
Uniform Distribution On Pachinko∗

Naoki Kitamura
Nagoya Institute of Technology, Syowa-ku, Gokiso-cho, Nagoya, Aichi, 466-8555, Japan
29414045@stn.nitech.ac.jp

Yuya Kawabata
Nagoya Institute of Technology, Syowa-ku, Gokiso-cho, Nagoya, Aichi, 466-8555, Japan
29414043@stn.nitech.ac.jp

Taisuke Izumi
Nagoya Institute of Technology, Syowa-ku, Gokiso-cho, Nagoya, Aichi, 466-8555, Japan
t-izumi@nitech.ac.jp

Abstract
Pachinko is a japanese mechanical gambling game similar to pinball. Recently, Akitaya et al.
proposed several mathematical models of Pachinko. A number of pins are spiked in a field. A
ball drops from the top-side end of the playfield, and falls down. In the 50-50 model, if the ball
hits a pin, it moves to the left or right of the pin with equal probability. An arrangement of pins
generates a distribution of the drop probability over all columns. We consider the problem of
generating uniform distributions. Akitaya et al. show that (1/2a)-uniform distribution is possible
for a ∈ {0, 1, 2, 3, 4} and conjectured that it is possible for any positive integer a. In this paper,
we show that the conjecture is true by a constructive way.
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1 Introduction

1.1 Background
Pachinko is a japanese mechanical gambling game similar to pinball (Figure 1). The machine
stands up vertically, and the player shoots a metal ball into the playfield. Many pins are
spiked in the playfield, and the ball drops from the top of the field. If it goes into a pocket in
the field, then the player gets some reward. Recently, Pachinko is analyzed in the context of
discrete mathematics. The origin of mathematical Pachinko is the book written by Akiyama
in 2008 [3], and recently, Akitaya et al. study an idealized geometry of a simple form of
Pachinko [2]. In this paper, we consider one of the mathematical models, called 50-50 model,
posed there.

The 50-50 model consists of three factors, field, pins, and a ball. The field is a half-plane
triangle lattice with the top-side end. We can put a pin at any lattice point. A row is a
horizontal line where lattice points exist, and a column is a vertical line where lattice points
exist. Since we consider the triangle lattice, intersection points of rows and columns do not
necessarily have a lattice point (see Figure 2). The ball drops from the center of the top
end and falls down vertically. If the ball hits a pin, then it moves to the left or right of the
pin with equal probability, and the ball continues to fall down vertically. Once we fix a pin
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26:2 Uniform Distribution On Pachinko

Figure 1 A classical Pachinko (from [1]).
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Figure 2 An example of 50-50 model. Each
value means the drop probability of each
column.
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Figure 3 An example of uniform distribu-
tions. The center column has probability 0.

arrangement under the 50-50 model, we can calculate the probability that the ball drops to
each column. Then we can define its inverse problem of “deciding whether there exists a pin
arrangement generating a given distribution or not”.

1.2 Problem and Our Result
In [2], it is shown that any probability distribution 〈p1, p2, ..., pn〉 in the 50-50 model can be
constructed within an arbitrarily small additive error, and thus the main interest is the exact
generation of a given distribution. The (1/2a)-uniform distribution in the 50-50 model is
the probability distribution, where the probability that the ball drops at the center is 0 and
the probability at the 2a closest coordinates from the center is 1

2a (see Figure 3). Akitaya et
al. show that the (1/2a)-uniform distribution for a ∈ {0, 1, 2, 3, 4} can be constructed, and
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they conjecture that 2a uniform distribution for any positive integer a can be constructed in
[2]. The contribution of this paper is to show that this conjecture is true. That is, for any
a ≥ 1, the (1/2a)-uniform distribution can be constructed. Moreover, the construction can
be done using only a polynomial of 2a number of pins. To show the result, we introduce a
new language-theoretic formulation, which is simple but substantially useful for the analysis
of the 50-50 model.

