
Multistage Matchings
Evripidis Bampis
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris, France
evripidis.bampis@lip6.fr

Bruno Escoffier
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris, France
bruno.escoffier@lip6.fr

Michael Lampis
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
michail.lampis@dauphine.fr

Vangelis Th. Paschos
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
vangelis.paschos@dauphine.fr

Abstract
We consider a multistage version of the Perfect Matching problem which models the scenario
where the costs of edges change over time and we seek to obtain a solution that achieves low
total cost, while minimizing the number of changes from one instance to the next. Formally, we
are given a sequence of edge-weighted graphs on the same set of vertices V , and are asked to
produce a perfect matching in each instance so that the total edge cost plus the transition cost
(the cost of exchanging edges), is minimized. This model was introduced by Gupta et al. (ICALP
2014), who posed as an open problem its approximability for bipartite instances. We completely
resolve this question by showing that Minimum Multistage Perfect Matching (Min-MPM) does
not admit an n1−ε-approximation, even on bipartite instances with only two time steps.

Motivated by this negative result, we go on to consider two variations of the problem. In
Metric Minimum Multistage Perfect Matching problem (Metric-Min-MPM) we are promised
that edge weights in each time step satisfy the triangle inequality. We show that this problem
admits a 3-approximation when the number of time steps is 2 or 3. On the other hand, we
show that even the metric case is APX-hard already for 2 time steps. We then consider the
complementary maximization version of the problem, Maximum Multistage Perfect Matching
problem (Max-MPM), where we seek to maximize the total profit of all selected edges plus the
total number of non-exchanged edges. We show that Max-MPM is also APX-hard, but admits
a constant factor approximation algorithm for any number of time steps.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases Perfect Matching, Temporal Optimization, Multistage Optimization

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.7

Acknowledgements This work benefited from the support of the FMJH program “Gaspard
Monge in optimization and Operation Research” and from the support to this program from
EDF, via the project 2016-1760H/C16/1507 “Stability versus Optimality in Dynamic Environ-
ment Algorithmics”.

1 Introduction

In classical Combinatorial Optimization, given an instance of a problem the goal is to find a
solution optimizing the value of the objective function. However, in many applications the

© Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evripidis.bampis@lip6.fr
mailto:bruno.escoffier@lip6.fr
mailto:michail.lampis@dauphine.fr
mailto:vangelis.paschos@dauphine.fr
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Multistage Matchings

instance may change over time and the goal is to find a tradeoff between the quality of the
solution in each time step and the stability of the solution in consecutive time steps. As
an example, consider an instance of an assignment problem, where the goal is to compute
the best assignment of tasks to workers, assuming that we know the cost cij of performing
task j by worker i. In the classical setting, it is possible to choose the assignment that
minimizes the total cost in polynomial time. When the costs change over time (as for
instance when a worker is not able to do some long task on a very busy day (infinite cost))
the optimal solutions of each time step may differ, inducing a transition cost for setting new
task-worker pairs between two consecutive solutions. Hence, the naïve approach of finding a
new optimal solution in each time step has the drawback that it does not take care of the
penalty (transition cost) that is induced by the changes in the solution.

In this paper we study a multistage version of the Perfect Matching problem that follows
this motivation and was originally introduced by Gupta, Talwar, and Wieder [11]. In this
problem we are given a time horizon: t = 1, 2, . . . , T where for each time t we are given an
instance Gt of Perfect Matching (that is, an edge-weighted graph) on the same set of vertices
V . The goal is to determine a sequence of solutions S = (M1,M2, . . . ,MT) that both (1) are
near-optimal (quality), and (2) induce small transition costs (stability). In other words, the
goal is to determine a sequence of perfect matchings, one for each stage (time step) t, such
that their total cost is small and the solution does not change too radically from one step to
the next.

It was shown in [11] that this multistage problem is significantly harder than classical
Perfect Matching. In fact, it is NP-hard to even approximate the optimal solution within
n1−ε, for instances with only 8 times steps. Gupta et al. then posed as an explicit question
whether the problem becomes easier for bipartite instances. Their work suggests also the
question whether this hardness also applies for fewer than 8 steps. The bipartite restriction
is especially interesting because Gupta et al. showed that related matroid-based optimization
problems remain tractable for T = 2, and bipartite Perfect Matching can be seen as a matroid
intersection problem. One could therefore hope that the matroid structure might make the
bipartite case tractable for some small values of T , or at least approximable.

Our main contribution in this paper is to settle this question from [11] in the negative:
we show that Minimum Multistage Perfect Matching (Min-MPM) is n1−ε-inapproximable,
even for T = 2 time steps, unless P = NP . Motivated by this very negative result, we
then investigate two other version of the problem: the Metric Minimum Multistage Perfect
Matching problem (Metric-Min-MPM), where the input is guaranteed to satisfy the triangle
inequality, and the Maximum Multistage Perfect Matching problem (Max-MPM), where we
consider the complementary optimization objective.

