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Abstract
We classify the computational complexity of the popular video games Portal and Portal 2. We
isolate individual mechanics of the game and prove NP-hardness, PSPACE-completeness, or
pseudo-polynomiality depending on the specific game mechanics allowed. One of our proofs
generalizes to prove NP-hardness of many other video games such as Half-Life 2, Halo, Doom,
Elder Scrolls, Fallout, Grand Theft Auto, Left 4 Dead, Mass Effect, Deus Ex, Metal Gear Solid,
and Resident Evil. These results build on the established literature on the complexity of video
games [1, 3, 7, 18].
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1 Introduction

In Valve’s critically acclaimed Portal franchise, the player guides Chell (the game’s silent
protagonist) through a “test facility” constructed by the mysterious fictional organization
Aperture Science. Its unique game mechanic is the Portal Gun, which enables the player
to place a pair of portals on certain surfaces within each test chamber. When the player’s
avatar jumps into one of the portals, she is instantly transported to the other. This mechanic,
coupled with the fact that in-game items can be thrown through the portals, has allowed
the developers to create a series of unique and challenging puzzles for the player to solve as
they guide Chell to freedom. Indeed, the Portal series has proved extremely popular, and is
estimated to have sold more than 22 million copies [2, 20].

1 Work started while author was at School of Electronics, Electrical Engineering and Computer Science,
Queen’s University, Belfast, BT7 1NN, UK
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19:2 The Computational Complexity of Portal

Table 1 Summary of new Portal complexity results

Mechanics Portals Long fall Complexity

Emancipation Grills, No Terminal Velocity Yes Yes Weakly NP-comp. (§4)
Turrets No Yes NP-hard (§5)
Timed Door Buttons and Doors No No NP-hard (§6)
HEP Launcher and Catcher Yes No NP-hard (§7)
Cubes, Weighted Buttons, Doors No No PSPACE-comp. (§8)
Lasers, Relays, Moving Platforms Yes No PSPACE-comp. (§9)
Gravity Beams, Cubes, Weighted Buttons, Doors No No PSPACE-comp. (§9)

We analyze the computational complexity of Portal following the recent surge of interest
in complexity analysis of video games and puzzles. Examples of previous work in this
area includes NP-completeness of Tetris [5], PSPACE-completeness of Lemmings [19] and
Super Mario Bros. [6], and hardness of many other classic video games [7, 18]. See also the
surveys [4, 9, 11].

In this paper, we explore how different game elements contribute to the computational
complexity of Portal 1 and Portal 2 (which we collectively refer to as Portal), with an
emphasis on identifying gadgets and proof techniques that can be used in hardness results for
other video games. We show that a generalized version of Portal with Emancipation Grills is
weakly NP-hard (Section 4); Portal with turrets is NP-hard (Section 5); Portal with timed
door buttons and doors is NP-hard (Section 6); Portal with High Energy Pellet launchers
and catchers is NP-hard (Section 7); Portal with Cubes, Weighted Buttons, and Doors is
PSPACE-complete (Section 8); and Portal with lasers, laser relays, and moving platforms is
PSPACE-complete (Section 8).

Table 1 summarizes these results. The first column lists the primary game mechanics
of Portal we are investigating. The second and third column note whether the long fall or
Portal Gun mechanics are needed for the proof. Section 2 provides more details about what
these models mean. The turret proof generalizes to many other video games, as described in
Section 5.4.

2 Definitions of Game Elements

Portal is a single-player platform game: a game with the goal of navigating the avatar from
a start location to an end location of a series of stages, called levels. The gameplay in Portal
involves walking, turning, jumping, crouching, pressing buttons, picking up objects, and
creating portals. The locations and movement of the avatar and all in-game objects are
discretized. For convenience we make a few assumptions about the game engine, which we
feel preserve the essential character of the games under consideration, while abstracting
away certain irrelevant implementation details in order to make complexity analysis more
amenable:

Positions and velocities are represented as triples of fixed-point numbers in Cartesian
coordinates.2 Each velocity vector is limited in magnitude by a terminal velocity vmax .

2 The actual game uses floats in many instances. We claim that all our proofs work if we round the
numbers involved, and only encode the problems in the significand.
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Time is discretized and represented as a fixed-point number. Parameter δ defines the
amount of time advanced during each simulation time step.
At each time step, there is only a constant number of possible user inputs: button presses
and the cursor position. The user is able to apply any of these inputs within a time step.
The cursor position is represented by two fixed-point numbers in spherical coordinates.
At each time step, we update all objects’ positions and velocities as follows:

Update velocities based on acceleration from user commands and from gravity: ~vt+1 =
~vt + δ(~ainput + ~aγ) where ~aγ = [0, 0,−γ] and g is a constant.
If a velocity vector ~vt+1 has magnitude > vmax , scale it down to have magnitude vmax .
Update positions according to these velocities: ~pt+1 = ~pt + δ~v.
Check for collisions by extruding the objects into a fourth temporal dimension by δ
and checking for intersection of those objects.3

For the purposes of this paper, we define a collision model only between single moving
objects and non-moving objects, as this is all we need in our proofs possibly involving
collisions (Sections 4 and 7). We ignore details of more complex collisions as they are
not relevant to our results.
For an inelastic collision between a moving object A and a non-moving object B, we
calculate the first time δ′ ≤ δ at which the objects would intersect, and move A instead
to this position (scaling the velocity vector by δ′ instead of δ). Then we project A’s
velocity vector onto the surface of B at the point of intersection.
For an elastic collision, we similarly calculate the first time of intersection and update
the position of A, but update the velocity vector instead to its reflection off of the
surface at the point of intersection.
If an object passes through a portal, its velocity vector is rotated by the rotation that
brings the entering portal frame to the exiting portal frame.

