
The complexity of speedrunning video games
Manuel Lafond1

Department of Mathematics and Statistics, University of Ottawa, Canada
mlafond2@uOttawa.ca

Abstract
Speedrunning is a popular activity in which the goal is to finish a video game as fast as possible.
Players around the world spend hours each day on live stream, perfecting their skills to achieve
a world record in well-known games such as Super Mario Bros, Castlevania or Mega Man. But
human execution is not the only factor in a successful speed run. Some common techniques such
as damage boosting or routing require careful planning to optimize time gains. In this paper, we
show that optimizing these mechanics is in fact a profound algorithmic problem, as they lead to
novel generalizations of the well-known NP-hard knapsack and feedback arc set problems.

We show that the problem of finding the optimal damage boosting locations in a game admits
an FPTAS and is FPT in k + r, the number k of enemy types in the game and r the number of
health refill locations. However, if the player is allowed to lose a life to regain health, the problem
becomes hard to approximate within a factor 1/2 but admits a (1/2− ε)-approximation with two
lives. Damage boosting can also be solved in pseudo-polynomial time. As for routing, we show
various hardness results, including W [2]-hardness in the time lost in a game, even on bounded
treewidth stage graphs. On the positive side, we exhibit an FPT algorithm for stage graphs of
bounded treewidth and bounded in-degree.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Theory of computation → Approximation algorithms analysis, Theory of computation → Para-
meterized complexity and exact algorithms

Keywords and phrases Approximation algorithms, parameterized complexity, video games, knap-
sack, feedback arc set

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.27

1 Introduction

The study of the complexity of video games has been a relatively popular area of research in
the recent years. This line of work first started in the early 2000s with puzzle-oriented video
games such as Minesweeper, Tetris or Lemmings [22, 11, 25]2. More recently, platforming
games were subjected to complexity analysis [17], and it is now known that for a wide
variety of such games (including Super Mario Bros, Donkey Kong Country or Zelda), it is
NP-hard [5] or sometimes PSPACE-hard [13] to decide whether a given instance of the game
can be finished. Notably, Viglietta proposed in [24] a series of meta-theorems that describe
common video game mechanics under which a game is NP-hard or PSPACE-hard.

Of course, few games are (computationally) hard to finish, as there is little incentive
for publishers to release an unfinishable game. Here, we take a different perspective on the
complexity of video games, and rather ask how fast can a game be finished? This question is
of special interest to the adepts of speedrunning, in which the goal is to finish a video game

1 The author acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC)
for the financial support of this project.

2 All products, company names, brand names, trademarks, and sprites are properties of their respective
owners. Video game screen-shots and sprites are used here under Fair Use for educational purposes.

© Manuel Lafond;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 27; pp. 27:1–27:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mlafond2@uOttawa.ca
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 The complexity of speedrunning video games

as fast as possible. This has been a relatively obscure activity until the last decade, during
which speedrunning has seen a significant increase in popularity. This is especially owing to
video game streaming websites, where professional speedrunners can spend hours each day
on camera trying to earn a world record whilst receiving enough donations from viewers to
make a living. Games Done Quick, one of the most popular events in this discipline, is a
speedrunning marathon in which professional gamers take turn on live stream to go through
a wide range of games as fast as possible [2]. Performances are broadcast 24 hours a day for a
whole week, and viewers are invited to provide donations which are then given to charitable
organizations. The event went from raising $10,000 during its first event in 2010 to amassing
over $2 million in its January 2018 event.

Owing to this popularity, speedrunning is now an extremely competitive area, and having
near-perfect execution is mandatory to obtain reasonable times. A single misplaced jump, or
an attack that comes a split-second late, can cost a player a world record. There is, however,
a category of speedrunning that can circumvent these harsh execution requirements: Tool
Assisted Speedruns (TAS). In a TAS, the player is allowed to use any tool provided by
emulators, which include slowing down the game, rewinding the game, saving multiple states
and reloading them, etc. In the end, the final speedrun is presented in a continuous segment,
as if played by a human. In a TAS, execution is therefore not the main challenge, as the
player can retry any portion of the game hundreds of times if necessary. But speedrunning
remains a challenging task, as difficult optimization problems arise.

In this paper, we are interested in the algorithmic challenges underlying some common
mechanics that are unique to speedrunning. We first formulate the problem of speedrunning
by modeling a game as a series of punctual time-saving events, which can be taken or not.
This is in contrast with the natural formulation “given a video game X, can X be finished in
time t”, as it was done for Mario Kart in [7]. This allows our results to be applicable to any
game that can be described by time-saving events, and also enables us to avoid dealing with
unfinishable games.

We then study the approximation and parameterized complexity aspects of the tech-
niques of damage boosting and routing stages. Damage boosting consists in taking damage
intentionally to go through some obstacles quickly. The amount of damage that can be taken
in a game is limited, and it is possible to regain health using items, or by losing a life (this
is called death abusing). This can be seen as a generalization of the knapsack problem in
which the items come in a specific order and some of them have a negative weight. We show
that if no life can be lost, optimizing damage boosts in a game admits the same FPTAS as
knapsack, and is fixed-parameter tractable (FPT) in the number of possible damage sources
and healing locations. If lives can be lost to regain health, we show that damage boosting
cannot be approximated within a factor 1/2 or better, but can be approximated within a
factor 1/2− ε with two lives and can be solved in pseudo-polynomial time.

Routing applies to games in which the player is free to choose in which order a set of
stages is to be completed. This includes the Mega Man games, for example. Each completed
stage yields a new ability to the player, which can then be used in later stages to gain time
on certain events, such as defeating a boss more quickly. The time saved in an event depends
on the best ability currently available. As we shall see, this makes Routing a generalization
of the well-known feedback arc set (FAS) problem, as the time-gain dependencies can be
represented as a directed graph D. Unlike FAS though, we show that Routing is W [2]-hard
in the time lost in a game, even if D has treewidth 1, and that it is also hard to approximate
within a O(logn) factor. We then show that Routing is FPT in the maximum in-degree of
D plus its treewidth.

M. Lafond 27:3

The paper is structured as follows. In Section 2, we provide a non-technical summary of
the speedrunning mechanics that are discussed in this work and present our general model of
speedrunning. In Section 3, we formally define the problem of optimizing damage boosting
and present our algorithmic results. Then in Section 4, we define our routing optimization
problems and provide the underlying algorithmic results.

2 Models, speedrunning mechanics, and problems

In this section, we first motivate our model of speedrunning, and how we depart from the
traditional formulation of deciding whether a stage can be finished. We then describe the
two speedrunning mechanics that we study in more detail.

As mentioned before, perhaps the most natural formulation of speedrunning is the
following: given a set of stages, we are asked whether they can be completed in time at most
t [7]. However for many games, it is NP-hard to decide whether a given set of stages can be
completed at all (e.g. [24]). It follows that for these games, speedrunning is NP-hard even
for t =∞. But in reality, video games that are played by speedrunners are always known to
be completable. We will therefore assume that an initial way of finishing the game is known,
which yields an upper bound t on the time required to complete the game. This time t is
usually the time taken to finish the game “normally”, as intended by the developers. The
problem of speedrunning now becomes: given an initial way of completing the game in time
t, can this be improved to time t′ < t?

To simplify further, stages are often linear and time saves usually consist of punctual
events that allow the player to save a few seconds over the developer-intended path. For
example, the player may exploit a glitch to go through a wall, or use a certain item to defeat
an enemy faster than usual. These punctual events are assumed to occur one after another,
and therefore, we will model a stage as a sequence S = (e1, . . . , en) of time-saving events. For
each such event ei, the player has a choice of taking the time save from ei or not. If the event
only has positive consequences, then of course the player must take it and we will assume
that all events in S offer some sort of trade-off. A notable advantage of this formulation is
that it does not depend on a specific video game. For instance, if the events of S model
damage boosting, then our hardness results apply to any game that allows damage boosting
as a mechanic. We now describe this latter notion.

