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Abstract
The board games The aMAZEing Labyrinth (or simply Labyrinth for short) and Enchanted Forest
published by Ravensburger are seemingly simple family games.

In Labyrinth, the players move though a labyrinth in order to collect specific items. To do
so, they shift the tiles making up the labyrinth in order to open up new paths (and, at the same
time, close paths for their opponents). We show that, even without any opponents, determining a
shortest path (i.e., a path using the minimum possible number of turns) to the next desired item
in the labyrinth is strongly NP-hard. Moreover, we show that, when competing with another
player, deciding whether there exists a strategy that guarantees to reach one’s next item faster
than one’s opponent is PSPACE-hard.

In Enchanted Forest, items are hidden under specific trees and the objective of the players
is to report their locations to the king in his castle. Movements are performed by rolling two
dice, resulting in two numbers of fields one has to move, where each of the two movements
must be executed consecutively in one direction (but the player can choose the order in which
the two movements are performed). Here, we provide an efficient polynomial-time algorithm for
computing a shortest path between two fields on the board for a given sequence of die rolls, which
also has implications for the complexity of problems the players face in the game when future
die rolls are unknown.
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1 Introduction

Computational complexity questions related to games and puzzles have received considerable
interest among mathematicians and computer scientists within the last decades. For an
introduction to the topic and an overview of known results, we refer to [1, 3, 5]. While many
one-player puzzles are NP-complete, two-player games often turn out to be PSPACE-complete
or even EXPTIME-complete.

1 The work of this author was partially supported by Anne M. Schwahn by explaining the two studied
board games to him back in the dark winters of 1990 and 1991.
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30:2 The Complexity of Escaping Labyrinths and Enchanted Forests

(a) The empty board. (b) Before the shift. (c) After the shift.

Figure 1 The aMAZEing board.

In this paper, we study the computational complexity of several natural decision problems
arising in the two board games (The aMAZEing) Labyrinth [6] and Enchanted Forest [8].
In both games, the players move on a board subject to specific movement rules in order to
find certain items. In Labyrinth, this involves shifting the moving tiles on the board in order
to open up paths through the labyrinth. In Enchanted Forest, movement is performed by
rolling two dice, resulting in two numbers of fields the player has to move subject to the
constraint that each of the two movements must be executed consecutively in one direction.

In the following sections, we first consider Labyrinth and show that – even without any
opponents – deciding whether a given tile on the board is reachable within a given number of
turns is strongly NP-complete. When competing with another player, the natural extension
of this shortest path problem that asks whether a player has a strategy that guarantees to
reach a given target tile faster than her opponent reaches their (possibly different) target
tile is shown to be PSPACE-hard. For Enchanted Forest, on the other hand, we provide an
efficient polynomial-time algorithm for deciding whether a given field on the board can be
reached in a given number of turns for a given sequence of die rolls.

2 The aMAZEing Labyrinth

The game (The aMAZEing) Labyrinth, developed by Max J. Kobbert, was originally published
by Ravensburger in 1986 under the German title “Das verrückte Labyrinth” [6] (“verrückt”
is a play on two possible meanings, similar to disarranged). The game is a huge success all
over the world with about 30 million sold units in over 60 countries so far.

In the game, one to four players2 try to collect a sequence of items on a board consisting
of moving tiles. The board (see Figure 1 (a)) features spots for 7× 7 square tiles, with some
of those fixed to it. The tiles have three different shapes, which can be rotated in two/four
orientations: I-tile ( , ) , L-tile ( , , , ) , T -tile ( , , , ) .

The board is randomly filled with the movable tiles and one additional tile is placed aside.
In a player’s turn, she has to execute a shift and a move action (see Figures 1 (b) and (c)).

