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Abstract
We analyze the computational complexity of optimally playing the two-player board game Push
Fight, generalized to an arbitrary board and number of pieces. We prove that the game is
PSPACE-hard to decide who will win from a given position, even for simple (almost rectangular)
hole-free boards. We also analyze the mate-in-1 problem: can the player win in a single turn?
One turn in Push Fight consists of up to two “moves” followed by a mandatory “push”. With
these rules, or generalizing the number of allowed moves to any constant, we show mate-in-1 can
be solved in polynomial time. If, however, the number of moves per turn is part of the input, the
problem becomes NP-complete. On the other hand, without any limit on the number of moves
per turn, the problem becomes polynomially solvable again.
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1 Introduction

Push Fight [10] is a two-player board game, invented by Brett Picotte around 1990, pop-
ularized by Penny Arcade in 2012 [9], and briefly published by Penny Arcade in 2015 [8].
Players take turns moving and pushing pieces on a square grid until a piece gets pushed off
the board or a player is unable to push on their turn. Figure 1 shows a Push Fight game in
progress, and Section 2 details the rules.

In this paper, we study the computational complexity of optimal play in Push Fight,
generalized to an arbitrary board and number of pieces, from two perspectives:
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Figure 1 A Push Fight game in progress. Photo by Brettco, Inc., used with permission.

Table 1 Summary of our results.

Computational complexity of. . .
Moves per turn Mate-in-1 Who wins?
≤ 2 P PSPACE-hard, in EXPTIME
≤ c constant P open
≤ k input NP-complete open
unlimited P open

1. Who wins? The typical complexity-of-games problem is to determine which player wins
from a given game configuration.

2. Mate-in-1: Can the current player win in a single turn?

Table 1 summarizes our results.
Generalized Push Fight is a two-player game played on a polynomially bounded board

for a potentially exponential number of moves, so we conjecture the “who wins?” decision
problem to be EXPTIME-complete, as with Checkers [11] and Chess [4]. (Certainly the
problem is in EXPTIME, by building the game tree.) In Section 4, we prove that the problem
is at least PSPACE-hard, using a proof patterned after the NP-hardness proof of Push-∗
[7]. Our proof uses a simple, nearly rectangular board, in the spirit of the original game; in
particular, the board we use is hole-free and x-monotone (see Figure 8). It remains open
whether Push Fight is in PSPACE, EXPTIME-hard, or somewhere in between.

Our mate-in-1 results are perhaps most intriguing, showing a wide variability according
to whether and how we generalize the “up to two moves per turn” rule in Push Fight. If we
leave the rule as is, or generalize to “up to c moves per turn” where c is a fixed constant
(part of the problem definition), then we show that the mate-in-1 problem is in P, i.e., can
be solved in polynomial time. However, if we generalize the rule to “up to k moves per turn”
where k is part of the input, then we show that the mate-in-1 problem becomes NP-complete.
On the other hand, if we remove the limit on the number of moves per turn, then we show
that the mate-in-1 problem is in P again. Section 3 proves these results.

The mate-in-1 problem has been studied previously for other board games. The earliest
result is that mate-in-1 Checkers is in P, even though a single turn can involve a long sequence
of jumps [3]. On the other hand, Phutball is a board game also featuring a sequence of jumps
in each turn, yet its mate-in-1 problem is NP-complete [2].

For omitted proofs, see the full version of the paper [1].
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Figure 2 Original Push Fight board.
Shaded regions represent side rails.

Figure 3 Our notation for pieces, in
reading order: a white king, a white pawn,
a black king, a black pawn; and white and
black anchored kings (in an actual game,
there is only one anchor).

→

Figure 4 An example move.

→

Figure 5 An example push.

2 Rules

The original Push Fight board is an oddly shaped square grid containing 26 squares; see
Figure 2. Part of the boundary of this board has side rails which prevent pieces from being
pushed off across those edges. We generalize Push Fight by considering arbitrary polyomino
boards, with each boundary edge possibly having a side rail.

Push Fight is played with two types of pieces, each of which takes up a square of the
board: pawns (drawn as circles) and kings (drawn as squares). Each piece is colored either
black or white, denoting which player the piece belongs to. Standard Push Fight is played
with three kings and two pawns per player. Additionally, there is a single anchor that is
placed on top of a king after it pushes (but is never placed directly on the board). Figure 3
shows our notation for the pieces.

Push Fight gameplay consists of the two players alternating turns. During a player’s turn,
the player makes up to two optional moves followed by a mandatory push.

To make a move, a player moves one of their pieces along a simple path of orthogonally
adjacent empty squares; see Figure 4.