Problem definition. Formally, the Min-MPM problem is defined as follows: We are given
a sequence G1, . . . , GT of T undirected graphs, on the same set of vertices V . At each time
step 1 ≤ t ≤ T , the graph Gt is given with a cost function ct on edges: ct(e) ∈ Q≥0 ∪ {+∞}.
We are also given a transition cost M ≥ 0. A solution is a sequence S = (M1, . . . ,Mt) where
Mt is a perfect matching of Gt. Each solution (sequence) has two costs: a matching cost
c(S) and a transition cost D(S). The goal is to minimize c(S) +D(S). A matching Mt has
a matching cost ct(Mt) which is equal to the sum of the costs of the edges of the perfect
matching. The matching cost of S is c(S) =

∑T
t=1 ct(Mt). The transition cost is defined

as D(S) =
∑T−1
t=1 Dt, where Dt = M · |Mt+1 \Mt| is proportional to the number of edges

removed between time t and t+ 1 – which is equal to the number of added edges since the
matchings are perfect. Notice that by allowing infinite cost on edges we may assume w.l.o.g.
the graphs to be complete.

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:3

In the Metric-Min-MPM, at each stage ct obeys the triangle inequality: ct(u, v) +
ct(v, w) ≥ ct(u,w). Finally, in the Max-MPM version, we consider that ct(e) is the profit
obtained by taking edge e (at time t). Then a solution sequence S has a matching profit
c(S) =

∑
t ct(Mt). We define the transition profit D(S) as D(S) =

∑
t≤T−1 Dt where

Dt = M · |Mt+1 ∩Mt| is proportional to the number of edges that remain between time t
and t+ 1. The goal now is to maximize c(S) +D(S). Notice that in Max-MPM, we may
no longer assume that the graphs are complete, since this assumption modifies the problem
(we get profit by maintaining an edge, even of profit 0, from one time step to the next one).

Related work. A model that is close to our setting is the reoptimization model of Schieber
et al. [15]. In their work, they are given a starting solution and a new instance and the goal
is to minimize the sum of the cost of the new instance and of the transition cost. The model
of multistage optimization that we use in this work has been studied earlier by Buchbinder et
al. [5] and Buchbinder, Chen and Naor [4] for solving a set of fractional problems. Eisenstat
et al. [7] studied a similar multistage optimization model for facility location problems. Their
main result was a logarithmic approximation algorithm, which was later improved to a
constant factor approximation by An et al. [1]. More broadly, many classical optimization
problems have been considered in online or semi-online settings, where the input changes over
time and the algorithm tries to adjust the solution (re-optimize) by making as few changes
as possible. We refer the reader to [2, 3, 6, 10, 13, 14] and the references therein.

As mentioned, Gupta et al. [11] studied the Multistage Maintenance Matroid problem for
both the offline and the online settings. Their main result was a logarithmic approximation
algorithm for this problem, which includes as a special case a natural multistage version of
Spanning Tree. The same paper also introduced the study of Min-MPM, which is the
main problem we study here. They showed that the problem becomes hard to approximate
even for a constant number of stages. More precisely, they showed the following result (n
denotes the number of vertices in the graphs).

I Theorem 1 ([11]). For any ε > 0, Min-MPM is not n1−ε-approximable unless P = NP .
This holds even when the costs are in {0,∞}, M = 1, and the number of time steps is a
constant.

Theorem 1 is proved for T = 8, starting from the fact that 3-colorability is NP-hard in
graphs of maximum degree 4 [8]. The authors leave as an open question the approximability of
the problem in bipartite graphs, and ask for subcases with better approximatibility behavior.

Our contribution. We answer the open question of [11] by showing that the problem is
hard to approximate even for bipartite graphs and for the case of two steps (T = 2). Then,
we focus on the case where the edge costs are metric within every time step (Metric-Min-
MPM). On the negative side, we prove that the problem remains APX-hard even if T = 2.
On the positive side, we show that Metric-Min-MPM admits a 3-approximation algorithm
for two and three stages. Finally, for the maximization version of the problem, Max-MPM,
we prove that it admits a constant factor approximation algorithm but is APX-hard.

2 Min-MPM for bipartite graphs

We answer the open question of [11] about the approximability of bipartite Min-MPM.

I Theorem 2. For any ε > 0, Min-MPM cannot be approximated within a factor of n1−ε,
even if the input has T = 2 time steps, the input graphs are bipartite, M = 1 and the costs
of edges are in {0,∞}, unless P=NP.

SWAT 2018

7:4 Multistage Matchings

Using infinite costs, the same result immediately holds for bipartite complete graphs, as well
as for complete graphs.

Proof. We give a gap-introducing reduction from Perfect 3DM (3-Dimensional Matching),
known to be NP-complete [9]. We are given an instance of Perfect 3DM which consists of
three sets X,Y, Z, with |X| = |Y | = |Z| = n, and a set Q of elements of X × Y × Z, with
|Q| = m ≤ n3. We are whether there exists a subset of n pair-wise disjoint elements of Q, or
not.

We construct an instance of our problem as follows: first, we create four sets of vertices
A,B,C,D with |A| = |B| = n and |C| = |D| = m. To ease notation suppose that the ele-
ments of our sets X,Y, Z,Q,A,B,C,D are labeled as {x1, . . . , xn}, {y1, . . . , yn}, {z1, . . . , zn},
{q1, . . . , qm}, {a1, . . . , an}, {b1, . . . , bn}, {c1, . . . , cm}, and {d1, . . . , dm} respectively.