Damage boosting
The idea of damage boosting is to take damage to save time. This is a common technique that
is useful in one of the following ways. In many games, the player is given some invulnerability
time after taking damage. This invincibility period allows unintended behavior such as
walking on deadly spikes or going through a horde of enemies quickly. Also, when taking
damage, the player often loses control and gets knocked back, regardless of the current
location and status of the character. If damage is taken at the apex of a jump, say, then this
back-knocking can extend the jump higher and farther than normal, allowing the player to
access unintended locations. An example of this is illustrated in Figure 1.

Damage-boosting is not without cost. In a game, the player has a limited number of
hit points, or HP for short. In the top-left of Figure 1, one can see that the player has a
maximum of 16 HP, but has 14 remaining after hitting a bat. Each time damage is taken,
the player’s HP decreases by a certain amount and a life is lost when it reaches 0. Suppose
that each time-saving event is described by a pair (d, t), where d is the damage taken and
the time gained t. Then it is easy to see that this is exactly the knapsack problem. Indeed,

FUN 2018

27:4 The complexity of speedrunning video games

Figure 1 A well-known example of damage boosting in the NES game Castlevania. In this
portion of Stage 1, the developer-intended path is to go downstairs, go through an underground
section, go up and reappear on the right side of the screen. Here, Simon Belmont can skip the
underground section by passing over the wall on the right side of the screen. To do this, the player
times a precise jump while facing right, switches direction in mid-air to face left, and lands on a bat
passing by at the right moment, damaging the player. When Simon Belmont takes damage, he says
“Ow” and gets knocked back (middle figure). This back-knocking allows him to extend his jump
farther right and reach the ledge of the wall. This saves 30-40 seconds over taking the normal path.

if hp is the starting HP of the player, speedrunning with damage boosting asks for the set of
time-saving events that can be taken such that a maximum total time gain is achieved, and
such that the total damage of these events does not exceed hp.

The problem can be made more interesting by considering the possibility of regaining
health during a stage. For instance in Castlevania, there is chicken hidden inside walls and
candles across the castle. Fetching these chickens is usually time-consuming, and the player
must decide whether the additional damage boosts that this allows is worth it. In Figure 2,
Richter Belmont from Castlevania X takes a detour to a dead-end to grab a chicken and
regain health. Another way to regain HP is to lose a life. When the player runs out of HP, a
life is lost and the game restarts at the last checkpoint with full health. This can be beneficial
if the checkpoint is not too far away and new damage boosts are to be taken. It is worth
mentioning that the idea of losing lives is used in [13] to establish the hardness of completing
a Super Mario Bros game (although losing lives is not used as a health refill mechanism).

Routing
In many games, the player has the freedom to choose the order in which to clear a set of
stages or to visit a set of locations. For example, in many Metroid games, a certain set of
items scattered across a map must be obtained before reaching the end of the game, and the
goal of routing is to obtain these items in the optimal order3.

As another example, in the Mega Man games, the order in which stages are visited is
fundamental from a speedrunning perspective. When a stage is cleared after defeating its
robot master, Mega Man gains a new weapon/ability that can be used in the latter stages.
This has an impact on how fast a stage S can be completed, as previously obtained weapons
can be used to gain time – notably during the boss fights. For instance, in Mega Man 2, the
boss Crash Man takes 2 damage from the regular weapon, but 20 damage from the weapon
left by Air Man. Thus Crash Man can be defeated 10 times faster if the Air Man stage is

3 The astute reader will observe that Metroid games do restrict the ordering of locations that can be
visited. However, many sequence-breaking glitches have been found in the last years, and this ordering
restriction is often irrelevant. For example in Super Metroid, the Norfair boss Ridley is often defeated
first in speedruns, whereas this boss is normally supposed to be reached last.

M. Lafond 27:5

Figure 2 “This candle chicken certainly tastes great, but it is time-consuming...” - Richter
Belmont going out of his way for meat.

Figure 3 A event in Mega Man 3 : facing Big Snakey. If Mega Man has Magnet Man’s weapon,
Big Snakey can be defeated in 5 shots, which saves about 8 seconds. But if Mega Man has acquired
Rush Jet from Needle Man, he can simply fly over Big Snakey, which saves about 15 seconds.

cleared beforehand. Bosses are not the only time-saving events in the game though, as the
stages themselves also offer many opportunities. See Figure 3 for an example. Here, Mega
Man must face Big Snakey and can achieve various time gains depending on the weapons
currently at his disposal from the previous stages.

The problem of routing is to determine the order in which to clear the stages so as to
save a maximum amount of time. If we represent stages as a graph, with an arc from S′

to S weighted by the time saved in stage S by having cleared S′ first, this is similar to the
feedback arc set problem, which asks for an ordering of the vertices of a graph in a way that
the number of forward edges is maximized. One notable difference is that each event within
a stage can make use of a different previous stage.

Before proceeding, we introduce some notation that we will use throughout the paper.
Given an ordered list S = (s1, . . . , sn), we write si <S sj if i < j (and si ≤S sj if i ≤ j). We
denote by head(S) and tail(S) the first and last element of S, respectively. A subsequence of
S is another ordered list S′ = (s′1, . . . , s′k) in which s′i <S s′i+1 for every i ∈ [k − 1]. Suppose
that each element in S is distinct. Let X be the set underlying S. We call S a linear ordering
of X, or simply an ordering for short. Abusing notation slightly, we may treat S as the set
X whenever convenient (e.g. we may write s ∈ S if s occurs in S).

3 Damage boosting

We first study the damage boosting mechanics when losing a life is forbidden. That is, the
player can only take damage or refill health, without ever letting health drop to zero. An
event is an opportunity to gain time by taking damage, and is represented by a pair e = (d, t)
where d is the damage to take to save t units of time. We will assume that d and t are
integers, possibly negative. If both d and t are negative, we call e a chicken event, as d

FUN 2018

27:6 The complexity of speedrunning video games

represents a health refill and t the time lost to regain this health. We denote by d(e) and
t(e) the damage and time-save components of e, respectively.

A stage S = (e1, . . . , en) is an ordered list of events. A solution Ŝ = (ê1, . . . , êk) to a
stage S is a subsequence of S. We say that we take event ei if ei ∈ Ŝ. A given integer hp
represents the player’s hit points (HP) at the start of the stage. The player’s hit points
can never exceed hp. Each event êi ∈ Ŝ leaves the player with a number of hit points
hŜ(êi) after being taken. We define hŜ(ê1) = min(hp, hp − d(ê1)) and, for i ∈ {2, . . . , k},
hŜ(êi) = min(hp, hŜ(êi−1)− d(êi)). A solution is valid if hŜ(êi) > 0 for every êi in Ŝ.

Given a stage S and maximum hit points hp, the objective in the DAMAGE BOOSTING
problem is to find a valid solution Ŝ for S that maximizes t(Ŝ) =

∑
e∈Ŝ t(e).

As mentioned before, DAMAGE BOOSTING can be viewed as a knapsack instance in
which each item is given in order, and we have some opportunities to (partially) empty the
sack (which corresponds to our chicken events). It is not hard to show that the well-known
pseudo-polynomial time algorithm and FPTAS for knapsack can be adapted to DAMAGE
BOOSTING. The proof is essentially the same as in the knapsack FPTAS - we include it
here for the sake of completeness.

I Theorem 1. DAMAGE BOOSTING can be solved in pseudo-polynomial time O(n2T),
where T is the maximum time gain of an event. Moreover, DAMAGE BOOSTING admits
an FPTAS, and can be approximated within a factor 1− ε in time O(n3/ε) for any ε > 0.

Proof. Let (S, hp) be an instance of DAMAGE BOOSTING, S = (e1, . . . , en). Let H(i, t)
denote the highest HP value achievable when gaining a time of exactly t by taking a subset of
the events {e1, . . . , ei}. Define H(i, t) = −∞ if this is not possible, and define H(0, 0) = hp

and H(0, t) = −∞ for t > 0. Then

H(i, t) = min {hp,max {H(i− 1, t), H(i− 1, t− t(ei)} − d(ei))}

H(i, t) needs to be computed for each i ∈ [n] and each t ∈ [nT]. We then look at the
maximum value of t such that H(n, t) > 0, which leads to a dynamic programming algorithm
with the claimed complexity.