To push, a player moves one of their kings into an occupied adjacent square. The
piece occupying that square is pushed one square in the same direction, and this continues
recursively until a piece is pushed into an unoccupied square or off the board. If this process
would push a piece through a side rail, or would push the anchored king, the push cannot be
made. Pushes always move at least one other piece. When the push is complete, the pushing
king is anchored (the anchor is placed on top of that king). Figure 5 shows a valid push.

A player loses if any of their pieces are pushed off the board (even by their own push) or
if they cannot push on their turn.

I Definition 1. A Push Fight game state is a description of the board’s shape, including
which board edges have side rails, and for each board square, what type of piece or anchor
occupies it (if any).

Note that the position of the anchor encodes which player’s turn it is: if the anchor is on
a white king, it is black’s turn, and vice versa. If the anchor has not been placed (no turns
have been taken), it is white’s turn.

FUN 2018
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3 Mate-in-1

We consider three variants of mate-in-1 Push Fight, varying in how the number of moves is
specified: as a constant in the problem definition, as part of the input, or without a limit.

3.1 c-Move Mate-in-1
I Problem 2. c-Move Push Fight Mate-in-1: Given a Push Fight game state, can the
player whose turn it is win this turn by making up to c moves and one push?

The standard Push Fight game has c = 2.

I Theorem 3. c-Move Push Fight Mate-in-1 is in P.

Proof Sketch. The number of possible turns is ≤ A2c+4 on a board of area A. J

3.2 k-Move Mate-in-1 is in NP
I Problem 4. k-Move Push Fight Mate-in-1: Given a Push Fight game state and a
positive integer k, can the player whose turn it is win this turn by making up to k moves and
one push?

In this section, we prove the following upper bound on the number of useful moves in a
turn:

I Theorem 5. Given a Push Fight game state on a board having n squares, if the current
player can win this turn, they can do so using at most n6 moves followed by a push.

Proof Sketch. We divide the reachable game states into ≤ n4 equivalence classes, and show
that two equivalent configurations can be reached via ≤ n2 moves within that class. J

Our bound directly implies an NP algorithm for k-Move Push Fight Mate-in-1:

I Corollary 6. k-Move Push Fight Mate-in-1 is in NP.

A turn consists of making some number of moves followed by a single push. For the purpose
of analyzing a single turn, kings other than the single king that pushes are indistinguishable
from pawns, so we can assume the current player first chooses a king, then replaces all of
their other kings with pawns before making their moves and push. The following definitions
are based on this assumption.

I Definition 7. Given a single-king game state, a board configuration is a placement of pieces
reachable by the current player making a sequence of moves.

I Definition 8. The pawnspace of a board configuration is the (possibly disconnected) region
of the board consisting of the empty squares and the squares containing the current player’s
pawns. Equivalently, the pawnspace is the region consisting of all squares not occupied by
the current player’s king or the other player’s pieces.

I Definition 9. The signature of a board configuration is a list of nonnegative integers,
where each integer is a count of the current player’s pawns in a connected component of the
configuration’s pawnspace, ordered according to row-major order on the leftmost topmost
square in the corresponding connected component.
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I Definition 10. Given two board configurations C1 and C2 derived from the same game
state, we say that C1 ≡ C2 if and only if
1. C1 and C2 have the same pawnspace (that is, the current player’s only king occupies the

same square in C1 and C2) and
2. C1 and C2 have the same signature (that is, each connected component of the pawnspace

contains the same number of the current player’s pawns in C1 and C2).

Relation ≡ is clearly reflexive, symmetric, and transitive, so it is an equivalence relation
inducing a partition of the set of board configurations derived from a given game state into
equivalence classes. We need the following two lemmas about ≡ for our proof of Theorem 5:

I Lemma 11. For a given game state on a board with n squares, there are at most n4

equivalence classes of board configurations.

I Lemma 12. If C1 ≡ C2, then C2 can be reached from C1 in at most n2 − 1 moves without
leaving the equivalence class of C1.

We are now ready to prove Theorem 5:

I Theorem 5. Given a Push Fight game state on a board having n squares, if the current
player can win this turn, they can do so using at most n6 moves followed by a push.

Proof. By our assumption that the current player can win this turn, there exists a sequence of
moves for the current player after which they can immediately win with a push, corresponding
to a sequence of board configurations C1, C2, . . . , Cl. Configuration C1 is obtained from
the initial game state by replacing all of the current player’s kings, except the one that
ends up pushing, with pawns. Each Ci+1 can be reached from Ci in one move, and Cl is a
configuration from which the current player can win with a push.