Portals from the portal gun and bullets from turrets are resolved instantaneously in a
single time step by line-of-effect rather than any ballistic simulation.4

In Portal, a level is a description of the polygonal surfaces in 3D defining the geometry of
the map, along with a simulation rate and a list of game elements with their locations and,
if applicable, connections to each other. In general, we assume that the level can be specified
succinctly as a collection of polygons whose coordinates may have polynomial precision,
(and thus so can the player coordinates), and thus exponentially large values (ratios). This
assumption matches the Valve Map Format (VMF) used to specify levels in Portal, Portal 2,
and other Source games [16]. A realistic special case is where we aim for pseudopolynomial
algorithms, that is, we assume that the coordinates of the polygons and player are assumed
to have polynomial values/ratios (logarithmic precision), as when the levels are composed of
explicit discrete blocks. This assumption matches the voxel-based P2C format sometimes
used for community-created Portal 2 levels [15].

In this work, we consider the following decision problem, which asks whether a given
level has a path from the given start location the end location.

I Problem 1. Portal
Parameter : A set of allowed gameplay elements.

3 This approach is precise, and should reasonably capture the relevant dynamics in the game, but
computationally inefficient and likely not how collision detection is performed in practice.

4 The end of Portal 2 gives a very large lower bound on the speed of effect of the portal gun.
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Input: A description of a Portal level using only allowed gameplay elements, and spatial
coordinates specifying a start and end location.

Output: Whether there exists a path traversable by a Portal player from the start location
to the end location.

3 Game Element Descriptions

The key game mechanic, the Portal Gun, creates a portal on the closest surface in a direct
line from the player’s avatar if the surface is of the appropriate type. We call surfaces that
admit portals portalable. There are a variety of other gameplay elements which can be a
part of a Portal level. Below we give descriptions and images of various game elements used
in Portal 1 and 2.

1. A long fall is a drop in the level terrain that the avatar
can jump down from without dying, but cannot jump
up.

It’s a long way down.

2. A door can be open or closed, and can be traversed by
the player’s avatar if and only if it is open. In Portal,
many mechanics can act as doors, such as literal doors,
laser fields, and moving platforms. On several occasions
we will assume the door being used also blocks other
objects in the game, such as High Energy Pellets or
lasers, which is not generally true.

A Door in Portal 2

3. A button is an element which can be interacted with
when the avatar is nearby to change the state of the
level, e.g., a button to open or close a door.

4. A timed button will revert back to its previous state
after a set period of time, reverting its associated change
to the level too, e.g., a timed button which opens a
door for 10 seconds, before closing it again. Timed Button

5. A weighted floor button is a an element which changes
the state of a level when one or more of a set of objects
is placed on it. In Portal, the 1500 Megawatt Aperture
Science Heavy Duty Super-Colliding Super Button is an
example of a weighted floor button which activates when
the avatar or a Weighted Storage Cube is placed on top
of it. An activated weighted floor button can activate
other mechanics such as doors, moving platforms, laser
emitters, and gravitational beam emitters.

Heavy Duty Super-Colliding
Super Button
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6. Blocks can be picked up and moved by the avatar.
The block can be set down and used as a platform,
allowing the avatar to reach higher points in the level.
While carrying a block, the avatar will not fit through
small gaps, rendering some places inaccessible while
doing so. In Portal, the Weighted Storage Cube is an
example of a block that can be jumped on or used
to activate weighted floor buttons. We will refer to
Weighted Storage Cubes, Companion Cubes, etc. as
simply cubes.

Weighted Storage Cube

7. A Material Emancipation Grid, also called an Eman-
cipation Grill or fizzler, destroys some objects which
attempt to pass through it, such as cubes and turrets.
When the avatar passes through an Emancipation Grid,
all previously placed portals are removed from the map.
Portals cannot be shot through an emancipation grid.

Emancipation Grid

8. The Portal Gun allows the player to place portals on
portalable surfaces within their line of effect. Portals
are orange or blue. If the player jumps into an orange
(blue) portal, they are transported to the blue (orange)
portal. Only one orange portal and one blue portal
may be placed on the level at any given time. Placing a
new orange (blue) portal removes the previously placed
orange (blue) portal from the level.

Portal Gun

9. A High Energy Pellet (HEP) is a spherical object which
moves in a straight line until it encounters another ob-
ject. HEPs move faster than the player avatar. If they
collide with the player avatar, then the avatar is killed.
If a HEP encounters a wall or another object, it will
bounce off it with equal angle of incidence and reflec-
tion. In Portal, some HEPs have a finite lifespan, which
is reset when the HEP passes through a portal, and
others have an unbounded lifespan. These unbounded
HEPs are referred to as Super High Energy Pellets.

A HEP about to reach a HEP
Collector

10. A HEP Launcher emits a HEP at an angle normal
to the surface upon which it is placed. These are
launched when the HEP launcher is activated or when
the previously emitted HEP has been destroyed.

HEP Launcher
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11. A HEP Catcher is a device which is activated if it is
ever hit by a HEP. In Portal, this device can act as a
button, and is commonly used to open doors or move
platforms when activated.

HEP Catcher

12. A Laser Emitter emits a Thermal Discouragement
Beam at an angle normal to the surface upon which it
is placed. The beam travels in a straight line until it is
stopped by a wall or another object. The beam causes
damage to the player avatar and will kill the avatar if
they stay close to it for too long. We call the beam and
its emitter a laser. A Laser Emitter and Thermal

Discouragement Beam.