To get an FPTAS, we scale the time gains as in the knapsack FPTAS. Let ε > 0 and
let c = εT/n. Let S′ = (e′1, . . . , e′n), where e′i = (d(ei), bt(ei)/cc). Let Ŝ (resp. Ŝ′) be a
subsequence of S (resp. S′) that maximizes the time gain t(Ŝ) (resp. t(Ŝ′)). Observe that
for each ei ∈ S, we have t(ei)/c − 1 ≤ t(e′i) ≤ t(e)/c whether ei is a chicken event or not.
Hence, t(Ŝ′) ≥

∑
ei∈Ŝ t(e

′
i) ≥ t(Ŝ)/c− n (where the first inequality is due to the optimality

of Ŝ′ on S′). Note that Ŝ′ is a valid solution for S, since the damage values were unchanged
from S to S′. The time gained by taking the events of Ŝ′ as our solution for S is∑

e′
i
∈Ŝ′

t(ei) ≥
∑
e′
i
∈Ŝ′

c · t(e′i) ≥ c · (t(Ŝ)/c− n) = t(Ŝ)− cn = t(Ŝ)− εT ≥ (1− ε)t(Ŝ)

where we use t(Ŝ) ≥ T in the last inequality. The algorithm takes time O(n2T/(εT/n)) =
O(n3/ε). J

From the point of view of parameterized complexity, Theorem 1 implies that DAMAGE
BOOSTING is FPT in t, the total time that can be gained (due to results of [8]). However
t is typically high, and alternative parameterizations are needed. In the context of video
games, although stages can be large, the number of types of enemies and damage sources is
usually limited. Likewise, there are usually only a few healing items in a stage. The time
gained or lost per event can vary widely though.

M. Lafond 27:7

We would therefore like to parameterize DAMAGE BOOSTING by the number k of
values that d(e) can take in the events of S. It was shown in [15] that knapsack can be solved
in time O(22.5k log kpoly(n)), where k is the number of distinct weights that appear in the
input. The algorithm does not seem to extend directly to DAMAGE BOOSTING, and we
leave the FPT status of the problem open for k. We do show, however, that if the number of
chicken events is also bounded by some integer r, one can devise an FPT algorithm in k + r

based on the ideas of [15]. We make use of the result of Lokshtanov [23, Theorem 2.8.2],
which improve upon Kannan’s algorithm [21] and state that a solution to an Integer Linear
Program (ILP) with ` variables can be found in time O(`2.5`poly(n)).

I Theorem 2. DAMAGE BOOSTING is FPT in k + r, where k is the number of possible
damage values and r the number of chicken events. Moreover, an optimal solution can be
found in time O(2r(2k(r + 1) + r)2.5(2k(r+1)+r)poly(n)).

Proof. Let C be the set of chicken events of S, and suppose r = |C|. We simply “guess”
which of the 2r subsets of C to take. That is, for each subset C ′ ⊆ C, we find the maximum
time gain achievable under the condition that the chicken events taken are exactly C ′, hence
the 2r factor in the complexity. For the rest of the proof, assume C = {c0, c1, . . . , cr, cr+1}
is a set of chicken events such that ci <S ci+1 for 0 ≤ i ≤ r, each of which must be taken.
For notational convenience, we have added chicken c0 = cr+1 = (0, 0), where c0 (respectively
cr+1) is a chicken event that occurs before (resp. after) every event of S.

Let d1, . . . , dk be the possible damage values. For i ∈ [k] and j ∈ {0, . . . , r}, let nij be
the number of events of damage value di that occur after chicken cj , but before chicken cj+1.
Note that to obtain a solution, it suffices to know how many events of damage value di we
take for each i and j. That is, let (e1

ij , . . . , e
nij
ij) be the events of damage value di that occur

between chickens cj and cj+1 in S, sorted in non-increasing order of time gain. If we know
that, say, xij ∈ {0, . . . , nij} events of damage value di must be taken between chickens cj
and cj+1, then we simply take the first xij events of maximum time gain, i.e. e1

ij , . . . , e
xij
ij .

The time gain with respect to xij is fij(xij) :=
∑xij
h=1 t(ehij).

This lets us formulate an ILP with at most 2(r + 1)k + r variables. For each j ∈ [r],
a variable hj represents the player’s HP right after taking the j-th chicken. We add the
constant h0 := hp for convenience. For i ∈ [k], j ∈ {0, . . . , r}, there is a variable xij for the
number of events of damage value di to take between chicken cj and cj+1, and a variable gij
for the time gained by events of damage value di within this range. The ILP is the following.

maximize
k∑
i=1

r∑
j=0

gij

subject to hj+1 ≤ hj −
k∑
i=1

xijdi − d(cj+1) j ∈ {0, . . . , r − 1}

hj ≤ hp j ∈ {1, . . . , r}

hj −
k∑
i=1

xijdi > 0 j ∈ {0, . . . , r}

gij ≤ fij(xij) i ∈ [k], j ∈ {0, . . . , r}
hj ∈ N j ∈ {1, . . . , r}
xij ∈ {0, . . . , nij}, gij ∈ N i ∈ [k], j ∈ {0, . . . , r}

The first constraint ensures that the player’s HP after taking chicken cj+1 never exceeds
the HP after taking chicken cj and taking the damage boosts in-between. The second

FUN 2018

27:8 The complexity of speedrunning video games

constraint ensures that we do not exceed the maximum hit points. The third constraint
ensures that the player never dies. The fourth constraint bounds the total time gained by
the damage boosts taken. The correctness of the above ILP is then straightforward to verify.
The functions fij(xij) are however not guaranteed to be linear. But they are convex since
they consist of the partial sums of a non-increasing sequence of integers. The authors of [15]
have shown that the constraint gij ≤ fij(xij) can easily be replaced (in polynomial time) by
a set of linear constraints gij ≤ p(`)

ij (xij), for ` ∈ [nij]. We refer the reader to [15, Lemma 2]
for more details. The complexity follows from the aforementioned result of [23]. J

Damage boosting with lives
In the rest of this section, we consider the death abuse speedrunning strategy. In most games,
when the player reaches 0 hit points, a life is lost and the player restarts with full health
at the last predefined revival location traversed. We call such a location a checkpoint. The
game is over once the player does not have any lives remaining. Death abusing is a common
way of replenishing health, at the cost of having to re-traverse the portion of the stage from
the last checkpoint to the location of death.

We modify the DAMAGE BOOSTING problem to incorporate death abuse as follows.
A DAMAGE BOOSTING WITH LIVES instance is a 5-tuple (S, hp, `, C, p) where S =
(e1, . . . , en) is a sequence of events, hp is the maximum hit points, ` is the starting number of
lives, C ⊆ {e1, . . . , en} is the set of checkpoints and p : {e1, . . . , en} → N is the death penalty,
where p(ei) is the time lost by dying at event ei and having to re-do the stage from the
last checkpoint to ei. For an event ei ∈ S, let c(ei) ∈ C be the latest checkpoint of S that
occurs before ei. If the player reaches 0 HP at event ei, the game restarts right before event
c(ei) (so that taking the event c(ei) is possible after dying). If c(ei) = ej , we assume that
p(ei) ≥

∑i
h=j t(eh), as otherwise it might be possible to gain time by dying.

A solution to S is a list of k ≤ ` event subsequences (S1, . . . , Sk) that describes the
events taken in each life used by the player. For i ∈ [k − 1], the i-th life of the player
must end exactly after taking the last event of Si. That is, Si = (ei1, . . . , eir) must satisfy
hSi(eij) > 0 for each j ∈ [r − 1] and hSi(eir) ≤ 0. As for Sk, it must simply be valid, since
the player’s hit points can never go below 0 in the last life. Finally, we require that for
i ∈ {2, . . . , k}, Si starts at the checkpoint assigned to the event at which the player died in
Si−1. In other words, the first event of Si must occur after the appropriate checkpoint, so
that c(tail(Si−1)) ≤S head(Si).