2 Preliminaries

2.1 Configuration and Rewriting Rule
We formulate the problem in the 50-50 model using the notion of formal grammar. A
Pachinko machine is represented by a triangle lattice on a half plane with infinite horizontal
length and infinite downward vertical length. Each horizontal line containing lattice points is
called a row. From the top-side end, we assign each row with a y-coordinate 1, 2, . . . . Since
the field is a triangle lattice, the lattice points on an odd row are half-shifted from those on
an even row. To fit them into the standard orthogonal coordinate system, we assign even
x-coordinates to the lattice points in even rows, and odd x-coordinates to those in odd rows
(see Figure 4). Any coordinate (i, j) ∈ N × N+ for i and j with different parity is not a
lattice point, which is the space for the ball to drop down to lower rows. Those coordinates
are called passages. Initially, the ball is dropped from the horizontal center of the top-side.
Hence, the probability that the ball passes through (0, 0) is one. A pin can be placed at any
lattice point. In the 50-50 model, if the dropping ball hits a pin at point (i, j) (i.e., passes
through (i, j − 1)), it moves to either (i− 1, j) or (i + 1, j) with probability 1/2. If no pin is
spiked at (i, j), the drop probability of (i, j) is equal to that of (i, j − 1).

A pin arrangement is a set of lattice points where a pin is spiked. Given a pin arrangement
P and any i ≥ 1, P generates the drop probability distribution over all coordinates in the
i-th row, which is called the i-th configuration of P (or simply say a configuration). Formally,
a configuration is a finite odd-length sequence of rational values whose sum is equal to one,
where the center of the sequence corresponds to the drop probability at x-coordinate zero
and two infinite sequences of zeros spanning x-coordinates ±∞ are cut off. Throughout this
paper, we assume the minimum granularity 1/2g of each probability for some g ≥ 1. Then,
by multiplying each value by 2g, we can treat any configuration as a sequence of non-negative
integer values.

The change of configurations (i.e., the change of the corresponding probability distribution)
by placing a pin at a lattice point is expressed as an application of rewriting rules in formal
grammar. While we can put two or more pins in the same row, such a pin placement is
equivalently translated into the placement in a number of rows where each row contains
exactly one pin. Thus, without loss of generality, we assume that each row contains one pin.
We regard each configuration as a word over the symbol set [0, 2g]. If a pin is put at a lattice
point with x-coordinate (i, j + 1), the probability mass of coordinate (i, j) is evenly split into
(i− 1, j + 1) and (i + 1, j + 1), which is expressed by the rewriting rule as follows:

I Definition 1.

abc→
[
a + b

2

]
0
[
c + b

2

]
(Rule R1).

where bracket [] represents the single symbol corresponding to the value inside. The symbol
a or c may be an implicit zero value omitted in the representation of configurations. An
example of rewriting is illustrated in Figure 4.
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Figure 4 An example of configurations (g = 3) and rewriting.

1104011$ 1104012104011 

⇔ 

1104020$ 1104020204011 

Figure 5 An example of rewriting symmetric configurations.

2.2 Symmetric Configuration
Throughout this paper, we only consider symmetric configurations, that is, the configurations
mirror-symmetric about the center. To express symmetric configurations, the right side from
the center is not necessary. More precisely, we denote a symmetric configuration w[v]wR

as w[v/2]$, where wR is the inversion of w, and $ is the special symbol representing the
right side from the center (say the boundary). Except for the center, any rewriting is applied
symmetrically. That is, in the transformation of symmetric configurations, putting a pin
at (i, j) implies putting another pin at (−i, j). The exceptional case is the rewriting at the
center, which is handled by the special rule below (note that the drop probability at the
center is expressed by its half).

I Definition 2.

ab$→ [a + b] 0$ (Rule R2).

The symbol $ corresponds to the center. Figure 5 is an example of how symmetric configura-
tions are rewritten by Rule R2. If we can generate a configuration u$ from w$ by finite-time
applications of rewriting rules, then we say u$ is transformed from w$, and write w$ u$.
We also extend this notion of transformability into substring cases. Let xyz$ and xy′z$ be
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the two words such that y and y′ have the same length. If xyz$  xy′z$ holds for any x

and z, we say y′ is transformed from y, and write y  y′.

2.3 Formulation of the Problem
In this section we formalize the problem of generating uniform distributions. The goal of
the problem is to generate the probability distribution of 1/2a, 1/2a, · · · ,1/2a, 0, 1/2a, 1/2a,
· · · , 1/2a. We call it the (1/2a)-uniform distribution. In our construction, the minimum
granularity 1/2a+1 of drop probability suffices to generate the (1/2a)-uniform distribution,
and thus the problem is reduced to the transformability of [2a+1]$ 2(2a)$ (upper subscripts
mean repetition of symbols). The problem actually we solve is a “recursive” version of this
transformability, which is stated by the following Theorem.