We now define simplifying a sequence of board configurations over an equivalence class
E. If the sequence contains no configurations from E, then simplifying the sequence over E

leaves it unchanged. Otherwise, let Ai be the first configuration in the sequence in E and
Aj be the last configuration in the sequence in E. By Lemma 12, there exists a sequence
of fewer than n2 − 1 moves that transforms Ai into Aj , corresponding to a sequence of
board configurations Ai = D0, D1, . . . , Du = Aj with u ≤ n2 − 1. Then simplifying over E

consists of replacing all configurations between and including Ai and Aj with the replacement
sequence D0, D1, . . . , Du.

Notice that simplifying a sequence (over any class) never changes the first or last configu-
ration in the sequence, and each configuration in the resulting sequence remains reachable in
one move from the previous configuration in the resulting sequence. After simplifying over a
class E, the only configurations in the resulting sequence in E are those in the replacement
sequence, so the number of configurations in the sequence in E is at most n2. Furthermore,
all configurations in the replacement sequence are in E, so simplifying over E never increases
(but may decrease) the number of configurations falling in other classes.

Let C ′1, C ′2, . . . , C ′l be the result of simplifying C1, C2, . . . , Cl over every equivalence class.
By Lemma 11, there are at most n4 such classes, and by the above paragraph there are at
most n2 configurations from each class in C ′1, C ′2, . . . , C ′l , so the length of C ′1, C ′2, . . . , C ′l is at
most n6. Each configuration in C ′1, C ′2, . . . , C ′l is reachable in one move from the previous
configuration, and that sequence of at most n6 moves leaves the current player in position to
win with a push, as desired. J
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3.3 Unbounded-Move Mate-in-1
I Problem 13. Unbounded-Move Push Fight Mate-in-1: Given a Push Fight game
state, can the player whose turn it is win this turn by making any number of moves and one
push?

I Theorem 14. Unbounded-Move Push Fight Mate-in-1 is in P.

We can of course solve Unbounded-Move Push Fight Mate-in-1 by trying all possible
sequences of moves to find a board configuration from which the current player can win
with a push, but there are exponentially many board configurations, so such an algorithm
takes exponential time. Instead, we can use the fact that any two configurations in the same
equivalence class are reachable from each other in a polynomial number of moves (from
Lemma 12) to search over equivalence classes of board configurations instead of searching
over board configurations. There are at most n4 equivalence classes (by Lemma 11), so they
can be searched in polynomial time.

We will make use of the following definitions:

I Definition 15. Two equivalence classes of board configurations C1 and C2 are neighbors
if there exist board configurations b1 ∈ C1 and b2 ∈ C2 such that b1 can be reached from
b2 with a king move of exactly one square. The equivalence class graph is a graph whose
vertices are equivalence classes of board configurations and whose edges connect neighboring
equivalence classes.

An equivalence class of board configurations C is a winning equivalence class if there
exists a board configuration b ∈ C such that the player whose turn it is can win with a push.

The key idea for our algorithm is the following:

I Lemma 16. There exists a path in the equivalence class graph from the equivalence class
of the initial board configuration to a winning equivalence class if and only if there exists a
winning move sequence.

The size of the equivalence class graph is polynomial in n (by Lemma 11), so provided
the graph can be constructed and the winning equivalence classes identified, this type of
path in the equivalence class graph, if it exists, can be found in polynomial time.

Recall from Definition 10 that equivalence classes of board configurations are defined by
the pawnspace and signature, and that, for configurations derived from the same game state
(i.e., having the other player’s pieces in the same positions), the pawnspace is defined by
the position of the current player’s king. Thus we can uniquely name a class using the king
position and signature.

I Definition 17. The class descriptor of an equivalence class of board configurations for
a given game state is the ordered pair of the position of the current player’s king and the
signature defining that class.

To prove Theorem 14, we need to give polynomial-time algorithms to compute the
neighbors of an equivalence class and to decide whether a class is a winning equivalence class.

I Lemma 18. Given an initial game state and a class descriptor for some class C, we can
compute in polynomial time the equivalence classes (as class descriptors) neighboring C.

I Lemma 19. Given an initial game state and a class descriptor for some class C, we can
decide in polynomial time whether C is a winning equivalence class.
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We are now ready to prove Theorem 14:

I Theorem 14. Unbounded-Move Push Fight Mate-in-1 is in P.