2 This refers to the original release of the game, where playing alone was actually allowed. Now, it is sold
as a game for two to four players.
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Shift: The (mandatory) shift action is performed by pushing in the surplus tile - in any
orientation - from any border, such that all tiles in this row/column are shifted by one place
and the border tile on the other end of the row/column is pushed out of the board (obviously,
the rows and columns containing fixed tiles cannot be shifted). This tile is left in the place in
order to mark the last shift action for the next player, who is not allowed to directly reverse
the previous shift. If some player is standing on the tile that is pushed out of the board, the
player is instead placed on the tile that has just been pushed in (wrap-around rule).

Move: After shifting, a player may either move to any tile reachable in the labyrinth (e.g.
the requested bat tile in Figure 1 (c)), or choose not to move at all. An adjacent tile is
(directly) reachable if both tiles feature open space on their common edge.

Goal: Some tiles feature the symbol of an item, animal, or mythical creature. At the
beginning of the game, each player gets a stack of cards requesting to collect some of those
objects. At each point in time, each player only knows about the object she is requested to
collect next, but not about the further objects she has to collect. The currently requested
object is collected if the move action of the player ends on the tile featuring this object. She
may then look at her next card, showing the next object to collect. Once a player collects
the last object requested from her, the last goal is to return to her starting tile. Whoever is
the first to accomplish this is the winner of the game.

2.1 Formal Problem Definition
In order to analyze the game mathematically, we consider a board of arbitrary size. Hence,
the rectangle board contains a× b spots for (a · b) + 1 tiles, some of which may be fixed. The
kinds of tiles considered and the rules of the game are as described above.

At each point in time during the game, a player only knows about the next object she
is requested to collect. Hence, the fundamental problem faced at each point in time when
a player plays alone is reaching the next object (or her starting tile in case that she has
already collected the last object) in the minimum number of turns. The decision version of
this single-player problem is formally defined as follows:

I Definition 1 (SP-Labyrinth).
INSTANCE: The initial board setting, the shape of the current surplus tile, two distinct tiles s

and t on the board, and an allowed number of turns k ∈ N.
QUESTION: Can a single player starting at tile s reach tile t in at most k turns?

When two opposing players play alternately, the fundamental problem each player faces
amounts to reaching the object she is requested to collect next (or her starting tile if she has
already collected all required objects) faster than her opponent reaches their next object (or
starting tile). The decision version of the two-player problem is, thus, defined as follows:

I Definition 2 (SP-Versus-Labyrinth).
INSTANCE: The initial board setting, the shape of the current surplus tile, and two pairs (s1, t1),

(s2, t2) of tiles on the board.
QUESTION: Is there a strategy for player 1 (who has the first turn and starts at tile s1) that

allows her to reach tile t1 before player 2 (starting at tile s2) can reach tile t2?

In the following subsections, we first show that already the single-player problem
SP-Labyrinth in strongly NP-complete (this problem has already been used as a bench-
mark problem for testing ASP solvers, cf. [2]). Afterwards, we consider the two-player
problem SP-Versus-Labyrinth and show that this problem is PSPACE-hard.
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Figure 2 Example of a clause and a variable gadget (initial and final board setting).

2.2 Escaping the Labyrinth is hard . . .
Poor little Alice got lost in the aMAZEing Labyrinth and has to find her way to the exit
before the batteries of her flashlight run out. Unfortunately (for her) we now show that
deciding whether she can get out in time is strongly NP-complete:

I Theorem 3. SP-Labyrinth is strongly NP-complete.

Proof. Since it is straightforward to check that the player reaches t from s with a given
sequence of shifts and moves, the problem is clearly contained in NP.