I Theorem 3. 4k0$ 22k0$ holds for a ≥ 4 and k = 2a.

In [2], it has been proved that (1/2a)-uniform distribution can be generated for a ≤ 4. By
applying Theorem 3 iteratively, we can show that the (1/2a)-uniform distribution can be
generated for any a ≥ 1.

3 Generating Uniform Distribution

The whole of Section 3 is devoted to the proof of Theorem 3. The proof consists of the
following three parts.
1. 4k0$  (440) k

2 $.
2. (440) k

2 $ 42k−302k−14$.
3. 42k−302k+14$ 22k0$.
Clearly, the combination of these transformations results in Theorem 3. In the following
subsections, we look at the details of each part.

3.1 Part 1: From 4k0$ to (440)k
2 $

First, we explain a preliminary lemma.

I Lemma 4. Let x, y, and z be any symbols, and j be a positive integer greater than or equal
to 3. Then the following transformations are possible.

xyjz  [x + y]0yj−20[z + y]. (1)

xyj0$ [x + y]0yj−10$. (2)

Proof. We first consider the transformation (1). The proof is based on the induction on j.
(Basis) In the case of j = 3, we have the following transformation (each underline represents
the position of rewriting):

xyyyz

 
[
x + y

2

]
0[2y]0

[
z + y

2

]
 
[
x + y

2

]
y0y

[
z + y

2

]
 [x + y]0y0[z + y].
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(Inductive step) Suppose as the induction hypothesis that the transformation (1) is possible
for j = k. The case of j = k + 1 is obtained as follows:

xyk+1z

=xykyz (Induction hypothesis)
 [x + y]0yk−20[2y]z

 [x + y]0yk−2y0[y + z]
=[x + y]0yk−10[y + z].

Thus the transformation (1) is possible. The proof of the transformation (2) follows the
rewriting process below:

xyj0$ (Transformation (1))
 [x + y]0yj−20y$
 [x + y]0yj−2y0$
=[x + y]0yj−10$.

The lemma is proved. J

For simplicity of arguments, we pad an appropriate number of zeros to the left side of w such
that the number of zeros in w becomes exactly k/2 + 1. The i-th run of w (1 ≤ i ≤ k/2) is
the substring between i-th zero and (i + 1)-th zero (indexed from the left end of w). The
length of the i-th run in w is denoted by lw(i). Now we define the notion of Normal Forms
(NFs), which is the class of configurations we have to treat in the proof of Part 1.

I Definition 5. A word w is a normal form(NF) with respect to k if and only if every run
in w consists of only symbol 4, the number of runs (of 4) is at most k/2, and the symbol
neighboring to the boundary is 0.

Let lw(j) be the length of j-th run in NF w. The run-length vector v(w) of w is the k/2-
dimensional vector whose j-th element corresponds to lw(j). Let volw(h) =

∑
j∈[1,h] lw(j).

Then SNFs are defined as follows:

I Definition 6. A NF w (with respect to k) is a strongly-normal form(SNF) (with respect
to k) if and only if it satisfies volw(h) ≤ 2h for any h ∈ [1, k/2].

Note that 4k0$ and (440)k/2$ are both SNFs. For any two SNFs w1 and w2, we define
c(w1, w2) to be the minimum index such that lw1(c(w1, w2)) 6= lw2(c(w1, w2)) holds, and
define Nk as the set of all SNFs with respect to k. Then we define a total order ≺ over Nk

by the lexicographic order of corresponding run-length vectors. That is, we define

w1 ≺ w2 ⇔ lw1(c(w1, w2)) ≤ lw2(c(w1, w2)).

For any SNF w, let t(w) be the position of the leftmost run with length more than two, that is,
t(w) = minj∈[1,k/2],lw(j)≥3 j. If no run has a length more than two, we define t(w) = k/2 + 1.
The rewriting process of 4k0$ (440)k/2$ is to iterate the application of Lemma 4 (1) (if
t(w) < k/2) or (2) (if t(w) = k/2) to the t(w)-th run, until the transformation reaches the
word w′ with t(w) = k/2 + 1. In the remaining part of this section we show that this process
correctly creates (440)k/2.
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I Lemma 7. Let x be any SNF, and x′ be the word after the application of Lemma 4 to the
t(x)-th run in x. Then, x′ is also an SNF and x ≺ x′.