For i < k, the time gained t(Si) at life Si is defined as before, except that t(tail(Si)) is
replaced by the penalty p(tail(Si)) of dying at the last event. That is, t(Si) =

∑
e∈Si t(e)−

t(tail(Si))− p(tail(Si)). Our objective is to find a solution (S1, . . . , Sk) to S that maximizes∑
i∈[k−1] t(Si) +

∑
e∈Sk t(e).

In this section, we show that having even only one life to spare removes the possibility of
having a PTAS for DAMAGE BOOSTING WITH LIVES (unless P = NP). Despite this, we
show that the problem still admits a pseudo-polynomial time algorithm. Beforehand, we
state a simple approximabiltiy result.

I Proposition 3. For any ε > 0, DAMAGE BOOSTING WITH LIVES can be approximated
within a factor 1

` − ε in time O(n3/ε).

Proof. Let (S, hp, `, C, p) be a given instance of DAMAGE BOOSTING WITH LIVES,
and let t be the maximum time gain achievable in stage S without losing a single life. By
Theorem 1, t can be approximated within a factor 1− ε for any ε > 0. Now, each life of the

M. Lafond 27:9

player can be used to gain at most t time, implying that at most `t time can be gained. The
Lemma follows, since (1− ε)t ≥ 1−ε

` · `t ≥ (1
` − ε)`t. J

We then present our inapproximability result. Note that this implies that the above
approximation is tight in the case that the player has two lives.

I Theorem 4. DAMAGE BOOSTING WITH LIVES is hard to approximate within a factor
1/2, even if the player has two lives, and there is no chicken event.

Proof. We show that having an algorithm with approximation factor 1/2 or better would
allow solving SUBSET SUM in polynomial time. Let (B, s) be a SUBSET SUM instance,
with B = {b1, . . . , bn} a (multi)-set of n positive integers and s the target sum. Define a
DAMAGE BOOSTING WITH LIVES instance (S, hp, `, C, p) as follows. Put hp = s+ 1 and
` = 2. Also let S = (e1, . . . , en, x, y). Here the ei events correspond to the bi integers, and x
and y are two additional special events. For each i ∈ [n], put ei = (bi, bi), and put x = (1, 0),
y = (s, s− 1). Set x as the only checkpoint, i.e. C = {x}. The only relevant death penalties
are p(x) = 0 and p(y) = 10s. We show that if (B, s) is a YES instance, then it is possible
to gain a total of 2s− 1 time units, and if (B, s) is a NO instance, then at most s− 1 time
units can be gained.

Suppose that (B, s) is a YES instance, and that there is a subset B′ = {bi1 , . . . , bik} of
B whose elements sum to s. Then the player can take the damage boosts ei1 , . . . , eik before
arriving at x. At this point, s time units have been gained and s damage has been taken.
Hence there is only 1 HP remaining. The player can take the 1 damage at event x, lose a life,
and reappear at event x at full health with no time penalty. With this new life, the player
then skips x, and takes the y damage boost, saving an additional s− 1 time units. The total
time gain is 2s− 1.

Now suppose that (B, s) is a NO instance. Assume that the player uses an optimal
strategy on the constructed DAMAGE BOOSTING WITH LIVES instance. Consider the
situation when the player arrives at event x, before deciding whether to take it (for the first
time, if more than one). Let hx and tx be the remaining HP of the player and the time
gained at this point, respectively. Observe that since all the ei events have equal damage
and time gain, we have hx = hp− tx. We must have tx 6= s, since otherwise the events taken
so far would provide a solution to the SUBSET SUM instance. Moreover, we cannot have
tx > s, since otherwise hx = hp− tx = s+ 1− tx ≤ 0, i.e. the player would have died before
event x, and would have restarted at the beginning of the stage. Thus, tx < s, and therefore
hx > 1. Since only 1 HP can be lost at event x, the player cannot die at event x. Thus the
player arrives at y with a time gain of at most s− 1. Note that there is no point in dying at
the y event, as the time lost is too high. Moreover, the only way the player can gain time
from the y event is by being at full health. Since the player did not die at event x and there
is no chicken, full health is only possible if the player has taken no damage boost before
getting to y. It follows that there are then only two possibilities: if the player takes some
events prior to x, he can save at most tx < s time units, and otherwise, he can skip every
damage boost prior to x and save s− 1 time units by taking event y. We conclude that the
time gain is at most s− 1.

Now, observe that if there is a factor 1/2 approximation algorithm, it returns a time gain
of at least (2s− 1)/2 = s− 1/2 on YES instances, and a time gain of at most s− 1 on NO
instances. This gap can be used to distinguish between YES and NO instances. J

We do not know whether there exists a constant-factor approximation algorithm for
DAMAGE BOOSTING WITH LIVES that holds for all values of `. However, the problem
does admit a pseudo-polynomial time algorithm. The dynamic programming is not as

FUN 2018

27:10 The complexity of speedrunning video games

straightforward as the one for the knapsack, since the player can die and come back at
checkpoints. The idea is to optimize the first life for each possible death, then the second life
depending on the first, and so on.
I Theorem 5. DAMAGE BOOSTING WITH LIVES can be solved in time O(n2 · hp2 · `).

Proof. Let (S, hp, `, C, p) be a given DAMAGE BOOSTING WITH LIVES instance, with
S = (e1, . . . , en). For simplicity, we assume that e1 = (0, 0). Denote by T (i, h, l) the
maximum time gain that can be achieved by exiting event ei (i.e. after deciding whether
to take it or not) with exactly h hit points and l lives. Note that event ei might have been
visited in a previous life. Define T (i, h, l) = −∞ if h > hp, h ≤ 0, l > ` or l ≤ 0. Our goal is
to compute max1≤h≤hp,1≤l≤` T (n, h, l).

For i = 1, set T (1, hp, `) = 0 and T (1, h, l) = −∞ whenever h 6= hp or l 6= ` (we assume
that we will never return to e1 by losing a life, as this would be pointless).

For i > 1 such that ei /∈ C, note that we can only enter ei through ei−1 with the same
number of lives. If ei is not a chicken event, we thus have

T (i, h, l) = max {T (i− 1, h, l), T (i− 1, h+ d(ei), l) + t(ei)}

(observe that invalid values of h+ d(ei) yield a time gain of −∞)
If ei is a chicken event, the above recurrence applies unless taking event ei would refill

the player’s health above hp. Thus T (i, hp, l) is a special case, which we handle as follows
(recall that d(ei) and t(ei) are now negative):

T (i, hp, l) = max
{
T (i− 1, hp, l), max

hp+d(ei)≤d≤hp
{T (i− 1, hp− d, l)}+ t(ei)

}
Now suppose that i > 1 is such that ei ∈ C. We can either enter ei through ei−1

with the same number of lives, or through some ej with j > i by dying while having
l + 1 lives. In the latter case, we must enter ei with health equal to hp. Therefore, if
h /∈ {hp, hp−d(ei)}, it is impossible to enter ei by dying and exiting with exactly h hit points.
Hence, if h /∈ {hp, hp− d(ei)}, the above recurrence from the i > 1 case applies. Moreover, if
l = `, the player cannot have died yet and the same recurrence also applies. Assume that
h ∈ {hp, hp− d(ei)} and l < `. We must compute a temporary value for T (i, h, l). Let ek be
the latest event that leads to checkpoint ei upon death. That is, c(ek) = ei but either k = n

or c(ek+1) 6= ei. Define

Di,l = max
i≤j≤k

{
max

h′≤d(ej)
{T (j, h′, l + 1)− p(ej)}

}
which is the maximum time gain achievable by losing the player’s (l+1)-th life and respawning
at ei. Then it follows that

T (i, hp, l) = max{T (i− 1, hp, l), Di,l}

if ei is not a chicken event. If ei is a chicken event, then similarly as we did above,

T (i, hp, l) = max
{
T (i− 1, hp, l), max

hp+d(ei)≤d≤hp
{T (i− 1, hp− d, l)}+ t(ei), Di,l

}
Finally, for the case h = hp− d(ei), we have

T (i, hp− d(ei), l) = max{T (i− 1, hp− d(ei), l), Di,l + t(ei)}

Note that to compute T (i, h, l), one only needs values of T (j, h′, l′) with either j < i and
l′ = l, or with l′ = l+ 1. It is not difficult to see that one can compute the T (i, h, l) values in
decreasing order of values of l, starting at l = `, and in increasing order of i. Each T (i, h, l)
value depends on at most O(n · hp) values. There are (n + 2) · |hp| · |`| possible T (i, h, l)
values, resulting in a O(n2 · (hp)2 · `) time algorithm. J

M. Lafond 27:11

Figure 4 The dependency graph for the game Mega Man (with approximate time gains in seconds
according to [1]), where the only event considered is defeating the boss.