For any j ∈ {1, . . . ,m} we construct a set of 2nd 4
ε e new vertices. We connect cj to dj

through a path traversing all these vertices (thus this is a path from cj to dj with 2nd 4
ε e + 2

vertices). We set the cost of all the internal edges of these paths for both time-steps to 0.
For all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} we do the following: if xi ∈ qj we set the cost of the

edge (ai, cj) to 0 in time step 1; if yi ∈ qj we set the cost of the edge (ai, cj) to 0 in time
step 2; if zi ∈ qj we set the cost of the edge (bi, dj) to 0 in both time steps. All other edge
costs are set to ∞ (or some other sufficiently large value). This completes the construction.
Observe that the new graph has 5n+ 3m+ 2mnd 4

ε e vertices, so at most C · n 4
ε+4 (for some

constant C) since m ≤ n3. Note also that the new graph is bipartite because the paths
that we added from cj to dj have odd lengths, hence the bipartition (A ∪D,B ∪ C) can be
extended to a bipartition of the whole graph.

Suppose that the original instance has a set Q′ ⊆ Q such that |Q′| = n and no element of
X ∪ Y ∪ Z appears in two elements of Q′. We obtain a multistage matching as follows: For
each qj ∈ Q′ such that qe = (xi1 , yi2 , zi3) we use the edge (ai1 , cj) in step 1, the edge (ai2 , cj)
in step 2, and the edge (bi3 , dj) in both time steps. Note that this fully specifies how the
vertices of A ∪B are matched. We now complete the matching by selecting a set of edges
from the paths connecting each cj to dj : if qj ∈ Q′, then both cj , dj have been matched
to A ∪B in both time steps, and we select in both time steps the unique perfect matching
of the path connecting them; if qj 6∈ Q′, then neither cj , dj is matched to A ∪ B in either
time step, so we select the perfect matching on the path from cj to dj , including these two
vertices. Observe that the cost of all edges we use is 0, while we only change at most n edges
from one time step to the other, hence the total transition cost is at most nM .

Suppose that the original instance does not have a solution and consider any multistage
matching in the new instance. We will show that it must make at least n 4

ε changes from one
time step to the other. We will say that qj ∈ Q is selected in time step 1, if in that time step
cj is matched to an element of A. If qj is selected in time step 1, then dj is matched to an
element of B in that time step, otherwise it would be impossible to have a perfect matching
on the path connecting cj to dj . If some qj is selected in time step 1, but not in time step 2,
then the solution must change all internal edges on the perfect matching on the path from
cj to dj , hence it makes at least n 4

ε changes, and we are done. What remains therefore to
show is that if the solution maintains the set of selected qj in the two time steps, then we
can construct a solution to the original instance. Indeed, since all of A ∪B is matched, we
have n selected qj ’s. Each element of C ∪D has at most one edge connecting it to A ∪B in
each step, hence if it is selected this edge must be used. But if we select qj1 , qj2 that overlap,
then two selected elements will have a common neighbor in A ∪B and will therefore not be
matched, contradiction.

Since the new graph has N vertices with n 1
ε ≤ N ≤ Cn

4
ε+4 vertices, it is NP-hard to

distinguish if the optimal is at most nM ≤ N εM or at least n 4
εM ≥ N1−εM/C. J

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:5

3 Metric-Min-MPM

We consider in this section that ct obeys the triangle inequality: ct(u, v) + ct(v, w) ≥ ct(u,w).
In particular, the graph is complete. As seen before, the problem is hard to approximate
even if there are only 2 time steps with general costs. We show here that while the problem
is APX-hard in the metric case even with only 2 time steps (Section 3.1), it admits a
3-approximation algorithm in this case (2 time steps), see Section 3.2. We then extend this
last result to the case of 3 time steps in Section 3.3.

3.1 APX-hardness for 2 time steps
In the case of 2 time steps the following result is proved.

I Theorem 3. Metric-Min-MPM is APX-hard, even if the input has T = 2 time steps.

Proof. We give a gap-preserving reduction from Max 3DM. We are given an instance of Max
3DM which consists of three sets X,Y, Z, with |X| = |Y | = |Z| = n, a set Q of elements
of X × Y × Z, with |Q| = m, and an integer k. We are asked if there exists a subset of k
pair-wise disjoint elements of Q. We assume that n, m and k are even (if not simply make two
independent copies of the initial instance). This problem is APX-hard even if the occurence
of each element is bounded above by a constant C = 3 [12]. Note that in this case the
optimum value is at least m/7 (greedy algorithm; at most 6 incompatible triplets are removed
when a triplet is chosen). So m, n and k are linearly related (3n ≥ m ≥ k ≥ m/7 ≥ n/21).

We construct an instance of Metric-Min-MPM as follows: first, we create five sets
of vertices X,Y, Z,G,D with X = {x1, . . . , xn}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn}, G =
{g1, . . . , gm} and D = {d1, . . . , dm}.

The graph is complete, and we set the following costs:
At time step 1, Z is seen as a single point very far from the rest of the graph: (zi, zj) has
cost 0 for zi, zj ∈ Z, and (zi, v) has infinite cost for zi ∈ Z, u 6∈ Z.
The same is done for X at time 2.
The m edges (gi, di) have cost 1 at both time steps.
For each triplet qi = (xj , yp, zs): at time 1 edges (xj , gi) and (di, yp) have cost a (a is a
sufficiently large constant, to be specified later), and, for the triangle inequality to hold,
(xj , di) and (gi, yp) have cost a+ 1. Similarly at time 2: (zs, gi) and (di, yp) have cost a,
and, for the triangle inequality to hold, (zs, di) and (gi, yp) have cost a+ 1.