To show NP-hardness, we use a reduction from 3SAT (a problem that Alice has probably
encountered when reading [4]). Given an instance I of 3SAT with variables x1, . . . , xn and
clauses C1, . . . , Cm, we construct an instance of SP-Labyrinth in which the player can reach t
in at most k := n turns if and only if I is satisfiable.3

Figure 2 shows an example of a clause and a variable gadget we use in this reduction.
In total, there is one gadget for each variable and one gadget for each clause, i.e., there are
n+m gadgets with twelve rows each. Together with the top row containing s and the bottom
row containing t, this makes 12 · (n+m) + 2 rows. To reach t from s, the player needs to
move through or get shifted through the 12 · (n+m) rows between s and t. As each shift of
the avatar itself can only contribute a single row, she has to move along vertical paths to
reach t fast enough. To avoid problems with the wrap-around rule, we augment the board on

3 This also shows that it is sometimes helpful to have a SAT solver with you when entering a labyrinth.
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Figure 3 The four hook gadgets (negated, unnegated, either-or, empty).

each side by 2n columns / rows that are filled with -tiles and -tiles in alternating order.
Thus, none of the central tiles shown in Figure 2 can be shifted out of the board and the
player cannot reach any boundary of the augmented board in n turns. Moreover, even with
those additional tiles, the resulting board has size polynomial in n and m, so the instance
can be constructed in polynomial time.

The complete board setting includes one gadget for each clause and one gadget for each
variable. The gadgets vary only in the special variable columns (marked with lx̄i

xi). Here,
shifting the variable column corresponding to a variable xi downwards will correspond to
setting xi to true, while shifting the column upwards will correspond to setting xi to false.4
The connection to the clauses is made by using the four different kinds of hook gadgets
shown in Figure 3. Each clause gadget contains the corresponding hook gadget for each
variable (depending on whether the variable is contained in the clause negated, unnegated,
both negated and unnegated, or not at all). For example, the clause gadget for x̄1 ∨ x2 ∨ x̄3
presented in Figure 2 contains a negated hook gadget for x1 and x3, and unnegated hook
gadget for x2, and an empty hook gadget for x4 (since x4 is not contained in the clause). As
one can see, the clause gadget can be crossed if and only if the variable column corresponding
to either x1 or x3 is shifted upwards, or the variable column corresponding to x2 is shifted
downwards. Since x4 is not contained in the clause, shifting the corresponding variable
column cannot make the gadget crossable.

The first and last three rows of every clause gadget (above and below the hook gadgets)
ensure that, starting from the top left of the gadget, we can choose to cross by any variable
column (given that the corresponding variable was set to satisfy the clause) and reach the
bottom left of the gadget in order to enter the next gadget.

Below the clause gadgets, there is an analogously constructed gadget for each variable
(i.e., the gadget for variable xi corresponds to a clause gadget for the clause xi ∨ x̄i, see
Figure 2). Thus, the variable gadget corresponding to variable xi will be crossable if and only
if the column of variable xi was shifted either upwards or downwards. Hence, all variable
gadgets will be crossable if and only if each variable was set to either true or false.

We now show that the constructed instance is equivalent to the given instance I of 3SAT,
i.e., that the player can reach t in at most n turns if and only if I is satisfiable.

First assume that I is satisfiable. Then, shifting the variable columns according to some
satisfying variable assignment yields a path from s to t through which the player can move
after the n-th shift (in the previous n− 1 turns, the player does not move at all). Hence, the
player can reach t in at most n turns.

4 Instead, one could equivalently shift the column to the left of the variable column in the opposite
direction, which has the same effect (but could be prevented by putting a fixed tile on top of this
column). In the following, we will assume that the variable column itself is always shifted instead of the
column to its left.
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In order to prove the other direction, we observe that, in every solution to the constructed
SP-Labyrinth instance, each variable column must be shifted exactly once. This follows
since the corresponding variable gadget is not crossable in its initial form and the only
possible way to make it crossable by using only a single (row or column) shift is to shift
the corresponding variable column exactly once (as there are n variable gadgets in total
and only n shifts are available, we cannot use more than one shift to make a single variable
gadget crossable). Hence, each solution to the constructed SP-Labyrinth instance corresponds
to a truth-assignment for the variables in the given 3SAT-instance I by setting xi to true
(false) if and only if the variable column corresponding to xi is shifted downwards (upwards).
Moreover, since all clause gadgets are crossable in the solution to the SP-Labyrinth instance,
all clauses in I must be satisfied by this truth-assignment. J

2.3 . . . but doing it faster than someone else is even harder.5

The famous archaeologists Lara and Henry Jr. play a game of the aMAZEing Labyrinth
and each of them only needs to return to their starting tile. It is Lara’s turn – but will she
manage to arrive first and, thus, win the game? Who will resort to a destructive strategy?
Does it pay off?