4 Routing

We now turn to the problem of routing, in which the player may visit a set of locations or
stages in any order. Clearing a stage yields a new weapon to the player. Each stage has a set
of time-saving events, and each weapon can be used to gain some amount of time in an event.
The time saved on an event depends on the best weapon available. Figure 4 represents this
notion in Mega Man as a weighted directed graph. For instance, defeating Guts Man first
(far left) allows saving 7 seconds against Cut Man (second), and 8 seconds could be gained
by defeating Bomb Man (far right) before Guts Man.

In this section, a game is a set of stages S = {S1, . . . , Sn}. A stage Si = {e1, . . . , ek} is a
set of events, where here an event ej : S→ N is a function mapping each stage to an integer.
The event ej is interpreted as follows: if stage Si is cleared, then a time of ej(Si) can be
saved while going through ej using the weapon gained from Si. Let C ⊆ S and let e be an
event. We will write e(C) = maxS∈C e(S). That is, if C is the set of cleared stages, we will
assume that event e will be cleared using the best option available. Given C, the time gained
in a stage S becomes t(S,C) :=

∑
e∈S e(C).

In the ROUTING problem, we are given a set of stages S = {S1, . . . , Sn}. The objective
is to find a linear ordering π of S such that

∑
i∈[n] t(Si, {Sj : Sj <π Si}) is maximum. Later

on, we shall consider the minimization version of ROUTING.
We define the notion of a dependency digraph D(S) for a set of stages S. The digraph

D(S) = (S, A,w) has one vertex for each stage, and for every ordered pair (i, j), an arc from
Si to Sj of weight w(Si, Sj) =

∑
e∈Sj e(Si). The underlying undirected graph of D(S) is the

graph obtained by removing the arcs of weight 0, ignoring the other weights and the direction
of the arcs.

We start with two easy special cases. The first case is when each stage contains only
one event, which could for example correspond to the case in which we only consider the
fastest way to defeat all bosses. This reduces to finding a maximum weight branching in
D(S), where a branching of a digraph D is an acyclic subdigraph of D in which every vertex
has in-degree 0 or 1. The second case is when each event depends on only one stage. The
Routing problem then becomes equivalent to finding a maximum weight directed acyclic
sub-digraph of D(S). This is the maximum weight sub-DAG problem, the maximization
version of the feedback arc set problem.

I Theorem 6. The following properties of Routing hold:
1. If each stage contains a single event, ROUTING can be solved in time O(|A|+ |S| log |S|).
2. If, for each event e, there is only one Si ∈ S such that e(Si) > 0, then ROUTING is

equivalent to the maximum weight sub-DAG problem on D(S).

Proof. (1) For a stage Si, denote by ei the single event of Si. Given an ordering π of S and
a stage Si 6= tail(π), denote by pπ(Si) the stage prior to Si that allows a maximum time
gain on ei, breaking ties arbitrarily. That is, pπ(Si) = arg maxSj<πSi ei(Sj).

FUN 2018

27:12 The complexity of speedrunning video games

Observe that for any ordering π and any stage Si 6= tail(π), because Si has only one event
there is at most one stage prior to Si that can be useful to clear it, namely pπ(Si). Recalling
that D(S) = (S, A,w), the time gain for a given π is t =

∑
Si∈S w(pπ(Si), Si). Consider the

set of arcs A′ = {(pπ(Si), Si) : 1 < i ≤ n and ei(pπ(Si)) > 0}. Then the subdigraph of
D(S) formed by the arc set A′ contains no directed cycle, and each vertex has at most one
incoming arc, with the exception of the first the vertex of π which has none. Thus A′ forms
a branching, and its weight is t. Conversely, let B be a branching of D(S) with arc set A′.
Then it is not hard to see that B can be converted to an ordering π of S such that the total
time gained is

∑
(u,v)∈A′ w(u, v). Indeed, as B is acyclic, a topological sorting of B yield a

linear ordering of S in which each event eSi can be completed using the in-neighbor of Si
in A′ (if any). A maximum weight branching can be found in time O(|A| + |S| log |S|) by
reduction to the maximum weight spanning arborescence problem (see e.g. [10, Chapter 6]),
and using Gabow & al.’s algorithm [18].

(2) If every event depends on exactly one stage, we show that ROUTING and maximum
weight sub-DAG reduce to one another with the same optimality value. We start by reducing
ROUTING to maximum weight sub-DAG. Consider the D(S) = (S, A,w) digraph. Because
each e ∈ Sj depends only on one stage, w(Si, Sj) corresponds exactly to the time gain
contribution of Si to stage Sj if Si is completed before Sj (which might not be the case if an
event could be completed by more than one stage). Thus given an ordering π of S, the total
time gain is t =

∑
Si<πSj

w(Si, Sj) (where w(Si, Sj) = 0 if (Si, Sj) /∈ A). Moreover, the arcs
{(Si, Sj) ∈ A : Si <π Sj} cannot form a cycle in D(S). It follows that an ordering π of time
gain t can be used to find a sub-DAG of D(S) of weight t. Conversely, a topological sorting
of a sub-DAG of D(S) with total weight t gives an ordering of the stages with total time
gain t.

The reduction from the maximum weight sub-DAG problem to the routing problem
goes along the same lines. Given a maximum weight sub-DAG instance H = (V,A,w), it
suffices to create a stage Su for each u ∈ V , and add one event euv in Su for each v such that
(v, u) ∈ A. We put euv (Sv) = w(v, u). It is easy to see that a total time of t can be gained if
and only if H has a sub-DAG of weight t. J

The above implies that every known hardness result for the maximum weight sub-DAG
problem transfers to ROUTING. In particular, ROUTING is NP-hard even if the maximum
degree of the D(S) is 4 (this follows from the hardness of vertex cover in cubic graphs [3]).
Also, the maximum weight sub-DAG problem cannot be approximated within a ratio better
than 1/2, assuming the Unique Games Conjecture [19]. On the positive side, it is trivial to
attain this bound, just as in the maximum weight sub-DAG problem: take any ordering π.
Either π or its reverse will attain 1/2 of the maximum possible time save.

I Proposition 7. ROUTING admits a factor 1/2 approximation algorithm.

Proof. Note that
∑
i∈[n]

∑
e∈Si e(S) is an obvious upper bound on the maximum time gain

achievable. Pick a random ordering (S1, . . . , Sn) of S, and let (Sn, . . . , S1) be the reverse
ordering. One of these two must achieve a time gain of e(S) for at least half the events e
that are in S. J

Minimizing time loss

We now turn to the minimization version of the ROUTING problem. That is, consider the
upper bound µ :=

∑
i∈[n]

∑
e∈Si e(S) on the possible time gain. Ideally, one would like to get

M. Lafond 27:13

as close as possible to µ, which amounts to finding a time gain t that minimizes µ− t. Given
an ordering π of S, denote by cost(S, π) := µ−

∑
i∈[n] t(Si, {Sj : Sj <π Si}).