All non yet defined costs are equal to 2a. The transition cost is M = 1. Figure 1 gives an
illustration of the construction.

Note that the triangle inequality holds in both time steps.
We show that (1) if there is a 3DM of size k then there exists a solution of Metric-Min-

MPM whose total cost is at most 2m+ 4an− k/2, and (2) conversely from a solution of the
multistage problem of total cost z we can construct a 3DM of size at least 2(2m+ 4an− z).
This proves APX-hardness since a is a constant, and m, n and k are linearly related.

Let us first prove (1), and suppose that we have a 3DM of size k, say (for ease of notation)
q1, . . . , qk where qi = (xi, yi, zi). Then we define a solution S of the multistage matching as
follows:

We take the (m− k) edges of triplets (gj , dj) not in the 3DM, at both time steps 1 and 2;
For qi, 1 ≤ i ≤ k: we take edges (xi, gi) at time 1, (zi, gi) at time 2, and (yi, di) at time 1
and 2.
We match together the (n− k) remaining vertices of Y , choosing the same n−k

2 edges at
both time steps.

SWAT 2018

7:6 Multistage Matchings

X

Q

G D Y

a

a

a

a

a

1

1

1

... ...

...

Figure 1 An illustration of the reduction at time t = 1, without representing Z - the construction
is symmetric for time step t = 2. The third element of X is in the first, third and last triplet of Q.
The second element of Y is in the second and third triplet. The dashed edges have costs a + 1. Not
represented edges have cost 2a..

We match together the (n − k) remaining vertices of X at time 1. At time 2 we keep
these n−k

2 edges and match the remaining k vertices of X together.
We do the same for Z.

We get a solution (M1,M2) whose costs are:
At time 1, the matching cost is (m− k) + 2ak + 2an−k2 + 2an−k2 = m+ 2an− k;
The matching cost at time 2 is the same.
The number of modifications is 3k/2: k edges (xi, gi) become (zi, gi), and k/2 edges in Z
disappear at time 1 (k/2 edges appear in X at time 2).

In all, (M1,M2) has cost 2m+ 4an− k/2.

Conversely, suppose that we have a solution (M0
1 ,M

0
2) of total cost z for the instance

of Metric-Min-MPM. We first structure this solution using local modifications, and then
show how to derive a matching from it.

Replacement 1. First, suppose that M0
1 takes (at time 1) an edge (xj , gi) of cost 2a - so

xj is not in the i-th triplet qi of Q. Then di is matched with a vertex v with an edge
of cost at least a. By replacing (at time 1) (xj , gi) and (di, v) by (xj , v) and (gi, di) we
get a matching cost for these two edges at most 2a + 1 instead of (at least) 3a. Even
considering that the transition cost may have increased by two, this replacement does
not increase the cost of the solution for a ≥ 3. The same argument applies for an edge
(xj , di) (time step 1), an edge (yj , di) or (yj , gi) (time step 1 or 2) and for an edge (zj , gi)
or (zj , di) in M0

2 .
Replacement 2. Now, suppose that M0

1 takes an edge of cost 2a in G ∪D, say (gi, gj)
with i 6= j (the very same argument works for the 2 other cases (gi, dj) and (di, dj)).
Let v and w be the neighbors of di and dj in M0

1 . By replacing the three edges (gi, gj),
(di, v) and (dj , w) by (gi, di), (gj , dj) and (v, w), we get a matching cost at most (2a+ 2)
instead of (at least) 4a. Even considering that the transition cost may have increased by
three, this replacement does not increase the cost of the solution for a ≥ 5/2. The same
holds for M0

2 .

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:7

Replacement 3. Last, suppose that edges (yj , gi) and (ys, di) are both taken at time 1
and 2. This costs 2(a + a + 1) = 4a + 2. Then we can take instead edges (gi, di) and
(yj , ys) at both time steps, with the same cost 2 + 2(2a) = 4a+ 2.

In this way, we transform (M0
1 ,M

0
2) into a solution (M1,M2) of cost at most z such that:

No gi (and no di) is matched using an edge of cost 2a (replacements 1 and 2).
gi and di cannot be both matched to the same vertices at time 1 and 2, unless they are
matched together (replacement 3).

We now show how to find a 3DM from this solution (M1,M2). Let:
Nx and Nz be respectively the number of edges in X×(G∪D) at time 1 and in Z×(G∪D)
at time 2.
N1
y and N2

y be respectively the number of edges in Y × (G ∪D) at time 1 and time 2,
among which λ1 (resp., λ2) are of cost a+ 1.
Ny be the number of edges in Y × (G ∪D) that are taken at both times 1 and 2.

At time 1, besides these Nx + N1
y edges and the n/2 edges of cost 0 (vertices of Z), the

other edges of (M1,M2) have cost either 1 (edges (gi, di)) or 2a. Since Nx +N1
y vertices in

G∪D are already matched at time 1, there are at most 2m−Nx−N1
y

2 edges of cost 1 at time 1.
Similarly, there are at most 2m−Nz−N2

y

2 edges of cost 1 at time 2.
Then, computing the matching cost of (M1,M2) we have

c(M1,M2) ≥ a
(
Nx +Nz +N1

y +N2
y

)
+ λ1 + λ2 +

4m−Nx −Nz −N1
y −N2

y

2

+2a
(
n−Nx + n−N1

y + n−Nz + n−N2
y

2

)

≥ 2m+ 4na+ λ1 + λ2 −
Nx +Nz +N1

y +N2
y

2 .

