertices with outdegree 1 and indegree 2, which are implemented as shown
in Figure 4 (a). The indented ways to play this gadget carries the token peg from any of the
two input positions marked with the black arrows, to the output position marked with the
white arrow. Notice that during the corresponding sequence of moves, the players will need
to jump over the token peg along the solid black line. When this happens, the old token peg
is removed from play, nevertheless, instead of thinking of the resulting state of the board as a
configuration with no token peg, we promote the jumping peg to become the new token peg.

FUN 2018
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(a) (b) (c)

Figure 4 Gadgets for vertices with outdegree 1 and (c) indegree 1; (a) indegree 2. Picture (b)
shows how the gadget in (a) looks like once players played it, which intuitively corresponds to a
vertex already visited by the token in the associated DVG instance.

Figure 5 Wire gadgets.

As in the gadget encoding a vertex with outdegree 2, also in this case the first player
making a move is also the player making the final move –placing the token peg in the output
position (i.e., playing a gadget changes the turn of the next player to play).

We now argue that any player that deviates from the prescribed strategy is bound to
lose. As in the previous case, notice that if a player makes a move that brings the token
peg outside of the solid lines, or in the opposite direction w.r.t. the intended play, then the
opponent can respond by playing the dummy move and winning the game. Notably, this
also ensures that a token peg cannot be brought from its initial input position to the other
input position (thus traversing the solid lines in the opposite direction).

We encode vertices having indegree and outdegree 1, with the gadget of Figure 4 (c),
whose correctness is straightforward.

Wires Wire gadgets are used to encode directed edges in the DVG instance. Such a gadget
receives the token peg as an input (which coincides with one of the outputs of the vertex
gadget associated with the tail of the encoded edge), and carries it to its output (which
coincides with the input of the vertex gadget associated with the head of the encoded edge),
through an even number of alternating moves. This ensure that the player making the first
move in the wire gadget will also be the next player to play after the wire gadget has been
completely traversed. Some examples of wire gadgets are shown in Figure 5. Notice that by
repeating the shown pattern, one can lengthen or shorten wires as needed, as well as perform
90, 180, and 270-degrees turns.

This is useful as the planar embedding of the graph G in the DVG instance will determine
how to lay wires on the board. It might however happen that such an embedding results
in wires with an odd number of moves. In this case, one can restore the desired parity by
replacing any straight portion of a wire consisting of 4 moves (see Figure 6 (a)) with the
gadget shown in Figure 6 (b), which uses the same input and output positions but requires 9
moves to be traversed.
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(a)

(b)

Figure 6 Picture (b): changing-parity gadget. Exactly 9 moves are needed to traverse it. The
gadget can be used to change the parity of the length of a wire by replacing a portion of a 4-move
straight wire (shown in (a)).

2.4 Putting all together
As we already described, we build the instance of single-hop Duotaire from a planar embedding
of G, by replacing each vertex with its corresponding vertex gadget, and by connecting vertex
gadgets through wires in the way prescribed by the planar embedding (see Figure 7 for an
example).

When we embed all the gadgets on the board, we shall guarantee that every output of a
gadget can be connected to the input of the consecutive gadget through a wire. We point out
that all our gadgets are designed in such a way that this is always possible. Indeed, every
gadget satisfies the following property: if an input is in the i-th row and the j-th column,
where both i and j are even, then each output of the gadget is in i′-th row and j′-th column,
with both i′ and j′ even. This is true for the wire gadget also, which allows us to connect an
arbitrary pair of even-even positions.