We define the MIN-ROUTING-LOSS as follows: given a set of n stages S, find a linear
ordering π of S that minimizes cost(S, π).

By Theorem 6, this is at least as hard as the feedback arc set (FAS) problem, where the goal
is to delete a set of arcs of minimum weight from a digraph to obtain a DAG (these deletions
correspond to time losses in D(S)). FAS is APX-hard [20], but determining if there is a
constant factor approximation appears to be open. A factor O(logn log logn) approximation
algorithm is presented in [16], but does not appear to apply to MIN-ROUTING-LOSS.

We will show that MIN-ROUTING-LOSS cannot be approximated with a ratio better
than O(logn). As for parameterized complexity, FAS is known to be FPT in k, the weight
of the edges to remove (assuming weights in poly(n)) [9]. FAS is also known to be FPT in
the treewidth of the underlying undirected graph [6]. As we show here, both parameters are
not applicable to MIN-ROUTING-LOSS.

I Theorem 8. MIN-ROUTING-LOSS is W[2]-hard with respect to the time loss k and hard
to approximate within a factor O(logn). This holds even on instances in which the underlying
undirected graph of D(S) is a tree and only one stage has more than one event.

Proof. We reduce from DOMINATING SET, which is known to be W[2]-hard for parameter k,
the number of vertices in the dominating set [14]. Let (G, k) be an instance of DOMINATING
SET. Denote V (G) = {v1, . . . , vn}. Create a set of stages S = {S1, . . . , Sn, X}. For i ∈ [n],
stage Si has only one event ei, whereas X has n events {x1, . . . , xn}. For each edge
vivj ∈ E(G), set xj(Si) very high, say xj(Si) = kn10. Also set xj(Sj) = kn10 for all j ∈ [n].
Then for each i ∈ [n], set ei(X) = 1. All other event completion times are set to 0. Note
that the upper time bound on S is µ = n+ (kn10)n. We show that G has a dominating set
of size at most k if and only if a time gain of at least µ− k is possible.

Let B = {vi1 , . . . , vik} be a dominating set of G of size k, and denote {vik+1 , . . . , vin} =
V (G) \ B. Order the stages of S as follows: π = (Si1 , . . . , Sik , X, Sik+1 , . . . , Sin). For any
xj ∈ X, either vj ∈ B or there is some vi ∈ B such that vivj ∈ E(G). Since one of Sj <π X
or Si <π X holds, event xj can be cleared with time gain kn10. Also, every event in
Sik+1 , . . . , Sin can be cleared with a time gain 1 using stage X. Only the events in stages
Si1 , . . . , Sik do not yield a time gain, and the total time gain is therefore µ− k.

Conversely, suppose that there is an ordering π of S that achieves a time gain of at least
µ − k. For this to be possible, every event of X must be cleared with a time gain kn10.
Consider the set B = {Si1 , . . . , Sih} that precedes X in π. None of these stages can yield a
time gain, which implies h ≤ k. Moreover, B must be a dominating set, for if not, there is
an event xj ∈ X that cannot be cleared with a time gain of kn10.

As for the inapproximability result, DOMINATING SET is hard to approximate within
a factor O(logn) (see [4]). It is not hard to see that the above reduction is approximation
preserving: from a dominating set of size k, one can obtain a time loss of at most k and
vice-versa. As the number of stages in S is n+ 1, the O(logn) inapproximability follows. J

Observe that in addition to treewidth, the number of stages with more than one event
is also not an option for parameterization, as well as the maximum degree of D(S) (due to
Theorem 6 and the remark after). In the rest of this section, we show that Routing is FPT
when combining the treewidth and maximum in-degree parameters.

FUN 2018

27:14 The complexity of speedrunning video games

Parameterization by treewidth and maximum in-degree
In this section, we assume that the in-degree of a vertex in D(S) is bounded by d and the
treewidth of the underlying undirected graph of D(S) is bounded by t. We devise a more
or less standard dynamic programming algorithm on the tree decomposition of D(S). We
introduce the essential notions here, and refer the reader to [14, 12] for more details.

A tree decomposition of a graph G = (V,E) is a tree T in which each node x is associated
with a bag Bx ⊆ V such that

⋃
x∈V Bx = V . Moreover, the two following properties must

hold: (1) for any uv ∈ E, there is some x ∈ V (T) such that u, v ∈ Bx, and (2) for any v ∈ V ,
the set {x ∈ V (T) : v ∈ Bx} induces a connected component of T . The width of T is the
size of the largest bag of T minus 1, and the treewidth of G is the minimum width of a tree
decomposition of G.

A tree decomposition T for G is nice if each x ∈ V (T) is of one of the following types:
Leaf node: x is a leaf of T and Bx = ∅.
Introduce node: x has exactly one child y and Bx = By ∪ {v} for some v ∈ V (G).
Forget node: x has exactly one child y and Bx = By \ {v} for some v ∈ V (G).
Join node: x has exactly two children y, z and Bx = By = Bz.

We also assume that T is rooted at a vertex r such that Br = ∅. The root defines the
ancestor/descendant relationship between nodes of T . It is well-known that a nice tree
decomposition T ′ of width t can be constructed from a tree decomposition T of width t in
polynomial time (see [12, 14]).

The routing algorithm

Assume that we have constructed a nice tree decomposition T from D(S) = (V,A,w). For
convenience, we shall treat stages of S as vertices (hence, each v ∈ V is a set of events).
For v ∈ V , denote by N−(v) = {u ∈ V : (u, v) ∈ A} and N−[v] = N−(v) ∪ {v}. Under our
assumptions, |N−(v)| ≤ d for all v ∈ V . Roughly speaking, at each node x ∈ V (T), we
would like to “try” each ordering of Bx and compute a time cost for each stage v ∈ Bx based
on the children of x. This is essentially the idea in the bounded treewidth FPT algorithm
for feedback arc set [6]. This however does not work directly, as the cost of a stage v ∈ Bx
depends on N−(v), which may or may not be included in Bx. To solve this problem, we
also include all the in-neighbors of the stages in Bx in the set of orderings to consider. One
way to do this would be to consider all orderings of

⋃
v∈Bx N

−[v] at every bag Bx and
assign a cost to every vertex in Bx or in a bag below. This would lead to a relatively simple
O((dt)!poly(n)) algorithm. However, this complexity can be improved (at the expense of
more technicality) by considering, instead of every permutation of

⋃
v∈Bx N

−[v], only the
subsets of N−(v) that occur before v for each v ∈ Bx.

To formalize this notion, let P = {π1, . . . , πs} be a set of orderings of (possible different)
subsets of V . We say that P is realizable if there exists an ordering π of V such that for each
i ∈ [s], u <πi v implies u <π v. We then say that π realizes P (or for short, π realizes π′ if
P = {π′}). Note that the existence of π can be verified in polynomial time.