Now, note that at time 1 at least Nx +N1
y −Ny + Nz

2 edges disappear, so D(M1,M2) ≥
Nx + N1

y − Ny + Nz
2 . Similarly, at least Nz + N2

y − Ny + Nx
2 edges appear at time 2. So

D(M1,M2) ≥ Nz +N2
y −Ny + Nx

2 . Then,

D(M1,M2) ≥
Nx +Nz +N1

y +N2
y

2 −Ny + Nx +Nz
4 .

This gives:

z ≥ c(M1,M2) +D(M1,M2) ≥ 2m+ 4na+ λ1 + λ2 −Ny + Nx +Nz
4 .

Now, consider the set of indices i such that edge (yj , di) is taken at both time steps, or
edge (yj , gi) is taken at both time steps. Since, thanks to the preprocessing, for a given i
this cannot concern both di or gi, we know that there are exactly Ny such indices (edges).
Since there are λ1 + λ2 edges of cost a+ 1 between Y and G∪D, among these Ny indices at
least Ny − (λ1 + λ2) are such that: (1) edge (di, yj) is used at both time steps (2) an edge
(xs, gi) of cost a is used at time 1 (since no edge of cost 2a is used for vertices in G) and (3)
an edge (zp, gi) of cost a is used at time 2.

In other words these at least Ny − (λ1 + λ2) indices correspond to triplets of a 3DM. So
we have a 3DM of size (at least) k = Ny − (λ1 + λ2). Then, Nx ≥ Ny − (λ1 + λ2) = k and
similarly Nz ≥ k, so Nz+Nx

4 ≥ k
2 . All together, we get

z ≥ 2m+ 4an− k + k

2 = 2m+ 4an− k

2 . J

SWAT 2018

7:8 Multistage Matchings

3.2 A 3-approximation algorithm for 2 time steps
We now devise an approximation algorithm. Informally, this algorithm first guesses the
number k of edges that an optimal solution keeps between steps 1 and 2. Then it computes
a set of k edges with low matching cost that it maintains between time 1 and 2. Finally,
it completes this set of k edges into two perfect matchings, in such a way that, using the
triangle inequality, the matching cost does not increase too much.

Formally, the algorithm Metric2 runs the following procedure for k from 0 to n/2.

1. Let G1+2 be the graph where the edge costs are c(u, v) = c1(u, v) + c2(u, v). Compute a
minimum cost matching Mk of size exactly k in G1+2.

2. Compute a minimum cost perfect matching M1 in G1, and a minimum cost perfect
matching M2 in G2.

3. Consider the symmetric difference of the two matchings Mk and M1 in G1. This is a
(vertex disjoint) set of paths P1, . . . , Pp and cycles. Define Mk

1 as Mk plus the p edges
linking the first vertex and last vertex of each path Pj .

4. Do the same to get Mk
2 .

5. Consider Sk = (Mk
1 ,M

k
2).

Metric2 outputs the best solution Sk.

I Theorem 4. Metric2 is a (polytime) 3-approximation algorithm for Metric-Min-MPM
when T = 2.

Proof. We first prove that Sk is a feasible solution, i.e., Mk
i is a perfect matching of Gi.

Since Mi is a perfect matching, in all paths Pj the first and last edges belong to Mi. Hence
the first and last vertices are not covered by Mk, so Mk

1 is a matching. Every other vertex is
covered by Mk, so the matching is perfect.

Now, let us prove the claimed approximation ratio. Let us denote S∗ = (M∗1 ,M∗2) be an
optimal solution, and consider Sk where k = |M∗1 ∩M∗2 |.

Since at least Mk is common between Mk
1 and Mk

2 , at least k edges are maintained
between time 1 and 2 in Sk, as in S∗. So:

D(Sk) ≤ D(S∗). (1)

Now, let us prove that:

c1(Mk
1) + c2(Mk

2) ≤ 3c1(M∗1) + 3c2(M∗2). (2)

Thanks to the triangle inequality, in a path P = (v0, v1, . . . , vt), ci(v0, vt) ≤
∑
j ci(vj , vj+1):

when adding edges (v0, vt) we add in total at most the total length of the paths, hence at
most ci(Mi) + ci(Mk). So ci(Mk

i) ≤ ci(Mi) + 2ci(Mk). Using that ci(Mi) ≤ ci(M∗i), we get:

c1(Mk
1) + c2(Mk

2) ≤ c1(M∗1) + c2(M∗2) + 2(c1(Mk) + c2(Mk)).

By optimality of Mk and since S∗ has k common edges between times 1 and 2, these k
common edges induce a cost in S∗ at least c1(Mk) + c2(Mk). Then:

c1(Mk
1) + c2(Mk

2) ≤ c1(M∗1) + c2(M∗2) + 2(c1(M∗1) + c2(M∗2))

and Equation 2 follows. From Equations 1 and 2 we derive:

c(S) +D(S) ≤ 3c(S∗) +D(S∗).