We now show that if a player has a winning strategy in a DVG instance, then he can also
force a win in the corresponding single-hop Duotaire instance. Let us consider the case in
which Player 1 has a winning strategy first, and assume that all the gadgets are played in
one of the intended ways (as otherwise the deviating player will lose if his opponent plays
optimally). Remember that, initially, the token peg is placed on the input position of the
gadget corresponding to vertex s (i.e., the black arrow of Figure 3). The two outputs of this
vertex gadget correspond to the edges outgoing s in the DVG instance. Player 1 can then
play the gadget in such a way that the token peg is carried to the output corresponding to
the first edge traversed in his winning strategy, say e = (s, u). This forces the players to
traverse the wire corresponding to edge e until the input position of the gadget corresponding
to vertex u is reached. Notice that, by our choice of the wire lengths, the turn is now up
to Player 2. Since gadgets are always played in the intended way, Player 2 must also bring
the token peg to one of the output positions of the gadget, which corresponds to an edge in
DVG, say (u, v). Suppose that v is a vertex whose gadget has never been reached by the
token peg so far; when the token peg reaches the corresponding input of the v’s gadget (on
Player 1’s turn), Player 1 can respond by moving the peg towards another vertex gadget
according to the DVG move prescribed by his winning strategy. Player 1 continues to play
according to this scheme until he routes the peg toward a vertex w whose gadget was already
traversed. Notice that vertex w must have indegree 2 (and outdegree 1), hence this is the
situation depicted in Figure 4 (b) (up to symmetries). Since there are exactly 6 leftover
moves along the solid lines (and any deviation causes the deviating player to lose), plus the
dummy move, Player 1 is then able to win the game. In other words, any player attempting
to move the token peg to a vertex that was already traversed will lose the game. A similar
argument applies to the case in which Player 2 has a winning strategy in DVG.

The previous discussion, and the fact that a winning strategy for a single-hop Duotaire
instance (if any) can be found by a DFS traversal of the (implicit) game tree (whose height
is at most the number of pegs in the instance), allow us to state the following:

FUN 2018



8:8 On the PSPACE-completeness of Peg Duotaire and other Peg-Jumping Games

u

y

x

v

w

P

P

P

s

s

u v

w

x y

dummy move

token peg

G

Figure 7 A DVG instance and its corresponding Single-Hop Duotaire one. Gadgets of Figure 6
are used to guarantee that every wire needs an even number of move to be traversed.

I Theorem 1. Deciding whether the first player can force a win in single-hop Duotaire is
PSPACE-complete.

3 Multi-Hop Duotaire

In this section we prove that the problem of deciding whether the first player can force the
win in the multi-hop Duotaire is PSPACE-complete.

Our reduction is from DVG on planar bipartite graphs of maximum degree 3. On the one
hand, similarly to the reduction for single-hop Duotaire, both planarity and maximum-degree
bounds are useful for embedding the instance on a board. On the other hand, bipartiteness
is needed to uniquely associate each vertex with exactly one of the two players. Indeed, if
the token is placed on a vertex of the left-hand side of the (vertex) bipartition and, w.l.o.g.,
it is Player 1’s turn, then the player can only shift the token along an edge, if any, to reach a
vertex of the right-hand side of the bipartition. Similarly, Player 2 can only shift the token
along an edge, if any, to reach a vertex of the left-hand side of the bipartition.

The idea of the reduction is to have a token peg placed on each vertex gadget; however,
each token peg needs to be activated by another token peg before it can be moved. At the
beginning of the game, only the token peg contained in the vertex gadget representing s is
active by default. Each token peg is owned by a specific player: in the intended play, the
token pegs associated with the vertices of the left-hand side of the bipartition can be moved
only by Player 1, while the remaining token pegs can be moved only by Player 2. When a
token peg, say t, is active, the player owning t is first forced to jump over the token peg that
activated t, and then, thanks to suitable control pegs, the player is forced to continue moving
t along an edge until t reaches a new vertex gadget, if possible, and activates the token peg
of that gadget. Therefore, once a player has moved his token peg away from a vertex gadget,
no token peg is left in the gadget, and the player that tries to move his token peg inside a
previously visited vertex gadget, will lose the game, due to the presence of one dummy move
as in the single-hop Duotaire. Similarly to the reduction for single-hop Duotaire, every move
other than the dummy move involves token pegs.
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Opponent’s
response

Player’s
move

Resulting
configuration

Control-peg
configurations

Figure 8 The 6 ways of embedding control pegs to monitor each pair of consecutive black pegs.
The dots represent positions of the board nearby the control pegs that need to be empty. The picture
shows the opponent’s response when the moving player jumps only over the first of 2 consecutive
black pegs. In all the 6 cases, the countermove of the opponent generates a dummy move. In the
first 2 embeddings, the moving player can jump over the first black peg of the pair, and then also
over a control peg. We observe that in this case the token peg has reached an empty area of the
board, and the opponent wins the game by playing the dummy move.

3.1 Gadgets

Other than token pegs and (black) pegs that describe the main structure of the gadget, each
gadget contains control (gray) pegs that are used to force players to behave in the desired
way. Control pegs are embedded on the board to monitor each pair of consecutive black pegs
whose corresponding Manhattan distance is equal to 2. We use 6 types of embeddings (see
Figure 8). Basically, each configuration forces the player that is jumping over the first of 2
consecutive black pegs to jump also over the other black peg within the same move.