13. A Laser Relay is an object which can activate other
objects while a laser passes through it.

14. A Laser Catcher is an object which can activate other
objects while a contacts it.

An active laser relay and laser
catcher.

15. A Moving Platform is a solid polygon with an inact-
ive and an active position. It begins in the inactive
position and will move in a line at a constant velocity
to the active position when activated. If it becomes
deactivated it will move back to the inactive position
with the opposite velocity.

A horizontal moving platform.

16. A Turret is an enemy which cannot move on its own.
If the player’s avatar is within the field of view of a
turret, the turret will fire on the avatar. If the avatar
is shot sufficiently many times within a short period of
time, the avatar will die.

Turret from Portal 2
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17. An Excursion Funnel, also called a Gravitational Beam
Emitter emits a gravitational beam normal to the sur-
face upon which it is placed. The gravitational beam
is directed and will move small objects at a constant
velocity in the prescribed direction. Importantly, it will
carry Weighted Storage Cubes and the player avatar.
Gravitational Beam Emitters can be switched on and
off, as well as flipping the direction of the gravitational
beam they emit.

A Gravity Beam and Excursion
Funnel.

There are two main pieces of software for creating levels in Portal 2: the Puzzle Maker
(also known as the Puzzle Creator), and the Valve Hammer Editor equipped with the Portal
2 Authoring Tools. Both of these tools are publicly available for players to create their own
levels. The Puzzle Maker is a more restricted editor than Hammer, with the advantage of
providing a more user-friendly editing experience. However, levels created in the Puzzle
Maker must be coarsely discretized, with coarsely discretized object locations, and must be
made of voxels. In particular, the Puzzle Maker uses the P2C file format while Hammer
uses VMF, which restricts it to instances where the size of the level is polynomial in the
size of the problem description. Furthermore, no HEP launchers or additional doors can be
placed in Puzzle Maker levels. We will often comment on which of our reductions can be
constructed with the additional Puzzle Maker restrictions (except, of course, the small level
size and item count), but this distinction is not a primary focus of this work.

4 Portal with Emancipation Grills is Weakly NP-complete

In this section, we prove that Portal with portals and Emancipation Grills is weakly
NP-hard by reduction from Subset Sum [8], which is defined like so.

I Problem 2. Subset Sum
Input: A set of integers A = {a1, a2, . . . , an}, and a target value t.
Output: Whether there exists a subset {s1, s2, . . . , sm} ⊆ A such that

m∑
i=1

si = t.

The reduction involves representing the integers in A as distances which are translated into
the avatar’s velocity. More explicitly, the input A will be constructed from long holes the
avatar can fall down, and the target will be encoded in a distance the avatar must launch
themselves after falling. For the next theorem, it is necessary to allow the terminal velocity
vmax to be specified as input to the problem (so it can scale with the level size).

I Theorem 3. Portal with portals, long fall, Emacipation Grills, and generalized terminal
velocity is weakly NP-hard.

Proof. Refer to Figure 1. The elements of A are represented by a series of wells, each of
width c and depth b · ai as measured from the ceiling directly above it. Here ai ∈ A is the
number to be encoded, b = 2 · c · n2 · t is a large number, c is a large constant expansion
factor greater than the height of the avatar plus the height she can jump, n is the number of
elements in A, and t is the target value of the Subset Sum instance. The bottom of each
well is a portalable surface, and the ceiling above each well is also a portalable surface. Each
well also has an Emancipation Grill a distance c from the ceiling. This construction allows
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(−n(c+d),−c)

(−n(c+d), nc)

(c+ d,−a1b− c)

(2(c+ d),−a2b− 2c)

(3(c+ d),−a3b− 3c)

(n(c+ d),−anb− nc)

Figure 1 A cross-section of the element selection gadget, where b = 2 · c · n2 · t. Grey lines are
portalable surfaces and blue lines are Emancipation Grills.

the avatar to shoot a portal to the bottom of the well they are falling into, and to a ceiling
tile of another well, selecting the next number.

If the Subset Sum instance has a solution S, we can fall through the wells of depth b · ai
for each ai ∈ S in order, without touching any walls, for a total fall distance of b · t. After
such a fall, we reach a “target” velocity vt = g

√
2bt.

We cannot allow the avatar to select the same element more than once. The Emancipation
Grills below each portalable ceiling serve to remove the portal from the ceiling of the well
into which the avatar is currently falling, and to prevent sending a portal up to that same
ceiling tile. The stair-stepped ceiling allow the player to see the ceilings of all of the wells
with index greater than the one they are currently at, but prevents them from seeing the
portalable surface of the wells with a lower index. This construction ensures that the player
can select each element only once using portals. The enforced order of choosing does not
matter when solving Subset Sum.

We also need to prevent the avatar from moving horizontally from one well to another while
falling. The avatar can move horizontally (via user input) up to a small fixed acceleration αh.
To successfully fall through one well of width c and depth at least b below the ground
without hitting its side walls, the avatar’s horizontal velocity vh over vertical velocity vv
must be at most c/b. Also, after falling at least b, we must have vertical velocity vv ≥

√
2b.