The result immediately follows. J

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:9

3.3 A 3-approximation algorithm for 3 time steps
We now extend the previous result to the case of T = 3. As previously, if an optimal solution
preserves in total k edges (operates in total n− k modifications between time steps 1 and 2,
and 2 and 3) we would like to first compute a set of k ‘preserved’ edges inducing a low cost,
and then to complete this set as perfect matchings in each of the time steps. Now things get
more complex since an edge can be preserved between steps 1 and 2, between steps 2 and 3,
or during the whole process. It seems hard to mimic an optimal solution on these 3 types of
edges (while inducing a low matching cost), but this difficulty can be overcome as follows.

Let G be the graph with edge cost w = min{c1 + c2 + c3, c1 + c2 +M, c2 + c3 +M}. If
the minimum is c1 + c2 + c3 (resp., c1 + c2 +M , c2 + c3 +M) we say that the edge is of type
1 (resp., 2, 3). Intuitively, edges of type 1 will be taken in steps 1, 2 and 3, edges of type
2 (resp., 3) will be taken in steps 1 and 2 (resp., 2 and 3). We present a 3-approximation
algorithm Metric3. It runs the following procedure for k from 0 to n/2.

1. Compute a minimum cost matching Mk of size exactly k in G. Denote Mk
1 the set of

edges of Mk of type 1 or 2, Mk
2 = Mk and Mk

3 the set of edges of Mk of type 1 or 3.
2. Compute a minimum cost perfect matching Mi in Gi, i = 1, 2, 3.
3. Consider the symmetric difference of the two matchings Mk

i and Mi in Gi. This is a
(vertex disjoint) set of paths P1, . . . , Pp and cycles. Define M ′ki as the set of p edges
linking the first vertex and last vertex of each path Pj .

4. Consider Sk = (Mk
1 ∪M ′k1 ,Mk

2 ∪M ′k2 ,Mk
3 ∪M ′k3).

Then Metric3 outputs the best solution Sk.

I Theorem 5. Metric3 is a (polytime) 3-approximation algorithm for Metric-Min-MPM
when T = 3.

Proof. We first note that, as in the case for T = 2 time steps, Mk
i ∪M ′ki is a perfect matching

of Gi, so Sk is a feasible solution.
Now let us deal with the approximation ratio. Let S∗ = (M∗1 ,M∗2 ,M∗3) be an optimal

solution. Let us consider the set H = (M∗1 ∩M∗2)∪ (M∗2 ∩M∗3) of edges in S∗ that are in (at
least) two consecutive steps. Note that H is a matching (it is included in M∗2). Consider Sk
where k = |H|. We now prove the following result:

I Lemma 6. D(Sk) +
∑
i ci(Mk

i) ≤ D(S∗) + c(S∗).

Proof. To prove this, let k1 = |M∗1 ∩M∗2 ∩M∗3 | be the number of edges in S∗ that are taken
at each of the 3 time steps. Hence, k − k1 edges are taken at (only) 2 consecutive time steps.
So there are (n/2 + n/2− 2k1 − (k − k1)) modifications in total, and:

D(S∗) = M(n− k − k1). (3)

Recall that in G, w = min{c1 + c2 + c3, c1 + c2 +M, c2 + c3 +M}. k1 edges of H are present
on the 3 time steps (matching cost c1 + c2 + c3), while k − k1 are present in two consecutive
time steps (matching cost c1 + c2 or c2 + c3).

w(H) ≤ c(S∗) +M(k − k1). (4)

Similarly, let λ1 be the number of edges of type 1 in Mk. There are (k − λ1) edges of
type 2 or 3, hence

w(Mk) =
∑
i

ci(Mk
i) +M(k − λ1). (5)

SWAT 2018

7:10 Multistage Matchings

Indeed, in G cost c1 applies to edges of type 1 and 2 (c1(Mk
1)), cost c2 applies to all edges of

Mk (c2(Mk
2)), cost c3 applies to edges of type 1 and 3 (c3(Mk

3)), and cost M to the (k − λ1)
edges of type 2 and 3.

Also, the number of preserved edges in Sk is at least k + λ1, so:

D(Sk) ≤M(n− k − λ1). (6)

Since H is a matching, in G we have w(H) ≥ w(Mk). This gives using Equations 4 and 5:∑
i

ci(Mk
i) +M(k − λ1) ≤ c(S∗) +M(k − k1)

so
∑
i ci(Mk

i) ≤ c(S∗) +M(λ1 − k1). Then using Equations 3 and 6 we get:∑
i

ci(Mk
i) +D(Sk) ≤ c(S∗) +M(λ1 − k1) +M(n− k − λ1) = c(S∗) +M(n− k − k1)

= c(S∗) +D(S∗)

which concludes the proof of Lemma 6. J

Now, by triangle inequality, and the fact that ci(Mi) ≤ ci(M∗i), we know that:

ci(M ′ki) ≤ ci(M∗i) + ci(Mk
i). (7)

Then, from Lemma 6 and Equation 7 we get:

c(Sk) +D(Sk) =
∑
i

(ci(Mk
i) + ci(M ′ki)) +D(Sk) ≤

∑
i

(2ci(Mk
i) + ci(M∗i)) +D(Sk)

≤ c(S∗) + 2
(∑

i

ci(Mk
i) +D(Sk)

)
≤ 3c(S∗) + 2D(S∗).

The result follows. J

4 Max-MPM

In the maximization version, we consider that ct(e) is the profit obtained by taking edge e (at
time t). Then a solution sequence S has a matching profit c(S) =

∑
t ct(Mt). We define the

transition profit D(S) as D(S) =
∑
t≤T−1 Dt where Dt = M · |Mt+1 ∩Mt| is proportional

to the number of edges that remain between time t and t+ 1. The goal now is to maximize
c(S) + D(S). Recall that in the maximization version we may no longer assume that the
graphs are complete.