Proof. It is easy to check that any run of x′ consists of only 4s and symbol 0 is the neighbor
of $ in x′. By the definition of SNFs for h = 1, for any SNF w, lw(1) ≤ 2 holds and
thus t(w) > 1 necessarily holds. Since we have to apply Lemma 4 to the first run for
increasing the number of runs to more than k/2, the number of runs in x′ is at most k/2.
Consequently x′ is a NF. Since the application of Lemma 4 at the i-th run of a word
w increases li−1(w) and li+1(w) by one, and decreases li(w) by two, the transformation
from x to x′ can increase only the value of volx(t(x)− 1). For showing that x′ is an SNF,
it suffices to prove volx′(t(x) − 1) ≤ 2(t(x) − 1). By the fact of lx(t(x)) ≥ 3, we have
volx(t(x)− 1) + 3 ≤ volx(t(x)) ≤ 2t(x) and thus volx(t(x)− 1) ≤ 2(t(x)− 1)− 1 holds. Since
the length of t(x)-th run increases at most by one after the application of Lemma 4. We
obtain volx′(t(x)− 1) ≤ volx(t(x)− 1) + 1 ≤ 2(t(x)− 1). Thus x′ is a SNF. By the definition,
c(w, w′) = t(x)− 1 holds and thus we obtain lc(w,w′)(w′) > lc(w,w′)(w), that is x′ ≺ x. The
lemma is proved J

I Lemma 8. The word (440)k/2$ is the maximum element with respect to ≺.

Proof. Let w = (440)k/2$. Suppose for contradiction that a SNF w′ satisfies w 6= w′ and
w ≺ w′. Then, volw(c(w, w′)) < volw′(c(w, w′)) holds. However, since volw(c(w, w′)) =
2c(w, w′) holds, we have volw′(c(w, w′)) > 2c(w, w′). It contradicts the fact that w′ is an
SNF. J

The two lemmas above imply that our rewriting process eventually leads the maximum
element of SNFs, and thus the following corollary holds.

I Corollary 9. Let k ∈ N be any even positive integer. Then the following transformation is
possible.

4k0$ (440) k
2 $.

3.2 Part 2: From (440)k
2 $ to 42k−302k−14$

In this section, we first introduce a magical string Bi = 42i02i+14$, as well as its nice
properties. Before showing the properties of Bi, we present further preliminary lemmas.

I Lemma 10. Let x,y, and z be any symbols, and j be any positive integer. Then the
following transformations are possible.

x[2y]yjz  [x + y]yj−10[2y]z. (3)

x[2y]yjz  [x + y]yj0[z + y]. (4)

Proof. We first consider the transformation (3). The proof is based on the induction on j.
(Basis) In the case of j = 1, we can have the following transformation:

x[2y]yz

 [x + y]0[2y]z.

FUN 2018
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(Inductive step) Suppose as the induction hypothesis that the transformation (3) is possible
for j = k. The case of j = k + 1 is obtained as follows:

x[2y]yk+1z

 [x + y]0[2y]ykz (Induction hypothesis)

 [x + y]yk0[2y]z.

The proof for the transformation (4) follows the rewriting process presented below:

x[2y]yjz (Transformation(3))

 [x + y]yj−10[2y]z

 [x + y]yj0[z + y].

The lemma is proved. J

I Corollary 11. Let x,y, and z be any symbols, and j be any positive integer. Then the
following transformations are possible.

xyj [2y]z  x[2y]0yj−1[z + y]. (5)

xyj [2y]z  [x + y]0yj [z + y]. (6)

I Lemma 12. Let j be a positive integer greater than or equal to 4. Then 02j4$  2202j−24$
holds.

Proof. We can rewrite 02j4$ as follows.

02j4$
=022222j−44$ (Lemma 4 (1), x = 0, y = 2, z = 2)
 202042j−44$ (Lemma 10 (4), x = 0, y = 2, z = 2)
 202j−3044$
 202j−3080$
 202j−3404$ (Corollary 11 (6), x = 0, y = 2, z = 0)
 2202j−324$
=2202j−24$.