Proof. First, compute the class descriptor for the equivalence class of the initial board
configuration. Then perform a breadth- or depth-first search of the equivalence class graph,
using the algorithm given in the proof of Lemma 18 to compute the neighboring class
descriptors and the algorithm given in the proof of Lemma 19 to decide if the search has
found a winning equivalence class. Each of these procedures takes polynomial time. By
Lemma 11, there are only polynomially many equivalence classes, so the search terminates
in polynomial time. By Lemma 16, there exists a winning move sequence if and only if this
search finds a path to a winning equivalence class. J

The key idea of the above proof is that, if we do not care how many moves we make
inside an equivalence class, then it is sufficient to search the graph of equivalence classes.
Thus the above proof does not apply to k-Move Push Fight Mate-in-1, and in the next
section, we prove k-Move Push Fight Mate-in-1 is NP-hard.

3.4 k-Move Mate-in-1 is NP-hard
To prove k-Move Push Fight Mate-in-1 hard, we reduce from the following problem,
proved strongly NP-hard in [5]:

I Problem 20. Integer Rectilinear Steiner Tree: Given a set of points in R2 having
integer coordinates and a length `, is there a tree of horizontal and vertical line segments of
total length at most ` containing all of the points?

I Theorem 21. k-Move Push Fight Mate-in-1 is strongly NP-hard.

Proof Sketch. The basic idea of our reduction is to create a game state mostly full of the
current player’s pawns, but with a few empty squares (holes). The player must “move” the
holes (by moving pawns into them, creating a new hole at the pawn’s former square) to
free a king that can push one of the other player’s pieces off the board. Initially each pawn
can only travel one square (into an adjacent hole) per move, but once two holes have been
brought together, a pawn can travel two squares per move, and so on. Bringing the holes
together optimally amounts to finding a Steiner tree covering the holes’ initial positions.

Reduction: Suppose we are given an instance of Integer Rectilinear Steiner Tree
consisting of points pi = (xi, yi) with i = 1, . . . , n and length `. For convenience, and without
affecting the answer, we first translate the points so that min xi = 2 and min yi = 4 and
reorder the points such that y1 = 4.

We then build a Push Fight game state with a rectangular board with a height of max yi

and a width of n + max xi, indexed using 1-based coordinates with the origin in the bottom-
left square; refer to Figure 6. The entire boundary of the board has side rails except the
edge adjacent to square (x1, 1). There is a white king in square (x1 + n, 2) and a black king
with the anchor in square (x1 − 1, 2). There is a black pawn in square (x, y) if any of the
following are true:
1. y = 3 and x 6= x1,
2. y = 2 and either x < x1 − 1 or x > x1 + n, or
3. y = 1.
The squares (xi, yi) with 1 ≤ i ≤ n (corresponding to the points in the Integer Rectilinear
Steiner Tree instance) are empty. All remaining squares are filled with white pawns. The
output of the reduction is this Push Fight board together with k = ` + 3. J

FUN 2018
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Figure 6 A Push Fight board (right) produced during the reduction from the points in an
example rectilinear Steiner tree instance (left).

4 Push Fight is PSPACE-hard

In this section, we analyze the problem of deciding the winner of a Push Fight game in
progress.

I Problem 22. Push Fight: Given a Push Fight game state, does the current player have
a winning strategy (where players make up to two moves per turn)?

I Theorem 23. Push Fight is PSPACE-hard.

To prove PSPACE-hardness, we reduce from Q3SAT, proved PSPACE-complete in
[12, 6]:

I Problem 24. Q3SAT: Given a fully quantified boolean formula in conjunctive normal
form with at most three literals per clause, is the formula true?

Our proof parallels the NP-hardness proof of Push-∗ in [7]. Push-∗ is a motion-planning
problem in which a robot (agent) traverses a rectangular grid, some squares of which contain
blocks. The robot can push any number of consecutive blocks when moving into a square
containing a block, provided no blocks would be pushed over the boundary of the board.
The Push-∗ decision problem asks, given a initial placement of blocks and a target location,
can the robot reach the target location by some sequence of moves? In our proof, the white
king takes the place of the Push-∗ robot2 and white pawns function as blocks. Our proof
has the additional complication that Black sets the universally quantified variables, and that
White’s moves and Black’s push must be forced at all times to keep the other gadgets intact.

Figure 7 shows an overview of the reduction. The sole white king begins at the bottom-left
of the variable gadget I block, setting existentially quantified variables as it pushes up and
right. The variable gadget II block contains black pawns and holes that allow Black to set
the universally quantified variables. After all the variables have been set, the white king
traverses the bridge to the clause gadget block. The variable and clause gadgets interact via
a pattern of holes in the connection block encoding the literals in each clause. The white

2 The Push-∗ robot can move without pushing blocks, so the correspondence is not exact.
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Figure 7 An overview of the Push Fight board produced by our reduction.

king can traverse the clause gadgets only if the variable gadgets were traversed in a way
corresponding to a satisfying assignment of the variables. The reward gadget contains a
boundary square without a side rail, such that the white king can push a black pawn off the
board if the white king reaches the reward gadget. The overflow block contains empty squares
needed by the variable gadgets that were not used in the connection block (for variables
appearing in few clauses). The move-wasting gadget forces White’s moves and Black’s push,
ensuring the integrity of the other gadgets. Finally, all other squares on the board are filled
with white pawns, and the boundary has side rails except at specific locations in the reward
and move-wasting gadgets. Figure 8 shows an example output of the reduction.