4.1 APX-hardness for 2 time steps
We first show that Max-MPM, even in the case of 2 time steps is APX-hard.

I Theorem 7. Max-MPM is APX-hard even if T = 2.

Proof. As previously, we consider the maximum 3DM problem in the case where the
occurrence of each element is bounded by 3, hence the optimal value, the number of triplets
and the size of the ground sets are linearly related.

Given three sets X,Y, Z each of size n, and m triplets qi of X × Y × Z, we build two
graphs G1 and G2 with n′ = 2m+ 4n vertices:

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:11

4 sets D,E, F,G of size n;
2 sets A = {a1, . . . , am} and B = {b1, . . . , bm} of size m.

Vertices of D will represent elements of X, vertices of E and F elements of Y (twice), vertices
of G elements of Z. Each triplet qi is represented by one edge (ai, bi) in both graphs. It has
cost 0.

If a triplet qi is (xj , yk, zl) then:
In G1 we put edges (dj , ai) and (bi, ek), both with cost M ′;
In G2 we put edges (fk, ai) and (bi, zl), both with cost M ′.

Note that vertices in F,G have degree 0 in G1, vertices in D,E have degree 0 in G2.
We fix M ′ = M+1

4 , and M ≥ 3.
Let us show that there is a 3DM of size (at least) k if and only if there is a solution of

profit at least Mm+ k.
Suppose first that there is a set S of k independent triplets. Then we build matchings

(M1,M2) as follows:
if qi is not in S, we take (ai, bi) both inM1 andM2. This gives transition profitM(m−k).
if qi = (xj , yk, zl) is in S, then we take in M1 the two edges (dj , ai) and (bi, ek), and in
M2 the two edges (fk, ai) and (bi, zl). This gives a matching profit 4kM ′.

Note that since any element of X,Y, Z is in at most one triplet of S, vertices in D,E, F,G
are adjacent to at most one chosen edge. In other words M1 and M2 are matchings.

The profit of the solution is 4kM ′ +M(m− k) = k(M + 1) +M(m− k) = Mm+ k.
Suppose now that there is a solution (M1,M2) of profit at least Mm+ k. Suppose first

that there is an edge (ai, bi) which is in M1 but not in M2. Then we get no transition profit
for this edge. In M2 we have taken at most one edge incident to ai, and one edge incident
to bi, with matching profit at most 2M ′. Since these edges are not in G1 they cannot give
transition profit. So we can put in M2 the edge (ai, bi) and remove the edges incident to ai
and bi (if any). The profit increases by M − 2M ′ = M/2− 1/2 ≥ 0.

So we can assume that M1 and M2 have the same set of edges between A and B.
Suppose now that there are two edges (ai, bi) and (as, bs) both not in M1 (equiv. not in M2)
corresponding to two intersecting triplets. Suppose for instance that xj is in both triplets.
This means that in M1 we cannot take both edges (cj , ai) and (cj , as), for instance (cj , as) is
not in M1. Then we can add (as, bs) is M1 and M2, and remove the (at most) 3 incident
edges. This increases profit by M − 3M ′ ≥ 0.

So, the set of edges (ai, bi) not in M1 (or not in M2) corresponds to a set of independent
triplets. Let t the number of such edges. Since M1 is a matching, besides these edges between
A and B, there is at most two edges for each (ai, bi) not in M1. Similarly, there is at most
two edges in M2 for each (ai, bi) not in M2. So the matching profit is at most 4tM ′, and
the transition profit is M(m− t). The profit is M(m− t) + 4tM ′ = Mm+ t ≥Mm+ k. So
t ≥ k. J

4.2 Constant factor approximation algorithms
I Theorem 8. Max-MPM is 1/2-approximable. If T = 2 it is 2/3-approximable, if T = 3
it is 3/5-approximable.

Proof. Note that if the graphs are assumed to be complete (bipartite complete) then the
ratio 1/2 is easily achievable. Indeed, consider two solutions:

The first one S1 consisting of the same perfect matching M0 at all time steps;
The second one S2 consisting of a matching M̂t of maximum profit on Gt for each t.

SWAT 2018

7:12 Multistage Matchings

Output the best one.
Let S∗ = (M∗1 , . . . ,M∗T) be an optimal solution. Clearly the profit of S1 is at least the

transition profit D(S∗) of S∗. Also, c(M∗i) ≤ c(M̂i) so the matching profit of S∗ is at most
the one of S2. The ratio 1/2 follows.

If the graphs are not assumed to be complete things get harder since one cannot trivially
optimize the transition profit by keeping a perfect matching along the multistage process.

Let us consider three consecutive time steps t− 1, t, t+ 1. Let us consider the graph G′t
which is the same as Gt up to the profit on edges, which is now c′t(e) where:
1. c′t(e) = ct(e) + 2M if e is in Gt−1 and Gt+1;
2. otherwise, c′t(e) = ct(e) +M if e is in Gt−1 or Gt+1;
3. otherwise c′t(e) = ct(e).
Let us consider a matching M ′t of maximum profit in G′t.

I Lemma 9. c′t(M ′t) ≥ Dt−1(S∗) + ct(M∗t) +Dt(S∗).