Wires. Wire gadgets are used to encode edges of the DVG instance as well as the vertex
s. Each such gadget receives a token peg as an input, and carries it to its output through
a single multi-hop move. This ensures that the player that is moving the token peg will
also traverse the entire wire. Three examples of wires are shown in Figure 9. To avoid that
the player moving the token peg would not traverse the entire wire, control pegs have been
added all along the wire. Observe that the embedding of control pegs that monitor a pair of
consecutive black pegs on straight wires is independent of the position of the other control
gadgets placed along the wire. Finally, notice that a wire can also make 90-degree turns both
clockwise and counterclockwise: indeed, the right-most drawing in Figure 9, being symmetric,
can be traversed in both directions.

FUN 2018
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Figure 9 Straight wires and 90-degree turns.

21 1 2

Figure 10 Vertex gadget. The rightmost drawing shows that the player that enters the gadget
from its output loses.

Vertices. Vertex gadgets (see Figure 10) are used to encode vertices of the DVG instance
that are different from s. Each such gadget receives the token peg of a player as an input,
and outputs the token peg owned by the other player in exactly 2 moves. This is done thanks
to the presence of control pegs which force the player that is entering the vertex gadget with
a token peg he owns, to terminate his move exactly when his token peg is aligned with the
token peg owned by the other player. Thus, the gadget forces the opponent to move his
token peg to the output of the gadget. We observe that no token peg remains inside a vertex
gadget once it has been visited. Furthermore, if we think of the game as if it were played on
a chessboard, we also observe that if the input token peg comes from a black (resp., white)
square of the chessboard, then the token peg contained in the vertex gadget is on a white
(resp., black) square. Finally, we observe that a player that cheats and tries to enter the
vertex gadget from its output position rather than from its input position, will lose the game.

Branches and one-way gadgets. A branch (see Figure 11) is used to model both the merge
of two distinct wires into a single wire (i.e., vertices with indegree 2), as well as the split of
one wire into two distinct wires (i.e., vertices with outdegree 2). The gadget takes one token
peg in one of the two possible input positions, and forces the moving player to exit from
the gadget either in the (unique) output position, or in the other input position. Branches
are not sufficient by themselves to model wire splits and merges, and they need to be used
together with one-way gadgets.
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Figure 11 A branch.

3
1 2 1 2

3

Figure 12 One-way gadget. The rightmost drawing shows that the player that enters the gadget
from its output loses.

One-way gadgets (see Figure 12) are used to avoid that players can cheat by visiting
branches starting from their corresponding output positions rather than from their corre-
sponding input positions. The one-way gadget takes a token peg as an input, and outputs
the token peg with 3 multi-hop moves. A one-way gadget contains two additional token
pegs, one token peg for each player, each of which must be activated before it can be moved.
Similarly to the vertex gadget, a one-way gadget outputs a token peg that is different from
the one that entered the gadget. However, differently from the vertex gadget, the one-way
gadget outputs a token peg owned by the same player that entered the gadget. A one-way
gadget is designed in such a way that a player that cheats and tries to enter such a gadget
from its output rather than its input, will lose the game.

The merge of two wires can now be modelled with a branch whose output is attached with
the input of a one-way gadget. Similarly, the split of a wire into two wires can be modelled
by using a branch and two one-way gadgets, whose inputs are attached to the output and to
any of the 2 inputs of the branch, respectively.

3.2 Putting all together

The token pegs are placed over the (chess)board in such a way that, w.l.o.g., Player 1 owns
the token pegs that are placed on black squares, while Player 2 owns the token pegs that are
placed on white squares. We observe that this induces the position of each vertex gadget on
the board, according to the vertex-player association (we recall that each player has been
associated with a specific side of the bipartition). Therefore, when it is Player 1’s turn, the
(unique) active token peg is on a black square, and the player can only move such a token
peg to activate a token peg placed on a white square, if possible. Similarly, when it is Player
2’s turn, the (unique) active token peg is on a white square, and the player can only move
such a token peg to activate a token peg placed on a black square, if possible.
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Figure 13 A DVG instance and its corresponding Multi-Hop Duotaire one. For the sake of
readability, some (redundant) one-way gadgets have been removed.
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target position

implementation of the circuit C

x1 x1 x2 x2 x3 x3 xn xn ⇒
xi xi xi xi

(a)

. . .

choice
gadget

(b)

target gadget of Player 2

(c)

competitive
choice
gadget

target position

Figure 14 The three ingredients of our reduction for the 2-player version of Solitaire-Reachability.
Picture (a) shows (the form of) the peg configuration resulting from the application of the transfor-
mation given in [15] to a circuit C (equivalent to the formula F ). There is a choice gadget for each
variable. Picture (b): the competitive choice gadget. Picture (c): the target gadget of Player 2. If
Player 1 is forced to make the only available move in the gadget, then Player 2’s target position
becomes reachable.