We first prove the behavior of each of the gadgets, then describe how the gadgets are
assembled.

4.1 Move-wasting gadget
The move-wasting gadget requires White to use both moves to prevent Black from winning
on the next turn (unless White can win in the current turn). The move-wasting gadget
contains the only black king, thus consuming (and allowing) Black’s push each turn. When
analyzing the other gadgets, we can thus assume White can only push and Black can only
move. The move-wasting gadget comprises the entire bottom three rows of the board, but
pieces only move in the far-right portion. Figure 9a shows the initial state of the gadget.
Throughout this analysis, we assume White cannot win in one turn; Section 4.5, which
analyzes the reward gadget, describes the position in which White can immediately win in
one turn, and can therefore disregard the threat from Black in the move-wasting gadget.

In the initial state, the anchor is on the black king, so it is White’s turn. White must
move the pawn above the black king to avoid losing next turn. There are only two reachable
empty squares, both in the column left of the black king. If the other square in that column
remains empty, Black can move the black king into it and push the white pawn in that
column off the board. Thus White must fill the other square in that column, and the only way
to do so is to move the pawn two columns left of the white king one square right. Figure 9b
shows the resulting position (after White pushes elsewhere in the board).

FUN 2018



11:10 Computational Complexity of Generalized Push Fight

Figure 8 The result of performing the reduction on the formula ∀x∃y (x∨¬y)∧ (¬x∨y). Gadgets
and blocks are outlined.

...

(a) Initial state

...

(b) One white turn after (a)

...

(c) One black turn after (b)

...

(d) One white turn after (c)

Figure 9 The move-wasting gadget.

Black’s only legal push is to the left, resulting in the position shown in Figure 9c.

The rightmost four columns in Figure 9c are simply the reflection of those columns in
Figure 9a, so by the same argument White must fill the column to the right of the black
king, resulting in Figure 9d.

Again, the rightmost four columns of Figures 9d and 9b are reflections of each other.
Black’s only legal push is to the right, restoring the gadget to the initial state shown in
Figure 9a. Thus until White can win in one turn, White must use both moves in the
move-wasting gadget, and at all times Black must (and can) push in the move-wasting gadget.
In the analysis of the remaining gadgets, if the white king reaches a position from which it
cannot push, we conclude that White immediately loses, because if White moves a pawn or
the king into position to push, Black can win on the next turn as explained above.
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Figure 10 Existential variable gadget.
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Figure 11 Universal variable gadget.

4.2 Variable gadgets
The existential variable gadget forces White to fill all empty squares in one row of the
connection block, corresponding to setting the value of that variable. The universal variable
gadget allows Black to choose the value of the corresponding variable, then forces White to
similarly fill a row of empty squares. We first analyze a core gadget; the existential variable
gadget is a minor variant of the core gadget and its correctness follows directly, while the
universal variable gadget has an additional component to allow Black to choose the variable’s
value. Throughout our analysis, we take advantage of the board being filled with white
pawns to limit the number of pieces that can leave the gadget.

The core gadget occupies a rectangle of width p + 5 and height 5. When instantiated in
the reduction, the gadget lies entirely within the variable gadget I block. Integer p is one
more than the maximum number of occurrences of a literal in the input formula. The initial
state of the core gadget is shown in Figure 12. Each number along the boundary of the figure
gives the number of empty squares outside the gadget in that direction, and thus an upper
bound on the number of pieces that can leave the gadget via that edge.

The following lemma summarizes the constraints we prove about the core gadget.

I Lemma 25. Starting from the position in Figure 12, and assuming the white king does
not push down or left from this position,
(i) the white king leaves in the second-rightmost column, and
(ii) when the white king leaves either

(a) the gadget is as shown in Figure 13 and p + 1 white pawns have been pushed out
along the bottom row of the gadget, or

(b) the gadget is as shown in Figure 14 and p white pawns have been pushed out along
the second-to-bottom row of the gadget,

(iii) and no other pieces have left the gadget.