Proof. Let us consider the profit of M∗t on G′t. Since the set of edges preserved from time
t − 1 to time t is included in M∗t , the profit Dt−1(S∗) appears in the profit of M∗t on G′t
(+M on each common edges between the two consecutive graphs). This is also the case
for Dt(S∗), for the same reason. Of course, the profit ct(e) appears as well. Since M ′t is of
maximum profit, the Lemma follows. J

Because of Lemma 9, choosing the matching M ′t at time steps t − 1, t and t + 1 in a
solution generates a profit at least Dt−1(S∗) + ct(M∗t) +Dt(S∗).

Note that, with similar arguments, if two times steps t, t+ 1 are involved, we can compute
a matching Hi that we take at time steps t, t+ 1 generating a profit at least ct(M∗t) +Dt(S∗).
Symmetrically, we can compute a matching H ′i that we take at time steps t, t+ 1 generating
a profit at least ct+1(M∗t) +Dt(S∗).

Now we consider the following 2 solutions:
S1 consists of choosing H1 at steps 1, 2, H3 at step 3, 4, If T is even then we are
done, otherwise we take an optimal matching M̂T at step T .
S2 consisting of choosing an optimal matching M̂1 at step 1, then H2 at steps 2, 3, H4 at
steps 4, 5,. . . . If T is even we take an optimal matching M̂T at step T .

Output the best of these two solutions. Then: S1 covers the transition profit of an optimal
solution Dt for t odd, plus the matching profits for t odd. S2 covers the transition profit of
an optimal solution Dt for t even, plus the matching profits for t even. The ratio 1/2 follows.

Improvement for T = 3. The previous solutions S1 and S2 have profit (respectively) at
least c1(S∗) +D1(S∗) + c3(S∗) and c1(S∗) +D2(S∗) + c2(S∗). S3 takes M̂1 at step 1 and H ′2
at time steps 2 and 3, with profit at least c1(S∗) +D2(S∗) + c3(S∗); S4 takes H ′1 at steps 1
and 2, and M̂3 at step 3, with profit at least D1(S∗) + c2(S∗) + c3(S∗). S5 uses M ′2 at the 3
steps with profit at least D1(S∗) + c2(S∗) +D2(S∗) (thanks to Lemma 9). Take the best of
these 5 solutions, and the ratio follows.

Improvement for T = 2. Simply take 3 solutions: S1 is defined as previously, with profit
at least c1(S∗) +D1(S∗). S2 takes H ′1 at both steps with profit at least D1(S∗) + c2(S∗). S3
consists of one optimal matching at step 1, and an optimal matching at step 2, with profit at
least c1(S∗) + c2(S∗). The ratio 2/3 follows. J

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:13

5 Concluding remarks

Following the results of Section 3, we leave as an open question the existence of a constant
factor approximation algorithm for the metric case for a number of time steps bigger than 3.
Also, we considered here an off-line version of the problem where the whole set of instances
is known in advance. It would be worth investigating the on-line case where data are not
known in advance.

References
1 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via

exponential clocks. ACM Trans. Algorithms, 13(2):21:1–21:20, 2017.
2 Barbara M. Anthony and Anupam Gupta. Infrastructure leasing problems. In IPCO,

volume 4513 of Lecture Notes in Computer Science, pages 424–438. Springer, 2007.
3 Nicolas K. Blanchard and Nicolas Schabanel. Dynamic sum-radii clustering. In WALCOM,

volume 10167 of Lecture Notes in Computer Science, pages 30–41. Springer, 2017.
4 Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive analysis via regularization.

In SODA, pages 436–444. SIAM, 2014.
5 Niv Buchbinder, Shahar Chen, Joseph Naor, and Ohad Shamir. Unified algorithms for

online learning and competitive analysis. Math. Oper. Res., 41(2):612–625, 2016.
6 Edith Cohen, Graham Cormode, Nick G. Duffield, and Carsten Lund. On the tradeoff

between stability and fit. ACM Trans. Algorithms, 13(1):7:1–7:24, 2016.
7 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving

metrics. In ICALP (2), volume 8573 of Lecture Notes in Computer Science, pages 459–470.
Springer, 2014.

8 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
problems. In STOC, pages 47–63. ACM, 1974.

9 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

10 Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a
constant-competitive steiner tree online. SIAM J. Comput., 45(1):1–28, 2016.

11 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization
for matroids and matchings. In ICALP (1), volume 8572 of Lecture Notes in Computer
Science, pages 563–575. Springer, 2014.

12 Viggo Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf.
Process. Lett., 37(1):27–35, 1991.

13 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse
for online MST and TSP. SIAM J. Comput., 45(3):859–880, 2016.

14 Chandrashekhar Nagarajan and David P. Williamson. Offline and online facility leasing.
Discrete Optimization, 10(4):361–370, 2013.

15 Baruch Schieber, Hadas Shachnai, Gal Tamir, and Tami Tamir. A theory and algorithms
for combinatorial reoptimization. Algorithmica, 80(2):576–607, 2018.

SWAT 2018

	Introduction
	Min-MPM for bipartite graphs
	Metric-Min-MPM
	APX-hardness for 2 time steps
	A 3-approximation algorithm for 2 time steps
	A 3-approximation algorithm for 3 time steps

	Max-MPM
	APX-hardness for 2 time steps
	Constant factor approximation algorithms

	Concluding remarks