I Theorem 4. SP-Versus-Labyrinth is PSPACE-hard.

Proof. We use a reduction from Quantified Satisfiability (QSAT) (also known as Quantified
Boolean Formula, cf. [9]). Given an instance I of QSAT with variables x1, . . . , xn and clauses
C1, . . . , Cm, we construct an instance of SP-Versus-Labyrinth in which player 1 (Lara) has a
winning strategy if and only if I is a yes-instance.6 Without loss of generality, we assume
that the number n of variables in I is odd.

This time, we translate “setting variables” into “shifting variable rows” by using similar
clause gadgets as in the proof of Theorem 3 (rotated clockwise by 90 degrees). However, we
now use only a single variable gadget corresponding to variable xn - the other variables have
no corresponding variable gadgets. Instead, the board contains a distinct order preserving
gadget for each player, which is used to make sure that the player has to set her corresponding
variables xi (the ones with odd i for Lara and the ones with even i for Henry) in the correct
order. In between each pair of adjacent gadgets and at the sides of the board, we need
some buffer columns to avoid any unintentional interaction of the gadgets as well as using
the wrap-around rule. Since we will show that at least one of the players will always reach
their goal after at most n+ 1 turns, n+ 2 buffer columns consisting of alternating and
-tiles are sufficient between each pair of adjacent gadgets and at the left and the right of

the board.7
In order to reach her goal, Lara has to cross her order gadget as well as the clause gadgets,

whereas Henry only has to cross his order gadget and the variable gadget of variable xn (but
not the clause gadgets). An overview of the structure of the board is given in Figure 4. The
pink row at the top in Figure 4 is used in order to connect the different gadgets and will be
referred to as the wiring row throughout the rest of the proof. The blue row at the bottom
is used as an escape path that makes a player reach her goal directly in case that the other

5 Assuming NP 6= PSPACE.
6 This shows that, as expected, beating an archaeologist as intelligent as Henry Jr. is very challenging.
7 As will become clear later in the proof, two buffer columns (instead of n + 2) are actually sufficient

at each of these places since no row will ever be shifted more than twice before one of the players can
reach their goal.
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Figure 4 Overview of the board used in the proof of Theorem 4.
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xi+1↔

ei+1↔

Figure 5 A segment of a player’s order gadget (before turn i of the other player).

player does not shift their corresponding variable rows in the correct order. All tiles of the
wiring row and the escape path row are fixed, which implies that only rows can be shifted
and the wrap-around rule cannot be used on the top or the bottom of the board (where no
buffer was added).

In Figure 5, we illustrate a segment of a player’s order gadget. Here, exactly the variable
rows of Henry’s variables (i.e., the ones with even index) are crossable via the pink path at
the beginning of the game in Lara’s order gadget, while the variable rows of Lara’s variables
(i.e., the ones with odd index) are crossable via the pink path in Henry’s order gadget
at the beginning. Moreover, Lara starts in the middle of the row below the variable row
corresponding to x1 in her order gadget, while Henry starts in the middle of the row above
the variable row of x1. The lowermost shiftable row corresponds to x1 and the uppermost
shiftable row corresponds to xn (i.e., there is no row en). We note that, compared to the
(rotated) structure of the clause gadgets and the variable gadget of xn shown in Figure 2, the
row ei represents an additional row (column in the figure) between the variables xi and xi+1
for each i ∈ {1, . . . , n − 1}. Within the clause gadgets and the variable gadget of xn, this
additional row is simply filled by -tiles (which would correspond to -tiles in Figure 2 due
to the rotation) so that it can always be crossed and does not change the structure of the
gadgets.