We will construct the existential and universal variable gadgets from the core gadget
such that the assumption holds. Lemma i ensures we can chain variable gadgets together

FUN 2018
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... p

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

Figure 12 The initial configuration of the core gadget together with upper bounds on the number
of pushes out of the gadget at each boundary edge. Omitted columns do not have a given upper
bound.

...

Figure 13 The final configuration of the
core gadget after setting the variable to true.

...

Figure 14 The final configuration of the
core gadget after setting the variable to false.

in sequence without the white king escaping. The outcomes implied by Lemma iia and iib
correspond to setting the variable to true or false (respectively) by filling in the empty squares
in the connection block that could be used to satisfy a clause gadget for a clause containing
the opposite literal; that is, pushing pawns out along the bottom row of a gadget prevents all
negative literals from being used to satisfy a clause, and similarly for the second-to-bottom
row and positive literals.

Proof. We proceed by case analysis starting from Figure 12. The move-wasting gadget
consumes White’s moves, and there are no black pieces in the core gadget, so we need only
analyze the sequence of White’s pushes.

Suppose the white king first pushes right. Because of the upper bounds along the top
and bottom edges of the gadget, the only legal push in the resulting configuration is to the
right, and this remains the case until the white king reaches the fourth column from the
right of the gadget. At this point p + 1 pawns have been pushed off the right edge along the
bottom row of the gadget, so there are no empty squares remaining in that row, so pushing
right is no longer possible and the only legal push is up. Then the only legal push is again
up because of the constraints on the left edge of the gadget. Figure 15 shows the result of
this sequence of pushes.

If the white king pushes left from this position, the only possible next push is down, after
which there are no legal pushes, resulting in a loss for White. Figure 16 shows this sequence
of pushes.
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Figure 15 One possible push sequence starting from the initial state of the core gadget. The
starred arrow elides a series of pushes to the right.
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Figure 16 The result of pushing left and down from the last position in Figure 16. White has no
legal pushes in the final position.

The only other legal push from the last position in Figure 15 is to the right, after which
pushes right, up, up and up again are the only legal pushes. This sequence results in the
white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost
column, as desired by Lemma i. Figure 17 shows the positions resulting from this sequence.
The final position reached is the position in Figure 13, p + 1 pawns were pushed out of the
gadget to the right along the bottom row, as desired by Lemma iia, and and no other pieces
were pushed out of the gadget, as desired by Lemma iii.

Now suppose that the white king pushes up from the initial configuration. Because of
the constraints on the gadget boundary, the only legal push is to the right until the white
king reaches the fourth column from the right of the gadget. At this point p pawns have
been pushed off the right edge along the second-to-bottom row of the gadget, so there are no
empty squares remaining in that row, so pushing right is no longer possible and the only
legal push is up. Then the only legal push is again up because of the constraints on the left
edge of the gadget. Figure 18 shows the result of this sequence of pushes.

If the white king pushes up from this position, there are no legal pushes in the resulting
position, resulting in a loss for White. Figure 19 shows this push and the resulting losing
position.

The only other legal push from the last position in Figure 18 is to the right, after which
pushes right, up, up and up again are the only legal pushes. This sequence results in the
white king, preceded by a white pawn, exiting the top of the gadget in the second-rightmost
column, as desired by Lemma i. Figure 20 shows the positions resulting from this sequence.
The final position reached is the position in Figure 14, and p pawns were pushed out of the
gadget to the right along the second-to-bottom row, as desired by Lemma iib. No other
pieces were pushed out of the gadget, as desired by Lemma iii.

This completes the case analysis. J
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Figure 17 The result of pushing right from the last position in Figure 15, reaching the position
in Figure 13.
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Figure 18 The other possible push sequence starting from the initial state of the core gadget.
The starred arrow elides a series of pushes to the right.

Existential variable gadget:

The existential variable gadget, shown in Figure 10, is nearly the same as the core gadget,
differing only in the bottom of the leftmost column. When instantiated in the reduction,
the white king enters the gadget by pushing a white pawn up into the leftmost column,
becoming exactly the core gadget. From the position immediately after the white king
enters the gadget, the white king cannot push left (because there are no empty spaces in the
row to the left) nor down (because it just pushed up, leaving an empty space in its former
position), satisfying the assumption in Lemma 25. Thus by Lemma i, the white king leaves
the existential variable gadget in the second-rightmost column with a white pawn above it,
and by either Lemma iia or iib, all empty squares in one of two rows of the connection block
are now filled by pawns pushed out of the existential variable gadget.