The fall through the top part of the next well, of depth less than (n + 1)c, will thus take
s ≤ (n+ 1)c/vv time. During this fall, the avatar can add at most αhs ≤ αh(n+ 1)c/vv to
horizontal velocity. Thus, during this fall, the avatar can travel horizontally by at most

vhs+ 1
2αhs

2 ≤ vvc

b

(n+ 1)c
vv

+ 1
2αh

(
(n+ 1)c
vv

)2

= (n+ 1)c
2

b
+ αh(n+ 1)2c2

2v2
v

≤ (n+ 1)c
2

b
+ αh(n+ 1)2c2

b

=
(
n+ 1 + αh(n+ 1)2) c2

b

=
(
n+ 1 + αh(n+ 1)2) c

2n2t

= αh
2t c+O(1/n).



E.D. Demaine, J. Lockhart, and J. Lynch 19:9

Setting d to be at least this value (and at least c), we prevent the player from reaching an
adjacent well by horizontal travel.

We must also ensure that the player actually able to target the portable surfaces to select
the elements of A. To do so, we set the time step δ to be less than c/(10vt) where vt is the
target velocity. This ensures that the player will have at least 9 time steps to target while
falling c units, in particular while passing between the heights of each target surface for A
and its emancipation grid.

The verification gadget (not drawn) involves two main pieces: a single portalable surface
on a vertical wall (“launch point”) and a c× c horizontal floor (“target platform”) for the
player to reach. We place the launch point so it can always be shot from the region above
the wells. Relative to the launch point, the target platform is placed g/2 units below and at
a horizontal distance of vt in front, so that leaving the portalable surface with the target
velocity vt will cause the player to reach the target platform in 1 unit of time. The size of the
target platform is much smaller than the difference (≥

√
b ≥ n) if the target value t differed

by 1. If the player enters the final portal with horizontal velocity vh and vertical velocity vv,
satisfying vh/vv ≤ c/b as proved above, then the avatar launches with horizontal velocity vv
and vertical velocity vh ≤ vvc/b. This vertical velocity is insufficient to affect the landing
position by as much as changing t by 1. Similarly, user input during the 1 unit of time has
minimal effect on the horizontal velocity. J

All of the game elements needed for this construction can be placed in the Puzzle Maker.
However, this reduction would not be constructible because maps in the Puzzle Maker appear
to be specified in terms of voxels. Because Subset Sum is only weakly NP-hard [8], we need
the values of the elements of A to be exponential in n. Thus we need to describe the map in
terms of coordinates specifying the polygons making up the map, whereas the Puzzle Maker
specifies each voxel in the map.

I Theorem 4. Portal with portals, long fall, emancipation grills, and generalized terminal
velocity can be solved in pseudopolynomial time.

Proof. We construct a state-space graph of the Portal level. Each vertex represents a tuple
comprised of the avatar’s position vector within the level, the avatar’s velocity vector (limited
by the terminal velocity vmax), the avatar’s orientation, the position vector of the blue
portal, and the position vector of the orange portal. The vertices are connected with directed
edges encoding the state transitions caused by user input. Finally, for each edge that would
represent traversal through an emancipation grid, we replace it by an edge that maps to the
same state of the avatar but with both portal locations removed. We can then search for a
path from the initial game state to any of the winning game states in time polynomial in the
size of the graph. J

5 Portal with Turrets is NP-hard

In this section we prove Portal with turrets is NP-hard, and show that our method can be
generalized to prove that many 3D platform games with enemies are NP-hard. Although
enemies in a game can provide interesting and complex interactions, we can pull out a few
simple properties that will allow them to be used as gadgets to reduce solving a game from
3-SAT, defined like so.

I Problem 5. 3-SAT
Input: A 3-CNF boolean formula f .
Output: Whether there exists a satisfying assignment for f .
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This proof follows the architecture laid out in [1]:
1. The enemy must be able to prevent the player from traversing a specific region of the

map; call this the blocked region.
2. The player avatar must be able to enter an area of the map, which is path-disconnected

from the blocked region, but from which the player can remove the enemy in the blocked
region.

3. The level must contain long falls.

We further assume that the behavior of the enemies is local, meaning an interaction with
one enemy will not effect the behavior of another enemy if they are sufficiently far away. In
many games one must also be careful about ammo and any damage the player may incur
while interacting with the gadget, because these quantities will scale with the number of
literals. Here long falls serve only in the construction of one-way gadgets, and can of course
be replaced by some equivalent game mechanic. Similarly, a 2D game with these elements
and an appropriate crossover gadget should also be NP-hard. The following is a construction
proving Portal with Turrets is NP-hard using this technique. Note that these gadgets can be
constructed in the Portal 2 Puzzle Maker.

5.1 Literal
Each literal is encoded with a hallway with three turrents placed in a raised section, illustrated
in Figure 2. The hallway must be traversed by the player, starting from “Traverse In”, ending
at “Traverse Out”. If the turrets are active, they will kill the avatar before the avatar can
cross the hallway or reach the turrets. The literal is true if the turrets are deactivated or
removed, and false if they are active. The “Unlock In” and “Unlock Out” pathways allow for
the player avatar to destroy the turrets from behind, deactivating them and counting as a
true assignment of the literal.

5.2 Variable
The variable gadget consists of a hallway that splits into two separate paths. Each hallway
starts and ends with a one-way gadget constructed with a long fall. This construction forces
the avatar to commit to one of the two paths. The hallways connect the “Unlock In” and
“Unlock Out” paths of the literals corresponding to a particular variable. Furthermore, one
path connects all of the true literals, the other connects all of the false literals.

5.3 Clause Gadget
Each clause gadget is implemented with three hallways in parallel. A section of each hallway
is the “Traverse In” through the “Traverse Out” corresponding to a literal. The avatar
can progress from one end of the clause to the other if any of the literals is true (and thus
passable). Furthermore, each of the clause gadgets is connected in series. Figures 3 and 4
illustrate a full clause gadget.