In total, the board contains 4n rows (2 for each xi for i ∈ {1, . . . , n}, 2 for each ei for
i ∈ {1, . . . , n − 1}, the wiring row, and the escape path row). Since each of the two order
gadgets, each of the m clause gadgets, and the variable gadget corresponding to xn only
requires a constant number of columns and n+ 2 buffer columns are inserted in between each

FUN 2018
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pair of adjacent gadgets as outlined above, the constructed board is of size poly(n,m), so
the described instance can be constructed from the given instance I of QSAT in polynomial
time.

We now show that the constructed instance is equivalent to the given instance I of QSAT,
i.e., that Lara has a winning strategy if and only if I is a yes-instance. To do so, we first
assume that both players only shift their corresponding variable rows in the correct order,
i.e., that Lara always sets the next odd variable available in each of her turns and that Henry
always sets the next even variable available in each of his turns. As we show afterwards, this
behavior of the players will be enforced since each player can reach the escape path at the
bottom of the board (and, thus, win) if the other player deviates from this rule.

Lara starts the game and, according to the above assumption, shifts the variable row
corresponding to x1 in turn one, thereby setting x1 to either true or false. Moreover, this
closes the blue path in Henry’s order gadget (Figure 5 and, thus, prevents Henry from using
this path in order to reach the escape path at the bottom of the board. After her shift, Lara
can move past the variable row of x1 and also the untouched variable row of x2 in her order
gadget. However, she cannot yet cross the variable row corresponding to x3 in her order
gadget. Thus, in order to still have the blue path after the variable row of x2 available in
case that Henry should not set x2 in the next turn, Lara will stop in the row between x2
and e2.

Again according to the above assumption, Henry will now shift the variable row corre-
sponding to x2 in turn two (which is Henry’s first turn), thereby setting x2 to either true
or false. Moreover, this closes the blue path in Lara’s order gadget and prevents her from
entering the escape path at the bottom of the board in her next turn. After his shift, Henry
can move past the variable row of x2 and also the untouched variable row of x3 in his order
gadget. However, he cannot yet cross the variable row corresponding to x4 in his order
gadget. Thus, in order to still have the blue path after the variable row of x3 available in
case that Lara should not set x3 in her second turn, Henry will stop in the row between x3
and e3.

It is then Lara’s turn again and she will now set variable x3 and so on. At the end, in
turn n− 1, Henry will set variable xn−1 due to the assumption that n is odd. Thus, Henry
reaches the entry to the wiring row at the top of his order gadget in turn n− 1. However, he
cannot yet reach his goal t2 since he cannot yet cross the variable gadget of the still unset
variable xn. Turn n is then Lara’s turn and she only has to set variable xn in order to reach
the entry to the wiring row at the top of her order gadget. Since she has to cross the clause
gadgets in order to reach her goal t1, she will, thus, arrive at t1 in turn n (i.e., before Henry
reaches t2) if and only if all the clauses are satisfied by the variable assignment determined
by both players in the n turns. Since, in any case, Henry will reach t2 in turn n+ 1, this
shows that Lara has a winning strategy (i.e., a strategy of setting the odd variables in her
corresponding turns so that all clauses will be satisfied no matter how Henry sets the even
variables in his turns) if and only if the given instance I of QSAT is a yes-instance.

It remains to show that whoever violates the order first loses the game. So assume that
both players always set their corresponding variables as desired during the first i− 1 turns,
but in turn i, the corresponding player (say Lara) decides not to shift the variable row
corresponding to xi. For Lara, this means that the variable row corresponding to xi is still
blocked in her order gadget and she cannot proceed. For i = n, Lara loses in this case since
Henry will reach t2 in turn n+ 1 as seen above. For i < n, Henry finds his order gadget as
in Figure 5 before his next turn (standing in the circled spot in the row between xi and ei)
and, with a left or right shift of row ei, he can move onto the blue path (which is not blocked
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since Lara did not shift the variable row corresponding to xi). Note that, even though Lara
may have shifted row ei in turn i, Henry can always enter the blue path either to the left or
to the right since any single shift in row ei opens the blue path for him. Consequently, Henry
can enter the escape path row, which directly takes him to his goal t2, and Lara loses the
game. Similarly, Lara can enter the escape path row if Henry deviates first, which finishes
the proof. J

Note that our proof of PSPACE-hardness did not rely on the rule that prevents a player
from directly reversing the previous shift – the hardness result in Theorem 4 holds both with
and without this rule.