Universal variable gadget:

The universal variable gadget consists of two disconnected regions. The left subregion of the
gadget occupies a (p + 6) × 5 rectangle in the variable gadget I block. As the white king
proceeds through the left region of the gadget, a subregion of the gadget reaches the initial
state of the core gadget. The right region of the gadget occupies a 4 × 4 rectangle in the
variable gadget II block and contains a black pawn to allow Black to control the value of
the variable. The bottom of the right region is one row lower than the bottom of the left
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Figure 19 The result of pushing up from the last position in Figure 18. White has no legal
pushes in the final position.
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Figure 20 The result of pushing right from the last position in Figure 18, reaching the position
in Figure 14.

region. The area between the two regions of the gadget (in the three rows shared by both) is
entirely filled by white pawns. Figure 11 shows the universal variable gadget, including the
pawn-filled area between the regions.

As with the existential variable gadget, when instantiated in the reduction, the white king
enters the universal variable gadget by pushing a white pawn up into the leftmost column.
Figure 21 shows the resulting position. Regardless of Black’s move, White’s only legal push
is to the right. By moving the black pawn, Black can choose between the two positions in
Figure 22, depending on which of the two rows the black pawn is in when White pushes.

In both of the resulting positions, the black pawn is surrounded, so Black can no longer
influence events in this gadget. The left region of the gadget, without the leftmost column, is
identical to the initial position of the core gadget. In both positions, the white king cannot
push left (empty space) or down (no empty spaces down in the column), satisfying the
assumption in Lemma 25. Thus either Lemma iia or Lemma iib holds. Because of the edge
constraints, in Figure 22a, only Lemma iia is possible, resulting in Figure 23a. Similarly, in
Figure 22b, only Lemma iib is possible, resulting in Figure 23b. By moving the black pawn
to select one of these two cases, Black sets the value of the corresponding variable. Then
by Lemma i, the white king leaves in the second-rightmost column of the left region (in the
variable gadget I block) of the gadget. In both cases, the black pawn remains surrounded by
white pawns in the right region of the gadget.

4.3 Bridge gadget
The bridge gadget, shown in Figure 24, brings the white king from the exit of the last variable
gadget to the entrance of the first clause gadget. When instantiated in the reduction, the
white king enters the bridge gadget from the bottom of the leftmost column, preceded by a
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Figure 21 The universal variable gadget after the white king enters.
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Figure 22 The two possible configurations of the universal variable gadget one white turn after
the configuration from Figure 21.

white pawn. The white king’s traversal of the bridge gadget is entirely forced. The white
king leaves the gadget by pushing a white pawn out to the right in the second-to-top row.

4.4 Clause gadget
The clause gadget, shown in Figure 25, verifies that a column below the gadget contains
at least one empty square. When instantiated in the reduction, the white king enters the
gadget from the left in the top row, preceded by a white pawn. The resulting sequence of
forced pushes includes a push down in the central column of the gadget; if there are no empty
squares below the gadget in that column, the white king has no legal pushes and White loses.
If there are more empty squares, White can continue to push down, but (when instantiated
in the reduction) there are at most three total empty squares in that column, and once those
squares are filled, White cannot push. Thus the white king must push right instead and
leave the gadget by pushing a white pawn out to the right in the second-to-top row.

4.5 Reward gadget
The reward gadget, shown in Figure 26, allows White to win if the white king reaches
the gadget. The black pawn in this gadget cannot move because it is surrounded. When
instantiated in the reduction, the white king enters the gadget from the left in the top row,
preceded by a white pawn. After pushing right until the white king is in the third column of
Figure 26, White can win by moving a white pawn and the white king, then pushing upwards
to push the black pawn off the board, as shown in Figure 27. (Recall that the move-wasting
gadget no longer binds White once White can win in one turn; Black loses before Black can
win using the move-wasting gadget.)
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Figure 23 The two possible final positions of the universal variable gadget after the white king
exits.
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Figure 24 The bridge gadget.
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Figure 25 The clause gadget.

4.6 Layout

Having described the gadgets, it remains to show how to instantiate them in a Push Fight
game state for a given quantified 3-CNF formula. We first place gadgets with respect to
each other, remembering which squares should be left empty, then define the board as the
bounding box of the gadgets and fill any squares not recorded as empty with white pawns.
The resulting board is mostly rectangular with side rails on all boundary edges, with two
exceptions: one edge along the top of the rectangle lacks a side rail as part of the reward
gadget, and the board is extended in the bottom-right to accomodate the move-wasting
gadget along the bottom of the board.

We begin by building the variable gadget I block containing the existential variable gadgets
and the left portion of the universal variable gadgets. Gadgets are stacked from bottom to
top in the order of the quantifiers in the input formula (using the gadget corresponding to the
quantifier), with the leftmost column of each gadget aligned with the second-to-right column
of the previous gadget. (Recall that the width of the variable gadgets is defined based on
p, one more than the maximum number of occurrences of a literal in the input formula.)
This alignment allows (and requires) the white king to traverse the gadgets in sequence as
specified by Lemma 25. Figure 29 shows the relative layout of these variable gadgets.