Let Vx be the subset of vertices of V appearing in the bags under x, i.e. v ∈ Vx if and
only if x has a descendant y such that v ∈ By (noting that x is a descendant of itself). For
x ∈ V (T), we denote by Π(x) the set of all |Bx|! possible orderings of Bx (with Π(x) = {()}
if Bx = ∅). Denote by Λ(x) the set of all combinations of subsets of in-neighbors of vertices
in Bx. That is, if Bx = {v1, . . . , vs} with 1 ≤ s ≤ t, then

Λ(x) = P(N−(v1))× . . .× P(N−(vs))

M. Lafond 27:15

where P(X) denotes the powerset of X. Let Λ(x) = {()} contain the empty sequence if
Bx = ∅. Observe that |Λ(x)| = O(2dt). For Px = (P1, . . . , Ps) ∈ Λ(x), we interpret Pi as “all
elements of Pi occur before vi, and those of N−(vi) \ Pi occur after vi”. We thus denote the
set of two-elements orderings implied by Px by

s(Px) =
⋃

vi∈Bx

{(u, vi) : u ∈ Pi} ∪ {(vi, u) : u ∈ N−(vi) \ Pi}

We now define a time cost D(x, µx, Px) over all x ∈ V (T), µx ∈ Π(x) and Px =
(P1, . . . , Ps) ∈ Λ(x). Given an ordering π of V and v ∈ V , let cost(v, π) =

∑
e∈vi(e(V)−e({u :

u <π v})) be the time lost in stage v. Let V ′x = Vx ∪
⋃
v∈Bx N

−(v). Then

D(x, µx, Px) := min{
∑
v∈Vx

cost(v, π) : π is an ordering of V ′x that realizes {µx} ∪ s(Px)}

In words, D(x, µx, Px) is the minimum cost for the set of stages in Vx in an ordering of
V ′x, with the obligation of using the partial orderings prescribed by µx and Px. If r is the
root of T , our goal is to compute D(r, (), ()) (recall that Br = ∅). For v ∈ V and P ⊆ N−(v),
let cost(vi, P) =

∑
e∈vi(e(V)− e(P)) the time lost at stage vi if precisely the elements of P

occur before v. We claim that D(x, µx, Px) can be computed as follows.
If x is a leaf node, then Vx and Bx are empty and we simply set D(x, (), ()) = 0;
If x is an introduce node with child y, let vi be the new node in Bx and Pi be the subset
of N−(vi) present in Px. Then

D(x, µx, Px) = min{D(y, µy, Py) : µy ∈ Π(y), Py ∈ Λ(y) and
s(Px) ∪ s(Py) ∪ {µx, µy} is realizable}+ cost(vi, Pi)

If x is a forget node with child y, then

D(x, µx, Px) = min{D(y, µy, Py) : µy ∈ Π(y), Py ∈ Λ(y) and
s(Px) ∪ s(Py) ∪ {µx, µy} is realizable}

If x is a join node with children y and z, then

D(x, µx, Px) = D(y, µx, Px) +D(z, µx, Px)−
∑
vi∈Bx

cost(vi, Pi)

where Pi is the ordering of Px for N−[vi], for each vi ∈ Bx.

The above yield the following result. The main difficulty is to show that an ordering at
node x can be obtained from the ordering of its child/children.

I Theorem 9. ROUTING can be solved in time O(2t(d+log t)(2d +md) · nt), where m is the
maximum number of events in a stage.

Proof. We prove the complexity first, then proceed with the correctness of the dynamic
programming recurrences. There are O(nt!2dt) = O(n2t log t2dt) = O(n2t(d+log t)) possible
x, µx and Px combinations for the values of D(x, µx, Px). To compute a specific D(x, µx, Px),
in the worst case we need to consider all the possible D(y, µy, Py) values for the child y

of x, in the case of introduce and forget nodes. However in these situations, µx and µy
differ only by one element, and so given µx, there are only O(t) orderings of By such that
{µx, µy} are realizable. Similarly, s(Px) ∪ s(Py) are realizable only if they have the same

FUN 2018

27:16 The complexity of speedrunning video games

sets of in-neighbors for each v ∈ Bx ∩By. Therefore, only one subset of N−(vi) can differ
between Px and Py, where here vi is the introduced or forgotten vertex. It follows that only
O(t2d) combinations of µy and Py need to be checked from D(y, µy, Px). One still needs to
check whether µx, µy, s(Px) and s(Py) are realizable. This can easily be done in time O(n),
for instance by constructing the directed graph on vertex set V and adding an arc from u

to v whenever u is immediately before v in an ordering of {µx, µy} ∪ s(Px) ∪ s(Py). This
graph has O(td) arcs and it suffices to check that it is acyclic. In the case of introduce nodes,
the value of cost(vi, Pi) can be computed in time O(md). At most t such values need to be
computed. It follows that the total complexity is O(n2t(d+log t)(t2d + tmd)).

It remains to show that our recurrences for D(x, µx, Px) are correct, which we do by
induction over the nodes of T from the leaves to the root. As a base case, this is true for the
leaves, so assume x ∈ V (T) is an internal node of T . For the remainder of the proof, given
an ordering π of some set X, let π|X ′ denote the ordering on X ′ ⊆ X of π restricted to X ′
(i.e. π|X ′ is the unique ordering of X ′ such that π realizes π|X ′).

Before proceeding with the correctness, we first claim that for any child y of x ∈ V (T),
V ′y ⊆ V ′x. Suppose this is not the case. Because Vy ⊆ Vx, by the definition of V ′y and V ′x,
there must be some v ∈ By \ Bx and u ∈ N−(v) such that u /∈ V ′x. In particular, u /∈ Vx.
Since T is a tree decomposition, there must be a node z ∈ V (T) such that u, v ∈ Bz. But
since u /∈ Vx, z cannot be in the subtree rooted at x, as otherwise u ∈ V ′x would hold. This
is a contradiction, as this implies that the vertices with bags containing v do not form a
connected component of T , which proves our claim.

We now treat each possible node type separately to prove our recurrences correct.

Introduce nodes. Suppose x is an introduce node with child y and new vertex vi. For each
vj ∈ Bx, let Pj ∈ Px be the subset of N−(vj) for vj . Let u ∈ N−(vi). It is straightforward to
check that u /∈ Vy \Bx, since a bag of T must contain u and v, vi was introduced in bag Bx
and u is not in Bx. Similarly, let u ∈ Vy \By. One can check that N−(u) ⊆ Vy, as otherwise
a neighbor of u outside of Vy would lead to the same type of contradiction.

We first show that D(x, µx, Px) ≥ miny,µy,Py{D(y, µy, Py) + cost(vi, Pi)}, where Pi is the
subset of N−(vi) for vi in Px, and {µx, µy}∪s(Px)∪s(Py) are realizable. Let π be an ordering
of V ′x such that

∑
v∈Vx cost(v, π) = D(x, µx, Px) and such that π realizes µx and s(Px). Let

πy := π|V ′y (note that πy is well-defined since V ′y ⊆ V ′x), and let µy = πy|By and Py ∈ Λ(y)
be such that πy realizes s(Py). Clearly, {µx, µy} ∪ s(Px) ∪ s(Py) is realizable (as witnessed
by π). Moreover,

∑
w∈Vy cost(w, πy) ≥ D(y, µy, Py), by the definition of D(y, µy, Py). As we

also have cost(vi, π) = cost(vi, Pi), it follows that∑
v∈Vx

cost(v, π) ≥ D(y, µy, Py) + cost(vi, Pi) ≥ min
y′,µ′

y,P
′
y

{D(y′, µ′y, P ′y)}+ cost(vi, Pi)

as desired.
As for the converse bound, take any ordering πy of V ′y of cost D(y, µy, Py) that realizes µy

and Py on By such that {µx, µy}∪s(Px)∪s(Py) is realizable. We start from πy and construct
an ordering of V ′x. If vi is not in πy, insert vi in πy anywhere so that it realizes µx (this is
possible since πy realizes µy = µx|(Bx \ {vi}). Then let π′y := πy|(Vy ∪{vi}). Note that since
any u ∈ Vy \Bx has no in-neighbor outside of Vy, the cost of u is entirely defined by π′y, and
hence unchanged from πy. We now want to insert the elements of V ′x \ (Vy ∪ {vi}) so as to
realize s(Px). Let π̂ be any ordering of

⋃
vi∈Bx N

−[vi] that realizes s(Px) ∪ s(Py) ∪ {µx},
and let π′ := π̂|((V ′x \ Vy) ∪Bx). Since the elements of π′y and π′ coincide only on Bx and
both realize µx, it is easy to see that there is some ordering π that realizes π′y and π′. Note
that π is an ordering of V ′x. Moreover, π realizes µx, and therefore also realizes µy.