Concerning upper bounds on the computational complexity of SP-Versus-Labyrinth, note
that the number of possible positions for each of the avatars and goals of the two players is
bounded by the number of spots on the board, there are only twenty different tiles possible at
each spot (counting different orientations and whether the tile is fixed or not), and only three
possible shapes exit for the current surplus tile. Consequently, the number of possible game
states in SP-Versus-Labyrinth is bounded from above by an exponential function of the board
size a · b and it follows by standard arguments that SP-Versus-Labyrinth ∈ EXPTIME (see, for
example, [12]). Furthermore, it can easily be seen that SP-Versus-Labyrinth ∈ PSPACE when
upper bounding the number of turns by some value k polynomial in the encoding length
of the game and then rating which player has achieved the better situation after k turns,
i.e., has fewer turns left to reach her goal when continuing to play alone (similar to the
turn-restricted version of Go analyzed in [9]). Since our proof of PSPACE-hardness works
also for this turn-restricted version of SP-Versus-Labyrinth, it follows that the turn-restricted
version of the problem is PSPACE-complete. Whether the actual (not turn-restricted) version
of SP-Versus-Labyrinth belongs to PSPACE, however, remains an interesting open question.

3 Enchanted Forest

The game Enchanted Forest developed by Alex Randolph and Michel Matschoss was originally
published by Ravensburger in 1981 under the German title “Sagaland” [8]. In 1982, the
game earned the prestigious award “Spiel des Jahres” (engl. Game of the Year) [10].

In the game, two to six players move around in an enchanted forest in order to find items
from popular fairy tales that are hidden under special trees. At the beginning of the game,
all players start in the village next to the enchanted forest. A player gets to know which
item is hidden under one of the trees if she ends her move on the blue field next to the tree.
The king in the castle requests the location of the different items and whoever moves up to
the castle and reports the correct location of the currently requested item earns a point. The
player standing in the castle may then continue to name (guess if necessary) the locations of
the next requested items to earn additional points. When she names a wrong location for
the first time, she must return to the starting point in the village. The first player to earn
three points wins the game.

A player’s turn consists of rolling two dice, which results in two numbers of fields she has
to move. Each of the two movements must be executed consecutively in one direction, but
the player can choose the order in which the two movements are performed (see Figure 6
for an example). If the roll is a double, the player may alternatively choose to either move
to any blue field adjacent to a tree or to the castle, or to shuffle the cards determining the
order in which the king requests the items. If a player moves to a field already occupied by
another player, the other player is moved back to the starting point in the village.
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(a) Initial position of the
player and the result of rolling
the two dice.

(b) The player’s position af-
ter her first movement (five
fields).

(c) After the second move-
ment (three fields), the player
reaches the tree and observes
the item hidden underneath it.

Figure 6 A player’s turn in Enchanted Forest.

3.1 Formal Problem Definition
In order to analyze the game mathematically, we model the board as an undirected, connected,
simple graph G = (V,E), where each vertex corresponds to a field on the board and there
is a unit-length edge between each pair of adjacent fields.8 As usual, we let n := |V | and
m := |E|. The special fields to which a player can move instantaneously when rolling a
double (the blue fields adjacent to the trees and the castle) are given as a subset V ′ ⊆ V .
Moreover, we consider two arbitrary d-sided dice for the moves (where d > n is possible
since the graph may contain cycles). If a player rolls (x, x̄) with x, x̄ ∈ {1, . . . , d} and starts
at s ∈ V , she can decide on two (not necessarily simple) paths to follow, where the first one
starts at s and the second one starts at the end vertex of the first one. One of these two
paths must have length x and the other one length x̄. Moreover, the requirement that each
movement has to be executed consecutively in one direction means that the two paths are
not allowed to contain cycles of length 2 as subpaths. The special rules used when rolling a
double mean that, if x = x̄, the player may alternatively choose to move to any vertex in the
subset V ′.