We place the white king one square below the first variable gadget aligned with its
leftmost column, and place a white pawn one square above the white king. The white king
will push upwards into the first gadget on White’s first turn. (If the king was instead placed
directly in the variable gadget, if the first variable is universally quantified, Black would not
have a move with which to choose the value of the variable before White commits it.)
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Figure 26 The reward gadget.
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Figure 27 Once the White king reaches the third column of the reward gadget, White can win
in a single turn.

We then build the variable gadget II block by placing the right regions of the universal
variable gadgets to the right of the corresponding left regions in a single column (further
right than any part of the variable gadget I section).

Next we place one clause gadget for each clause in the input formula. Each clause gadget
is directly to the right of and one square lower than the previous clause gadget. The entire
clause gadget block is further right of and above the variable gadget II block. Figure 30
shows the relative layout of the clause gadgets. Then we place a bridge gadget such that the
entrance of the bridge gadget aligns with the exit of the last variable gadget and the exit of
the bridge gadget aligns with the entrance of the first clause.

We place the reward gadget so that its entrance aligns with the exit of the last clause
gadget.

We leave empty squares in the connection block to encode the literals in each clause in
the input formula. When traversing each variable gadget, the white king pushes pawns to
the right in one of two rows. The lower (upper) row corresponds to setting the variable to
true (false), or equivalently, preventing negative (positive) literals from satisfying clauses.
Associate each row with the literal it prevents from satisfying clauses. Each clause gadget
enforces that at least one empty square remains below its middle column, corresponding to
at least one of its literals not having been ruled out by the truth assignment. To realize
this relation, for each literal in a clause, we leave an empty square at the intersection of the
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Figure 28 The shape of the Push Fight board produced by the reduction.

Figure 29 The layout of variable gadgets in the variable gadget I block.

column checked by the clause gadget and the row associated with that literal. All other
squares in the connection block are filled with white pawns (as are all squares in the board
whose contents are not otherwise specified).

The variable gadgets require each row associated with a literal to contain exactly p− 1, p

or p + 1 empty squares (depending on the type of gadget and whether the row is the upper
or lower row). This is at least the number of occurrences of that literal (by the definition of
p), but it may be greater. We place any remaining empty squares in each row in columns
further right than the reward gadget, forming the overflow block.

The boundary of the board is the bounding box of all the gadgets placed thus far with a
move-wasting gadget appended to the bottom of the board. The left column of the move-
wasting gadget is aligned with the leftmost column of the first (leftmost) variable gadget
and the sixth-from-right column (the rightmost column having height 3) is aligned with the
rightmost column of the overflow block. We then fill all squares not part of a gadget nor
recorded as empty with white pawns and place side rails on all boundary edges except as
described in the move-wasting and reward gadgets. The anchor is on the black king as part
of the initial state of the move-wasting gadget.

4.7 Analysis
Our analysis of gadget behavior in the preceding sections constrains the white king’s pushes
under the assumption that there are a specific number of empty spaces (often 0) in a particular
row or column on a side of the gadget. We have already discharged the assumptions regarding
the rows associated with literals by our layout of the connection and overflow blocks. For
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Figure 30 The layout of clause gadgets in the clause gadget block.

every other gadget except the variable gadgets, none of the constrained rows or columns
intersects with another gadget, so the constraints on the edges are implied by the dense sea
of white pawns outside the gadgets. For the variable gadgets, we assumed that pushing down
in the second-to-left column of a variable gadget is not possible, but that column contains
the previous variable gadget’s rightmost column. We discharge this assumption by noting
that in the final state of each variable gadget (after the white king has left the gadget), the
rightmost column of that gadget is filled with white pawns, so pushing down in that column
is indeed not possible.

Thus the white king must traverse the variable gadgets, setting the value of each variable,
then traverse through the bridge gadget to the clause gadgets, where at least one empty
space must remain in each checked column for the king to reach the reward gadget. If the
choices made while traversing the variable gadgets results in filling all of the empty spaces
in a checked column (i.e., the clause is false under the corresponding truth assignment),
then White can only push by using a move outside the move-wasting gadget and Black wins
on the next turn. If the white king successfully traverses every clause gadget (i.e., every
clause is true under the truth assignment), then White wins when the white king pushes the
black pawn off the board in the reward gadget. Thus White has a winning strategy for this
Push Fight game state if and only if the input quantified 3-CNF formula is true.
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