Similarly to the single-hop Duotaire, the embedding shall guarantee that each output
of any gadget can be connected to the corresponding input of the consecutive gadget. This
could be a problem when the output is, for example, in an even-even position while the input
is in a odd-odd position.2 However, the one-way gadget can be used (also) to restore the
desired parity. See Figure 13 for an example multi-hop Duotaire instance obtained from a
corresponding DVG instance.

By using similar arguments to the ones we discussed for single-hop Duotaire, we can now
state the following:

I Theorem 2. Deciding whether the first player can force a win in multi-hop Duotaire is
PSPACE-complete.

4 2-player Solitaire Reachability

In this section we prove that the 2-player version of Solitaire Reachability discussed in the
introduction is PSPACE-complete. We present the reduction when the winning rule is the
following: a player wins when either he reaches his target position, or his opponent has no
available moves. Next, we show how to adapt the reduction for other winning conditions.

The main idea of the reduction is borrowed from the PSPACE-completeness reduction
of the bounded 2-player constraint logic presented in [17]. The reduction is from Positive
Conjunctive Boolean Formula Game (POS CNF), where one wants to understand whether
the first player can force a win in the following game. We are given a monotone boolean
formula F in CNF, i.e., a formula containing positive literals only. The two players alternate
choosing some variable of F that has not yet been chosen, and decide whether to assign
either true or false to that variable. The game ends after all variables of F have been chosen.

2 Notice that the cases even-odd and odd-even cannot occur because of the vertex-player association.
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The first player wins if and only if F is true; therefore, the second player wins if and only
if F is false. Observe that since F is monotone, the first player has convenience to set the
chosen variables to true, while the second player will always set his variables to false.

It is well known that any CNF Boolean formula can be transformed, in polynomial
time, into an equivalent planar Boolean circuit of NAND gates only, which in turn can be
converted into an instance of Solitaire-Reachability [15]. More precisely, we use this fact to
convert F into a configuration of white pegs and a target position having the form showed in
Figure 14 (a), where there is a choice gadget for each input variable. Each choice gadget
allows to set the corresponding variable either to true or false. The reduction given in [15]
implies the following: there exists a sequence of moves placing a peg in the target position if
and only if the chosen Boolean assignment satisfies F .

In our reduction we first replace each choice gadget with a competitive choice gadget
(see Figure 14 (b)). The competitive choice gadget allows Player 1 to set the corresponding
variable either to true or false, unless Player 2 forces Player 1 to set the variable to false.
Therefore, the player that plays the gadget first essentially decides the assignment of the
variable. To complete the description of the reduction, we add the target gadget of Player
2 (see Figure 14 (c)), in which the target position of the player is occupied by a peg of his
opponent, and sufficiently many dummy moves that can be performed only by Player 2.

Clearly, since F is monotone, both players have convenience to first play all the competitive
choice gadgets, and, once the truth assignment has been chosen, Player 1 has a sequence of
moves that allows him to win the game only if the truth assignment satisfies the formula.
Conversely, if the truth assignment does not satisfy the formula, then Player 1 runs out of
moves before Player 2, frees the target position of his opponent, and Player 2 wins the game.
Therefore, Player 1 can force a win in our instance if and only if he can force a win in the
POS CNF instance.
Our reduction can be adapted to other winning conditions:

The only way a player can win is reaching the target position. In this case, we can assume
that a player with no available moves can skip his turn, and that the game can end with
a draw, whenever no player can move and no target position has been reached yet. The
reduction is exactly the same.
There is no target position and the first player that has no available moves loses the game.
The reduction is the same but we remove the target gadget of Player 2, and we add a
number of sufficiently large moves for Player 1, that are triggered only if a (white) peg is
placed in the old target position of Player 1.
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