I Theorem 6. Portal with Turrets and long falls is NP-hard.

Proof. Given an instance of a 3SAT problem, we can translate it into a Portal with Turrets
map using the above gadgets. This map is solvable if and only if the corresponding 3SAT
problem is solvable. J
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Figure 2 An example of a (currently) false literal constructed with Turrets. Labels added over
the screenshot denote

It is tempting to claim NP-completeness because disabling the turrets need only be
performed once per turret and thus seems to have a monotonically changing state. However,
the turrets themselves are physical objects that can be picked up and moved around. Their
relocation add an exponential amount of state to the level. Further, if they can be jumped
on top of or used to block the player in a constrained hallway, they may conceivably cause
the level to be PSPACE-complete in the same way boxes can add significant complexity to a
game.

5.4 Application to Other Games

While the framework we have presented is shown using the gameplay elements of Portal,
similar elements to those we have used show up in other video games. Hence, our framework
can be generalized to show hardness of other games. In this section we note several common
features of games which would allow for an equivalent to the turret “guarding unit” in
Portal. We list examples of notable games which fit the criteria. We give ideas how to use
our framework to prove hardness results for these games, but it is important to note that
game-specific implementation details will need to be taken into account for any hardness
proof.

The first examples are games that include player controlled weapons with fixed positions,
such as stationary turrets or gun emplacements. The immovable turrets should be placed
at the unlock points of the literal gadget, so that they only allow the player to shoot the
one desired blocking unit. Examples in contemporary video games include the Emplacement
Gun in Half-Life 2, the Type-26 ASG in Half-Life, and the Anti-Infantry Stationary Guns in
Halo 1 through 4.

Another set of examples are games which include a pair of ranged weapons, where one is
more powerful than the other, but has shorter range. In place of the turrets in the Portal
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Unlock In

Traverse  In

Traverse  Out

Traverse  In

Traverse  Out

Traverse  In

Traverse  Out

Ck Out

Ck In

Xa Xb Xc

Unlock Out Unlock Out

Unlock In Unlock In

Unlock Out

Figure 3 A diagram of clause Ck which contains variables xa, xb, and xc.

literal gadgets, we place an enemy unit equipped with the short range weapon, and give
the player avatar the long range weapon. We place the blocked region such that it is in
range and line of sight of the player while standing in the unlock region of the literal gadget.
Additionally, we place the player such that they are not in range of the enemy’s weapon.
Thus the player can kill the enemy from the unlock area. Suppose further that the blocked
region is built in such a way that the player can only pass through it by moving within
range of the enemy. One way of doing this would be to build it with tight turns. The result
would be an equivalent implementation of the variable and clause gadgets from our Portal
constructions. Note that a special case involves melee enemies. This construction applies
to Doom, the Elder Scrolls III–V, Fallout 3 and 4, Grand Theft Auto 3–5, Left 4 Dead 1
and 2, the Mass Effect series, the Deus Ex series, the Metal Gear Solid series, the Resident
Evil series, and many others. The complementary case occurs when the player has the short
ranged, but more powerful weapon and the enemy has the weaker, long ranged weapon. Here
the unlock region provides close proximity to the enemy unit but the locked region involves
a significant region within line of sight and range of the enemy but is outside of the player’s
weapon’s range. Although most games where this construction is applicable will also fall
into the prior case, examples exist where the player has limited attacks, such as in the Spyro
series.

A third case is where the environment impacts the effectiveness of attacks. For example,
certain barriers might block projectile weapons but not magic spells. Skills that can shoot
above or around barriers like this show up with Thunderstorm in Diablo II, Firestorm in
Guild Wars, and Psi-storm in StarCraft. Another common effect is a location based bonus,
for example the elevated-ground bonus in XCOM. Unfortunately these games lack a long-fall,
and thus require the construction of a one-way gadget if one wishes to prove hardness.

While we have so far only covered NP-hardness, we conjecture that these games are
significantly harder. Assuming simple AI and perfect information, many are likely PSPACE-
complete; however, when all of the details are taken into consideration, EXPTIME or
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Figure 4 An example of a clause gadget with two literals.

NEXPTIME seem more likely. Proving such results will require development of more
sophisticated mathematical machinery.

6 Portal with Timed Door Buttons is NP-hard

We provide a new metatheorem related to Forisek’s Metatheorem 2 [7] and Viglietta’s
Metatheorem 1 [18].

I Metatheorem 7. A platform game with doors controlled by timed switches is NP-hard.

Proof. We will prove hardness by reducing from finding Hamiltonian cycles in grid graphs [10].
Every vertex of the graph will be represented by a room with a timed switch in the middle.
These rooms will be laid out in a grid with hallways in-between. The rooms are small in
comparison to the hallways. In particular, the time it takes to press a timed button and
travel across a room is δ and the time it takes to traverse a hallway is α > n · δ where n is
the number of nodes in the graph. This property ensures the error from turning versus going
straight through a room won’t matter in comparison to traveling from node to node. All of
the timed switches will be connected to a series of closed doors blocking the exit hallway
connected to the start node. The timers will be set, such that the doors will close again
after (α+ δ) · (t+ 1) + ε where ε is the time it takes to move from the switch at the start
node through the open doors to the exit. The exit is thus only reachable if all of the timed
switches are simultaneously active. Because we can make α much larger than ε, we can
ensure that there is only time to visit every switch exactly once and then pass through before
any of the doors revert. J

I Corollary 8. A Portal level with only timed door buttons is NP-hard.