As in Labyrinth, we consider the fundamental problem of reaching a certain location on
the board (e.g., the castle or a specific tree) in a minimum number of turns. Here, we assume
that the player has complete knowledge of the sequence of die rolls for her future turns. The
decision version of this problem is formally defined as follows:

I Definition 5 (SP-EnchantedForest).
INSTANCE: The simple graph G = (V, E), the subset V ′ ⊆ V , the maximum die value d ∈ N,

the die rolls (x1, x̄1), . . . , (xk, x̄k) with xi, x̄i ∈ {1, . . . , d}, and two vertices s, t ∈ V .
QUESTION: Can a player starting at vertex s reach vertex t in at most k turns using the given

rolls of the dice?

The encoding length of an instance of SP-EnchantedForest (when storing the graph G in
adjacency list representation) is O(n+m+ k · log2 d).

In the following subsection, we show that SP-EnchantedForest can be solved efficiently
in polynomial time. This result also has implications for the complexity of problems the
players face in Enchanted Forest when the outcomes of future die rolls are unknown. For
example, the polynomial-time solvability of SP-EnchantedForest directly implies that, when

8 Note that, even though G models an enchanted forest, the graph may contain cycles (as does the original
board).
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the outcomes of future die rolls are unknown, the problem of choosing two movements for
the current turn that maximize the probability of reaching a desired location in (at most) k
turns for a given constant k can be solved in polynomial time.

3.2 Finding one’s way in the Enchanted Forest is easy
After living a long, rich, and joyful life, Gretel wants to relive her childhood memories and
eat some gingerbread from the gingerbread house in the Enchanted Forest. However, the
ancient enchantments do not allow her to simply follow the path of pebbles laid out. Before
making the next step, she has to roll two dice and move accordingly. At least, with all the
lucky charms she obtained from the witch’s heritage, she can predict the rolls. Can she find
the delicious gingerbread or will the journey be too long to bear the appetite?

Gretel rolls (or rather predicts to roll) (x1, x̄1), . . . , (xk, x̄k) and decides that it is probably
a good idea to first compute which vertices in G she can reach from a given position in the
enchanted forest by using a single die roll. Thus, for any x ∈ {1, . . . , d}, she defines the
(symmetric) (n× n)-matrix Dx with entries in {0, 1} such that, for each pair (u, v) ∈ V × V ,
the matrix has an entry 1 at the position corresponding to u and v if and only if there exists
a (not necessarily simple) path of length x from u to v in G that does not contain any cycles
of length 2 as subpaths. However, in order to compute Dx efficiently in polynomial time,
Gretel cannot explore the graph G step-by-step by always moving to an adjacent vertex since
this would lead to a time requirement polynomial in d, but not in log2 d. Instead, she uses
the following procedure provided by two friendly scholars:

Computing Dx efficiently: In order to make sure that only paths that do not contain
cycles of length 2 as subpaths are considered, Gretel constructs a directed graph H = (N,A)
from G by setting

N := {vu : {u, v} ∈ E}, and A := {(vu, wv) : vu, wv ∈ N, {v, w} ∈ E,w 6= u}.