The lemma is proved. J

The goal of Part 2 is to obtain Bk−3 from (440) k
2 . We introduce two important properties of

Bi = 42i02i+24$, which is the primary reason why we claim that Bi is “magical”.

I Lemma 13. Let i be any positive integer. Then the following transformations are possible.

04Bi  40Bi. (7)

0440Bi  Bi+2. (8)
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Proof. We first consider the transformation (7), which is obtained as follows.

04Bi

=0442i02i+24$
 06042i−102i+24$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 062i02i+34$ (Lemma 12)
 062i+202i+14$ (Lemma 4 (1), x = 6, y = 2, z = 0)
 0802i02i+24$
 4042i02i+24$
=40Bi.

The proof for the transformation (8) follows the rewriting process below:

0440Bi

=044042i02i+24$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 0442i+102i+34$
=04Bi+1 (Transformation (7))

 40Bi+1

=4042i+102i+34$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 42i+202i+44$
=Bi+2.

The lemma is proved. J

Why these properties are so important? The intuitive understanding of the reason for the
first property is that we can treat Bi as $. In Part 1, we only use the application of rule R2
for b = 4. Then the behaviors of 4$ and 4Bi are the same, and thus any transformation in
Section 3.1 applicable to w′$ is also applicable to w′Bi. This fact yields the corollary below.

I Corollary 14. Let k′ ∈ N be an even positive integer, and w be a SNF with respect to k′.
Letting w′ be the word obtained from w by deleting $, wBi  (440)k′/2Bi holds.

Combining this corollary with the second property of Lemma 13, we can show that Bi can
recursively “absorb” substring 440 to make itself grow up. The following lemma corresponds
to the base case of this rewriting process.

I Lemma 15.

(440)4$ 44440B1.

Proof. Deferred to the appendix. J

The following two lemmas are the main body of Part 2, which shows the rewriting process of
absorbing substring 440.

I Lemma 16. Let i and j be any positive integer. Then 0i(440)iBj  Bj+2i holds.

Proof. The proof is based on the induction on i. (Basis) In the case of i = 1, we have the
following transformation:

0440Bj (Lemma 13 (8))
 Bj+2,

FUN 2018
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and in the case of i = 2, we also have the following transformation:

02(440)2Bj

=02440440Bj (Lemma 13 (8))

 0244Bj+2 (Lemma 13 (7))

 0280Bj+2

 0404Bj+2 (Lemma 13 (7))

 0440Bj+2 (Lemma 13 (8))
 Bj+4.

(Inductive step) Suppose as the induction hypothesis that Lemma 16 holds for i = k (k ≥ 2).
The case of i = k + 1 is proved by:

0k+1(440)k+1Bj (Because of k ≥ 2)
=0k+1(440)k−2440440440Bj (Lemma 13 (8))

 0k+1(440)k−244044Bj+2 (Lemma 13 (7))

 0k+1(440)k−244080Bj+2

 0k+1(440)k−244404Bj+2 (Lemma 13 (7))

 0k+1(440)k−244440Bj+2 (Corollary 14)

 0k(440)kBj+2 ( Induction hypothesis)

 Bj+2(k+1).

The Lemma is proved. J

I Lemma 17. Let k be a positive integer greater than or equal to 8. Then (440) k
2 $ Bk−3

holds.

Proof.

(440) k
2 $

=(440) k
2−4(440)4$ (Lemma 15)

 (440) k
2−444440B1.

(440) k
2−444440 is an SNF (with respect to k − 2). Thus, we can rewrite it as follows.

(440) k
2−444440B1 (Corollary 14)

 (440) k
2−2B1 (Lemma 16)

 Bk−3.

The lemma is proved. J

3.3 Part 3: From 42k−302k−14$ to 22k0$
Finally, we prove that 42k−302k−14$ can be transformed into 22k0$. We explain four
preliminary lemmas used in this section.
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I Lemma 18. Let x, z be any positive integers, and y be a positive integer greater than or
equal to 2. Then the following transformation is possible.

02x022y02z$ 02x+y−102202z+y−1$.

Proof. The proof is based on the induction on y. (Basis) In the case of y = 2, we can have
the following transformation:

02x02402z$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 02x+102202z+1$.