A screenshot of an example map for Corollary 8 is given in Figure 5. Because the Portal 2
Workshop does not allow additional doors, the example uses collapsible stairs. We note that
anything which will prevent the player from passing unless currently activated by a timed
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Figure 5 An example of a map forcing the player to find a Hamiltonian cycle in a grid graph.

Figure 6 Close-up of a node in the grid graph.

button will suffice. Moving platforms and Laser Fields are other examples. Unfortunately, the
Puzzle Maker does not allow the timer length to be specified, which is a needed generalization
for the reduction and available in the Hammer editor.

7 Portal with High-Energy Pellets and Portals is NP-hard

In Portal, the High-Energy Pellet, HEP, is an object which moves in a straight line until it
encounters another object. HEPs move faster than the player avatar and if they collide with
the player avatar, the avatar is killed. If a HEP encounters another wall or object, it will
bounce off of that object with equal angle of incidence and reflection. In Portal, some HEPs
have a finite lifespan, which is reset when the HEP passes through a portal, and others have
an unbounded lifespan. A HEP launcher emits a HEP normal to the surface it is placed
upon. These are launched when the HEP launcher is activated or when the previous HEP
emitted has been destroyed. A HEP catcher is another device that is activated if it is ever hit
by a HEP. When activated this device can activate other objects, such as doors or moving
platforms. HEP’s are only seen in the first Portal game and are not present in the Portal 2
Puzzle Maker.

I Theorem 9. Portal with Portals, High-Energy Pellets, HEP launchers, HEP catchers,
and doors controlled by HEP catchers is NP-hard.

Proof. We will reduce from finding Hamiltonian cycles in grid graphs [10]; refer to Figure 7.
For this construction, we will need a gadget to ensure the avatar traverses every represented
node, as well as a timing element. Each node in the graph will be represented by a room
that contains a HEP launcher and a HEP catcher. They are positioned near the ceiling,
each facing a portalable surface. The HEP catcher is connected to a closed door preventing
the avatar from reaching the exit. The rooms are small in comparison to the hallways. In
particular, the time it takes to shoot a portal, wait for it to enter the HEP Catcher, and
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Figure 7 An example level for the HEP reduction. Not drawn to scale.

travel across a room is δ and the time it takes to traverse a hallway is α > n · δ where n is
the number of nodes in the graph. This property ensures the error from turning versus going
straight through a room won’t matter in comparison to traveling from node to node.

The timer will contain two elements. First, we will arrange for a hallway with two exits
and a HEP launcher behind a door on one end. The hallway is long enough so it is impossible
for the avatar to traverse the hallway when the door is open. Call this component the time
verifier. In another area, we have a HEP launcher and a HEP catcher on opposite ends of a
hallway that is inaccessible to the avatar. The catcher in this section will open the door in
the time verifier. This construction ensures that the player can only pass through the time
verifier if they enter it before a certain point after starting. To complete the proof, we set
the timer equal to (α+ δ) · n+ ε1 + ε2 where ε1 is the minimum time needed for the avatar
to traverse the hallway with doors, ε2 is the minimum time needed for the avatar to traverse
the time verifier, α is the minimum time it takes for the player to move to an adjacent room
and change the trajectory of the HEP, and n+ 1 is the number of HEP catchers in the level.
Thus concludes our reduction from the Hamiltonian cycle problem in grid graphs. J

The HEP Catchers are only able to be activated once, so one may be tempted to claim
this problem is in NP. This is not necessarily the case because navigating around HEP
particles with more complicated trajectories might require long paths or wait times. The
PSPACE-hardness of motion planning with periodic obstacles [14] suggests the natural class
for this problem is actually PSPACE-complete.

8 Portal is PSPACE-complete

In this section we give a new metatheorem for games with doors and switches, in the same
vein as the metatheorems in [7], [18], and [17]. We use this metatheorem to give proofs of
PSPACE-completeness of Portal with various game elements, included here and in Section 9.
All of the gadgets in this section can be created in the Portal 2 Puzzle Maker.

The proofs in this section revolve around constructing game mechanics which implement
a switch: the construction can be in one of two states, and the state is controllable by the
player. When the avatar is near the switch, it can be freely set to either state. Each state has
a set of doors which are open and others which are closed when the switch is in that state. A
switch is very similar to a button in that it controls whether doors are open or closed, and the
player has the option of interacting with it. The key difference is that buttons can be pressed
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multiple times to open or close its associated doors, and cannot necessarily be ‘unpressed’ to
undo the action. We show that a game with switches and doors is PSPACE-complete, using
similar techniques to [17].

In what follows we will use the nondeterministic constraint logic framework [9], wherein
the state of a nondeterministic machine is encoded by a graph called a constraint graph. The
state is updated by changing the orientation of the edges in such a way that constraints
stored on the vertices are satisfied.

Formally, an constraint graph is an undirected simple graphG = (V,E) with an assignment
of nonnegative integers to the edges w : E → Z+, referred to as weights, and an assignment
of integers to the vertices c : V → Z, referred to as constraints. Each edge has an orientation
p : E → {+1,−1}. A constraint graph is fully specified by the tuple G = (G,w, c, p).
The edge orientation p induces a directed graph DG,p. Let v ∈ V be a vertex of G. Its
in-neighborhood

N−(v, p) = {w | (v, w) ∈ A}

is the set of vertices of DG,p = (V,A) with an arc oriented towards it. The constraint graph
G is valid if, for all y ∈ V ,

∑
x∈N−(y,p) w((x, y)) ≥ c(x). The state of a constraint graph

can be changed by selecting an edge and multiplying its orientation by −1, such that the
resulting constraint graph is valid. We say that we have flipped the edge.