Here, the vertex set N of H contains a copy vu of each vertex v ∈ V for every neighbor u
of v in G. The arcs in H are constructed such that the copy vu of v corresponding to u is
connected by a directed arc (of unit length) to all copies wv of the neighbors w of v that
are different from u. Thus, there exists a path of length x without cycles of length 2 as
subpaths from a node ũ to another node ṽ in G if and only if there exists a directed path
of the same length from some copy of ũ to some copy of ṽ in H. Hence, the problem of
determining whether a node ṽ in G can be reached from a given node ũ in G by a path
of length x without cycles of length 2 as subpaths reduces to determining whether some
copy ṽw of ṽ can be reached from some copy ũz of ũ by a directed path of length x in H.

To compute which vertices in H are reachable from which other vertices, Gretel com-
putes the x-th power of the adjacency matrix M of H (cf. [11]). This can be done in
O(|N |2.373 log2 x) = O(m2.373 log2 d) time by computing M2α for α = 1, . . . , blog2 xc via the
square matrix multiplication algorithm from [7] (since |N | = 2 · |E| = 2m and x ∈ {1, . . . , d}).
Then, Dx has a 1 at the position corresponding to u ∈ V and v ∈ V exactly if Mx has a
positive entry at some position corresponding to a copy of u and a copy of v.

Computing which vertices are reachable in a single turn: With the knowledge of the next
k rolls (x1, x̄1), . . . , (xk, x̄k) and the above method for computing the sets Dx, Gretel can now
compute efficiently which vertices v she can reach from any given vertex u in the graph G
with any single pair (xi, x̄i) of die rolls. To do so, she defines the (n × n)-matrix D(xi,x̄i)
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with entries in {0, 1} such that, for each pair (u, v) ∈ V × V , the matrix has an entry 1 at
the position corresponding to u and v if and only if vertex v can be reached from vertex u
with the pair (xi, x̄i) of die rolls. Gretel now wants to compute D(xi,x̄i) efficiently. If (xi, x̄i)
is not a double (i.e., if xi 6= x̄i), she notes that, by definition of the matrices Dxi and Dx̄i ,
the matrix D(xi,x̄i) has a 1 at the position corresponding to u and v if and only if at least
one of the matrices Dxi ·Dx̄i and Dx̄i ·Dxi has a positive entry at this position. If (xi, x̄i) is
a double (i.e., if xi = x̄i), Gretel has to take into account that she can also decide to move
instantaneously to any vertex in the subset V ′ ⊆ V . Hence, in this case, the matrix D(xi,x̄i)
also has a 1 at the position corresponding to u and v whenever v ∈ V ′. If Gretel again uses
the square matrix multiplication algorithm from [7] to compute Dxi ·Dx̄i and Dx̄i ·Dxi , this
shows that she can obtain D(xi,x̄i) from the matrices Dx and Dx̄i in time O(n2.373).

Turn-expanded network: Similar to a time-expanded network, Gretel constructs the (di-
rected) turn-expanded network F = (NF , AF ) with

NF := {vi : v ∈ V, i = 0, . . . , k} ∪ {t∗}, and

AF :=
k⋃

i=1
{(ui−1, vi) : D(xi,x̄i) has entry 1 at position (u, v)} ∪ {(t1, t∗), . . . , (tk, t∗)}.

She can now compute a shortest path from s0 to t∗ by breadth-first search in O(|NF |+|AF |) =
O(k · n2) time and decide whether she can reach her favorite dish in k turns (the required
number of turns equals the length of a shortest s0-t∗-path minus one). As computing the at
most 2k matrices Dx is the most time consuming step, the overall running time of Gretel’s
procedure is O(k ·m2.373 · log2 d), which is polynomial in the input length. This shows:

I Theorem 6. SP-EnchantedForest can be solved in polynomial time O(k ·m2.373 · log2 d). J

As noted before, the result of Theorem 6 also has implications for the complexity of
problems that Gretel faces when she cannot use her lucky charms in order to predict
the outcomes of future die rolls. For example, the polynomial-time solvability of SP-
EnchantedForest directly implies that, when the outcomes of future die rolls are unknown,
Gretel only needs polynomial time in order to compute two movements for her current turn
that maximize the probability of reaching the gingerbread house in (at most) k turns for a
given constant k.
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