(Inductive step) Suppose as the induction hypothesis that the Lemma 18 holds for y = k.
The case of y = k + 1 is proved by:

02x022(k+1)02z$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 02x+1022k02z+1$ (Induction hypothesis)
 02x+k02202z+k$.

The Lemma is proved. J

I Lemma 19. Let i be a positive integer greater than or equal to 5. Then 02202i4$  
2i−40220244$ holds.

Proof. The proof is based on the induction i. (Basis) In the case of i = 5, we can have the
following transformation:

0220254$ (Lemma 12)
 022220234$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 20220244$.

(Inductive step) Suppose as the induction hypothesis that Lemma 19 holds for i = k. The
case of i = k + 1 is proved by:

02202k+14$ (Lemma 12)
 0222202k−14$ (Lemma 4 (1), x = 0, y = 2, z = 0)
 202202k4$ (Induction hypothesis)
 2k−30220244$.

The lemma is proved. J

I Lemma 20. Let i be any positive integer. Then x2i$ [x + 2]2i−10$ holds.

Proof. The proof is based on the induction on i. (Basis) In the case of i = 1, we have the
following transformation:

x2$
 [x + 2]0$.

FUN 2018
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(Inductive step) Suppose as the induction hypothesis that Lemma 20 holds for i = k. For
the case of i = k + 1, we have the transformation as follows:

x2k+1$
=x22k$ (Induction hypothesis)
 x42i−20$ (Lemma 10 (4), x = x, y = 2, z = 0)
 [x + 2]2i−202$
 [x + 2]2i−10$.

The case of i = k + 1 is proved, and thus the lemma holds. J

I Lemma 21.

022022224$ 222222220$.

Proof. Deferred to the appendix. J

The combination of the four lemmas straightforwardly deduces the main lemma of Part 3.

I Lemma 22. Let k be a positive integer greater than or equal to 8. The following trans-
formation is possible.

0042k−302k−14$ 22k0$.

Proof. We can have the following transformation:

0042k−302k−14$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 02k−202k4$ (Lemma 18)

 2 k
2−202202 3k

2 −24$ (Lemma 19)

 2 k
2−22 3k

2 −60220244$
=22k−80220244$ (Lemma 21)
 22k−8222222220$
=22k0$.

J

4 Conclusions and discussion

In this paper, we proved that (1/2a)-uniform distributions in the 50-50 model can be generated
for any a ≥ 1. This is the complete positive answer for the open problem posed by [2]. In
this article we do not consider the complexity of the generation process — the number of
pins, or the number of rows. While it is not difficult to bound the number of pins used in our
construction by a polynomial of 2a, its fine-grained analysis is not proposed yet (following a
rough estimation it is bounded by O(24a), but the tight analysis is probably O(23a) pins).
The complexity on the number of rows is much complicated. In our construction, the
restriction of one pin at one row made the analysis so simple, but when we want to optimize
the number of rows, that restriction cannot be used. It is also an interesting to reveal the
computational complexity on the problem of generating given distributions. In the context of
formal language theory, our rewriting rule is not a context-free grammar, and thus it is not
clear if the decision problem on the generability of a given distribution is in class P or not.
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Omitted Proofs

I Lemma 15.

(440)4  44440B1.

Proof. The lemma is proved by the following transformation:

(440)4$
=(440)2440440$
 (440)2602602$
 (440)2602620$
 (440)2610801$
 (440)2614041$
 (440)2630403$
 (440)2632023$
 (440)2640204$
 (440)2802204$
=440440802204$
 440444042204$ (Lemma 10 (4), x = 0, y = 2, z = 0)
 440444222024$ (Lemma 4 (1), x = 4, y = 2, z = 0)
 440446020224$
 440608020224$
 440640420224$
 440804040224$
 444044202224$
=44404B1 (Lemma 13 (7))
 44440B1.

J

I Lemma 21.

022022224$ 222222220$.

FUN 2018
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Proof. The lemma is proved by the following transformation:

022022224$ (Lemma 4 (1), x = 0, y = 2, z = 2)
 022202044$
 022202080$
 022202404$
 022202440$
 022202602$
 022202620$
 022210801$
 022214041$
 022230403$
 022232023$
 022240204$ (Corollary 11 (6), x = 0, y = 2, z = 0)
 202222204$
 202222240$ (Corollary 11 (6), x = 0, y = 2, z = 0)
 220222222$ (Lemma 20)
 222222220$.
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