A vertex v in a constraint graph with three incident edges x, y, o can implement an AND
gate by setting c(v) = 2, w(x) = w(y) = 1, and w(o) = 2. Clearly, the edge o can only point
away from v if both x and y are pointing towards v. In a similar fashion, we can implement
an OR gate by setting w(v) = 2, w(x) = w(y) = w(o) = 2. A constraint graph where all
vertices are AND or OR vertices is called an AND/OR constraint graph. The following
decision problem about constraint graphs is PSPACE-complete.

I Problem 10. Nondeterministic Constraint Logic
Input: An AND/OR constraint logic graph G = ((V,E), w, c, p), and a target edge

i, j ∈ E.
Output: Whether there exists a constraint graph G′ = ((V,E), w, c, p′) such that

p′({i, j}) = −p({i, j}), and which can be obtained from G by a sequence of valid edge
flips.

I Metatheorem 11. Games with doors that can be controlled by a single switch and switches
that can control at least six doors are PSPACE-complete.

Proof. We prove this by reduction from Nondeterministic Constraint Logic. The
edges of the consistency graph are represented by a single switch whose state represents
the edge orientation. Connected to each switch is a consistency check gadget. This gadget
consists of a series of hallways that checks that the state of the two vertices adjacent to the
simulated edge are in a valid configuration and thus that the update made to the graph
was valid. Each edge switch is connected to doors in up to six consistency checks, two for
itself and four for the adjacent edges. For an AND vertex, the weight-two edge is given by
the door with the single hallway, and the weight one edges connect to the two doors in the
other hallway. For an OR vertex we have a hallway that splits in three, each with one node.
An example is given in Figure 8. Each switch thus connects to five doors. All of the edge
gadgets, with their constraint checks, are connected together. This construction allows the
player to change the direction of any edge they choose. However, to get back to the main
hallway connecting the gadgets, the graph must be left in a valid state. Off the main hallway
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Figure 8 Example of an edge gadget built from switches and doors.

there is a final exit connected to the target location, but blocked by a door connected to the
target edge. If the player is able to flip the edge by visiting the edge gadget, flip the switch
which opens the exit door, and return through the graph consistency check, then the avatar
can reach the target location. J

I Theorem 12. Portal with any subset of long falls, portals, Weighted Storage Cubes,
doors, Heavy Duty Super Buttons, lasers, laser relays, gravity beams, turrets, timed buttons,
and moving platforms is in PSPACE.

Proof. Portal levels do not increase in size and the walls and floors have a fixed geometry.
Assuming all velocities are polynomially bounded, all gameplay elements have a polynomial
amount of state which describes them. For example the position and velocity of the avatar
or a HEP; whether a door is open or closed; and the time on a button timer. The number
of gameplay elements remains bounded while playing. Most gameplay elements cannot be
added while playing, and items like the HEP launcher and cube suppliers only produce
another copy when the prior one has been destroyed. We only need a polynomial amount of
space to describe the state of a game of Portal at any given point in time. Thus one can
nondeterministically search the state space for any solutions to the Portal problem, putting
it in NPSPACE. Thus by Savitch’s Theorem [13] the problem is in PSPACE. J

I Theorem 13. Portal with Weighted Storage Cubes, doors, and Heavy Duty Super Buttons
is PSPACE-complete.

Proof. We will construct switches and doors out of doors, Weighted Storage Cubes, and
Heavy Duty Super Buttons. Then, we invoke Metatheorem 11 to complete the proof. A
switch is constructed out of a room with a single cube and two buttons as in Figure 9. Which
of the buttons being pressed by the cube dictates the state of the switch. Each button is
connected to the corresponding doors which should open when the switch is in that state. To
ensure the switch is always in a valid state, we put an additional door in the only entrance to
the room. This door is only open if at least one of the two buttons is depressed. Furthermore,
this construction prevents the cube from being removed from the room to be used elsewhere.
As long as there are no extra cubes in the level, the room must be left in exactly one of
the two valid switch states for the avatar to exit the room. We now apply our doors and
simulated switches as in Metatheorem 11 completing the hardness proof. Theorem 12 implies
inclusion in PSPACE. J
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Figure 9 An example of a single switch implemented with cubes, doors, and buttons. The door
will only open if at least one of the buttons is pressed.

9 Additional Applications of NCL Construction

In this section we use Theorem 11 to prove additional results about Portal.

I Theorem 14. Portal with lasers, relays, portals, and moving platforms is PSPACE-
complete.

Proof. We will construct doors and switches out of lasers, relays, and moving platforms
allowing us to use Metatheorem 11. In Portal 2, the avatar is not able to cross through an
active laser. Because lasers can be blocked by the moving platforms game element, a door
can be constructed by placing a moving platform and laser at one end of a small hallway.
If the moving platform is in front of the laser, the gadget is in the unlocked state. If the
moving platform is to the side, then the player cannot pass through the hallway and it is in
the locked state. Moving platforms can be controlled by laser relays and will switch position
based on whether the laser relay is active. Lasers can be directed to selectively activate laser
relays with portals, so we have a mechanism to lock or unlock the doors.

As it stands, once a new portal is created the previously opened door will revert to its
previous state. To prove PSPACE-hardness, we need to make these changes persist. To do
so, we introduce a memory latch gadget, shown in Figures 10 and 11. When the relay in this
gadget is activated for a sufficiently long period of time, the platform will move out of the
way and the laser will keep the relay active. If the relay has been blocked for enough time,
the platform moves back and blocks the laser. Thus, the state of the gadget persists.