M. Lafond 27:17

We must now argue that π realizes s(Px) (which also implies that π realizes s(Py)). First
consider Pj ∈ Px, where i 6= j so that vj ∈ Bx ∩By and Pj is the subset of N−(vj) for vj in
Px. Let u ∈ Pj . If u ∈ Vy, then u <π vj since π realizes π′y (which is a subordering of πy that
realizes s(Py)). If u ∈ V ′x \ Vy, then u <π vj because π realizes π′ (which is a subordering of
π̂ that realizes s(Px)). By a similar argument, one can check that all u ∈ N−(vj) \ Pj occur
after vj . Now consider Pi ∈ Px, the subset of N−(vi) for vi. Let u ∈ Pi, and recall that
u /∈ Vy \Bx. If u ∈ Bx, then u <π vi because π realizes µx (and we may assume u <µx vi as
otherwise µx and s(Px) are not possibly realizable together). If u ∈ V ′x \Bx, then u <µx vi
because π realizes π′, as above. The case u ∈ N−(vi) \Pi can be verified in a similar manner.

Since the costs of the v ∈ Vy are unchanged from πy to π, it follows that D(x, µx, Px) ≤∑
v∈Vx cost(v, π) =

∑
v∈Vy cost(v, πy)+cost(vi, πy) = D(y, µy, Py)+cost(vi, Pi), which yields

the complementary bound.

Forget nodes. Suppose that x is a forget node with child y. In this case, Vx = Vy and
V ′x = V ′y . It is not hard to see that it suffices to inherit the time costs computed at the y
node.

Join nodes. Suppose x is a join node with children y, z, in which case Bx = By = Bz.
Denote Bx = {v1, . . . , vs}. For each vi ∈ Bx, let Pi ∈ Px be the subset of N−(vi) for vi.
Note that if v ∈ Vy \ Bx, then v /∈ Vz (otherwise, the bags containing v would not be
connected). Similarly, if v ∈ Vz \Bx then v /∈ Vy. Hence Vy ∩ Vz = Bx. Let π be an ordering
of V ′x that realizes µx and s(Px) of cost D(x, µx, Px). Let πy := π|V ′y and πz := π|V ′z . Note
that both πy and πz must realize µx and s(Px). Hence

∑
v∈Vy cost(v, πy) ≥ D(y, µx, Px)

and
∑
v∈Vz cost(v, πz) ≥ D(z, µx, Px). Since Vy ∩ Vz = Bx, it follows that D(x, µx, Px) ≥

D(y, µx, Px) +D(z, µz, Px)−
∑
vi∈Bx cost(vi, Pi).

For the converse bound, let πy (respectively πz) be orderings of V ′y (V ′z) that realize µx
and s(Px) of cost D(y, µx, Px) (D(z, µx, Px)). Note that if u ∈ Vz \ Bx, then N−(u) ⊆ Vz
(using tree decomposition arguments) and if u ∈ Vy \ Bx, then N−(u) ⊆ Vy. Let π′y :=
πy|(V ′y \ Vz) ∪Bx. Then for all u ∈ Vy \Bx, the cost of u is unchanged from πy to π′y. Then,
let π′z := πz|Vz, with the same remark on u ∈ Vz \Bx. Let π be an ordering of V ′x that realizes
π′y and π′z. Note that π exists, since π′y and π′z coincide only on Bx and both realize µx.

We argue that π realizes s(Px). Let vi ∈ Bx and u ∈ Pi. If u ∈ Bx, then u <π vi because
π realizes µx (which, as we may assume, is realizable with s(Px)). If u ∈ V ′y \ Vz, then
u <π vi because π realizes π′y (which is a subordering of πy which realizes s(Px)). Finally if
u ∈ Vz \Bx, then u <π vi because π realizes π′z (which is a subordering of πz which realizes
s(Px)). A similar argument shows that vi <π u for u ∈ N−(vi) \ Pi.

It remains to argue that D(x, µx, Px) ≤
∑
v∈Vx cost(v, π) = D(x, µx, Px) +D(y, µx, Px)−∑

v∈Bx cost(v, Pi). For v ∈ Vy \ Bx or v ∈ Vz \ Bx, the cost is unchanged from πy and
πz, respectively, as we mentioned above. If v ∈ Bx, the cost is the same as in πy and
πz, since π, πy and πz all realize s(Px). Therefore,

∑
v∈Vx cost(v, π) =

∑
v∈Vy cost(v, πy) +∑

v∈Vz cost(v, πz)−
∑
vi∈Bx cost(v, π) (as we double-counted the Bx elements). The correct-

ness follows, since
∑
v∈Vy cost(v, πy) = D(y, µx, Bx) and

∑
v∈Vz cost(v, πz) = D(z, µx, Bx).

J

5 Conclusion

The hardness results presented in this work apply to any game that allows damage boosting
or routing in its speedrunning mechanics. However, the positive results ignore other possible

FUN 2018

27:18 The complexity of speedrunning video games

aspects of the game, which could be incorporated in our problem models in the future. For
instance, some games may offer multiple possible paths that in turn offer different sets of events.
Also, role-playing games such as Final Fantasy are notorious for the calculations needed
for manipulating the game’s random number generator, which leads to other optimization
problems. We also leave the problems of approximating damage boosting with lives and
minimum-loss routing open, as well as determining their precise FPT status.

References

1 Classic damage data charts mega man 1 damage data chart. http://megaman.wikia.com/
wiki/Mega_Man_1_Damage_Data_Chart. Accessed: 2018-02-21.

2 Games done quick. https://gamesdonequick.com/. Accessed: 2018-02-21.
3 Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic graphs. In

Italian Conference on Algorithms and Complexity, pages 288–298. Springer, 1997.
4 Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for

k-restrictions. ACM Transactions on Algorithms (TALG), 2(2):153–177, 2006.
5 Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic nintendo games

are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015.
6 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,

and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. arXiv
preprint arXiv:1707.01470, 2017.

7 Jeffrey Bosboom, Erik D Demaine, Adam Hesterberg, Jayson Lynch, and Erik Waingarten.
Mario kart is hard. In Japanese Conference on Discrete and Computational Geometry and
Graphs, pages 49–59. Springer, 2015.

8 Liming Cai and Jianer Chen. On fixed-parameter tractability and approximability of NP
optimization problems. Journal of Computer and System Sciences, 54(3):465–474, 1997.

9 Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM),
55(5):21, 2008.

10 William Cook, László Lovász, Paul D Seymour, et al. Combinatorial optimization: papers
from the DIMACS Special Year, volume 20. American Mathematical Soc., 1995.

11 Graham Cormode. The hardness of the lemmings game, or oh no, more NP-completeness
proofs. In Proceedings of Third International Conference on Fun with Algorithms, pages
65–76, 2004.

12 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Mar-
cin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4.
Springer, 2015.

13 Erik D Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is harder-
/easier than we thought. In Proceedings of Third International Conference on Fun with
Algorithms, 2016.

14 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science
& Business Media, 2012.

15 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels
for weighted problems. Journal of Computer and System Sciences, 84:1–10, 2017.

16 Guy Even, J Seffi Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

17 Michal Forišek. Computational complexity of two-dimensional platform games. In Inter-
national Conference on Fun with Algorithms, pages 214–227. Springer, 2010.

http://megaman.wikia.com/wiki/Mega_Man_1_Damage_Data_Chart
http://megaman.wikia.com/wiki/Mega_Man_1_Damage_Data_Chart
https://gamesdonequick.com/

M. Lafond 27:19

18 Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109–122, 1986.

19 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the ran-
dom ordering is hard: Inapproximability of maximum acyclic subgraph. In Foundations of
Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 573–582.
IEEE, 2008.

20 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis,
Royal Institute of Technology Stockholm, 1992.

21 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of operations research, 12(3):415–440, 1987.

22 Richard Kaye. Minesweeper is NP-complete. The Mathematical Intelligencer, 22(2):9–15,
2000.

23 Daniel Lokshtanov. New methods in parameterized algorithms and complexity. University
of Bergen, Norway, 2009.

24 Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing
Systems, 54(4):595–621, 2014.

25 Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science,
586:120–134, 2015.

FUN 2018

	Introduction
	Models, speedrunning mechanics, and problems
	Damage boosting
	Routing
	Conclusion