The last construction is the switch, which we build out of two groups of lasers, moving
platforms, and laser relays, as well as a memory latch. The player has the ability to change
the state of the memory latch. We interpret the state of the memory latch as the state of
the switch. When active, one of the relays in the latch moves a platform out of the way
of one of the lasers, activating the corresponding relays and opening the set of doors to
which they are connected. Another relay in the latch moves the second moving platform into
the path of the second laser, deactivating its corresponding laser relays and the doors they
control. Likewise, deactivating the memory latch causes both moving platforms to revert
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Figure 10 A memory latch in the off state. Figure 11 A memory latch in the on state.

to their original positions, blocking the first laser and letting the second through. We have
now successfully constructed doors and switches, so by Metatheorem 11 and Theorem 12,
PSPACE-completeness follows. J

Note that in the proof of the preceding theorem, laser catchers could be used in place of
laser relays, although the relays have the convenient property that they each need only be
connected to a single moving platform. It is also possible that the proof could be adapted
to use a single Reflection Cube instead of portals. Additional care would be required with
respect to the construction of the door, and it would need to be the case that lasers from
multiple directions blocked the avatar. Emancipation Grills or long falls with the moving
platforms would simplify this particular door construction.

The game elements in the following corollary are a superset of those used in Theorem 13,
so this result follows trivially. However, we prove it by using a construction similar to that
in Theorem 14, as we feel that the gadgets involved are interesting. We also note that the
proof only uses Heavy Duty Super Buttons placed on vertical surfaces, whereas Theorem 13
relies on their placement on the floor.

I Corollary 15. Portal with gravity beams, cubes, Heavy Duty Super Buttons, and long
fall is PSPACE-complete.

Proof. When active, a gravity beam causes objects which fit inside its diameter to be pushed
or pulled in line with the gravity beam emitter. Objects in the gravity beam ignore the
normal pull of gravity, and thus float along their course. We construct a simple door by
placing a gravity beam so that it can carry the player avatar across a pit large enough that
the avatar would otherwise be unable to traverse. We hook the gravity beam emitter up to a
button allowing it to be turned on and off, unlocking and locking the door.

If we wish to only use buttons placed on vertical surfaces, we are now faced with the
problem of making changes to doors persist once the avatar stops holding a cube next to
the button. To solve this problem, we construct a memory latch as in Theorem 14. If a
weighted cube button is placed in the path of a gravity beam, a weighted cube caught in
the beam can depress the button as in Figure 13. A cube on the floor near a gravity beam,
as in Figure 12 will be picked up by the beam. Weighted cube buttons can activate and
deactivate the same mechanics as laser catchers, including gravity beam emitters. Figures 12
and 13 demonstrate a memory latch in the off and on positions, respectively. We also note
that gravity beams are blocked by moving platforms, just like lasers. At this point, we have
the properties we need from the laser, laser catcher, and moving platform. We also note
that the player can pick up and remove cubes from the beam, meaning that portals are not
needed. J
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Figure 12 A memory latch in the off state. Figure 13 A memory latch in the on state.

10 Conclusion

In this paper we proved a number of hardness results about the video game Portal. In Sections
4 through 7 we have identified several game elements that, when accounted for, give Portal
sufficient flexibility so as to encode instances of NP-hard problems. Furthermore, in Section 8
we gave a new metatheorem and use it to prove that certain additional game elements, such
as lasers, relays and moving platforms, make the game PSPACE-complete. The unique
game mechanics of Portal provided us with a beautiful and unique playground in which to
implement the gadgets involved in the hardness proofs. Indeed, our work shows how clause,
literal, and variable gadgets inspired by the work of Aloupis et al. [1] can be implemented
in a 3D video game. While our results about Portal itself will be of interest to game and
puzzle enthusiasts, what we consider most interesting are the techniques we utilized to obtain
them. Adding new, simple gadgets to this collection of abstractions gives us powerful new
tools with which to attack future problems. In Section 5.4 we identified several other video
games that our techniques can be generalized to. We also believe the decomposition of games
into individual mechanics will be an important tactic for understanding games of increasing
complexity. Metatheorems 7 and 11 are new metatheorems for platform games. We hope that
our work is useful as a stepping stone towards more metatheorems of this type. Additionally,
we hope the study of motion planning in environments with dynamic topologies leads to new
insights in this area.

10.1 Open Questions

This work leads to many open questions to pursue in future research. In Portal, we leave
many hardness gaps and a number of mechanics unexplored. We are particularly curious
about Portal with only portals, and Portal with only cubes. The removal of Emancipation
Fields from our proofs would be very satisfying. The other major introduction in Portal
2 that we have not covered is co-op mode. If the players are free to communicate and
have perfect information of the map, this feature should not add to the complexity of the
game. However, the game seems designed with limited communication in mind and thus an
imperfect-information model seems reasonable. Although perfect-information team games
tend to reduce down to one- or two-player games, it has been shown that when the players
have imperfect information the problem can become significantly harder. In particular, a
cooperative game with imperfect information can be 2EXPTIME-complete [12].

More than the results themselves, one would hope to use these techniques to show
hardness for other problems. Many other games use movable blocks, timed door buttons, and
stationary turrets and may have hardness results that immediately follow. Some techniques



E.D. Demaine, J. Lockhart, and J. Lynch 19:21

like encoding numbers in velocities might be transferable. It would be good to generalize
some of these into metatheorems which cover a larger variety of games.
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