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—— Abstract

We study generalizations of convex hulls to polygonal domains with holes. Convexity in Euclidean
space is based on the notion of shortest paths, which are straight-line segments. In a polygonal
domain, shortest paths are polygonal paths called geodesics. One possible generalization of convex
hulls is based on the “rubber band” conception of the convex hull boundary as a shortest curve
that encloses a given set of sites. However, it is NP-hard to compute such a curve in a general

polygonal domain. Hence, we focus on a different, more direct generalization of convexity, where
a set X is geodesically convez if it contains all geodesics between every pair of points z,y € X.
The corresponding geodesic convexr hull presents a few surprises, and turns out to behave quite
differently compared to the classic Euclidean setting or to the geodesic hull inside a simple
polygon. We describe a class of geometric objects that suffice to represent geodesic convex hulls
of sets of sites, and characterize which such domains are geodesically convex. Using such a
representation we present an algorithm to construct the geodesic convex hull of a set of O(n)
sites in a polygonal domain with a total of n vertices and h holes in O(n®h3*¢) time, for any
constant € > 0.
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1 Introduction

Convexity is a fundamental concept in geometry and optimization, and computing the convex
hull of a point set in the plane is a classic textbook problem in algorithm design. The convex
hull of a set S C R? is usually defined as the inclusion-minimal convex set that contains S,
and showing that this statement is well-defined is a textbook exercise in itself. If S is finite,
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Convex Hulls in Polygonal Domains

Figure 1 Two possible definitions of “convex hull” in a polygonal domain. The domain is shown
in white, obstacles in gray, and sites are shown as blue dots. The left image depicts the relative hull,
bounded by a curve of minimum length that separates the set of sites from the boundary. The right
image depicts the definition we will use in this paper: an inclusion-minimal subset of the domain
that contains all sites and all shortest paths between any two of its points.

the convex hull of S is a convex polygon. The boundary of this polygon describes the shortest
path enclosing S, yielding an equivalent definition of the convex hull.

The definition of convexity builds on shortest paths: a set X is convex if for every pair
x,y € X the shortest path between x and y is contained in X. Hence, convexity directly
generalizes to any domain that has a notion of a shortest path. In the Euclidean setting,
shortest paths are straight-line segments. But there is a variety of other domains that have a
sensible notion of a shortest path. Specifically, shortest paths inside a simple polygon have
been studied in the computational geometry literature.

A set R is called geodesically convex w.r.t. a polygon P if the shortest path in P between
two points in R is also contained in R. Toussaint [20] studied how properties of point sets
extend to geodesic environments. He introduced the geodesic convex hull of a set of points
(called sites) inside a simple polygon P; it is the inclusion-minimal geodesically convex set
containing the sites. Among several results, he showed how to compute the geodesic convex
hull of k sites in a simple n-gon in O((n + k)log(n + k)) time. Note that the geodesic
convex hull properly generalizes the convex hull of a point set S; if we choose P to be, say, a
bounding box of S, we obtain the convex hull of S.

A classic metaphor for the convex hull boundary is a “rubber band”, describing the
continuous transformation of a curve containing the sites to a homotopy-equivalent curve of
minimal length. For geodesic convex hulls within a simple polygon P, the boundary 9P is
equivalent to the shortest cycle that separates the sites from 9P [20]. However, if we consider
sites in a polygonal domain with holes, this correspondence does not generalize.

We thus face (at least) two different ways to generalize the concept of a convex hull to
general polygonal domains. On the one hand, we have the (geodesic) convex hull as an
inclusion-minimal geodesically convex set that contains all sites (and may enclose holes). On
the other hand, we have a shortest curve that separates the sites from the boundary, also
called the relative hull of the sites. See Figure 1 for illustrations.

Both generalizations are interesting in their own right. The former definition is much
more directly tied to the notions of convexity and shortest paths. Therefore this is how
we propose to generalize the concept convexr hull to general polygonal domains. The latter
definition using relative hulls turns out rather unwieldy. For a set S of general sites inside a
polygonal domain, a relative hull is not necessarily unique and NP-hard to compute. This
follows from a slight modification of a result by Eades and Rappaport [12], who show that
it is NP-hard to find the shortest curve separating two point sets. (A reduction from the
rectilinear Steiner tree problem is also straightforward.)
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Related work. Relative hulls have been studied in general polygonal domains, but only
for a set of connected sites. Given a set of disjoint simple polygons with n vertices overall,
de Berg [10] showed how to compute the shortest curve that separates one of these polygons
from the others in O(nlogn) time. Effectively, the algorithm computes the shortest cycle
within a polygonal domain that separates a polygon P from the boundary. The proof directly
generalizes to the case where P is an arbitrary outerplane graph. In a similar fashion, Mitchell
et al. [18] compute the relative hull of paths in polynomial time.

In addition to Toussaint’s generalization of the diameter, center, and median to the
geodesic setting [20], separators [11], ham-sandwich cuts [7], spanning trees, Hamiltonian
cycles and perfect matchings [6] have been generalized to point sites in simple polygons.
Any concept defined on the order type of a point set allows for a generalization [2]. In
general polygonal domains, the complexity of these problems increases substantially. Many
problems become NP-hard, and where polynomial algorithms are known, the known bounds
are nowhere near to what is known for simple polygons. For example, the diameter and center
of a simple polygon can be computed in linear time [1, 14]. However, for a general domain,
the best known algorithms use O(n""3) [3] and O(n'!logn) [4, 21] time, respectively.

Computing shortest paths in polygonal domains has been an active area of research
(cf. [17]). While a single shortest path can be computed in O(nlogn) time [15], data structures
that support two-point shortest path queries in logarithmic time require a significant storage
overhead. The state of the art data structure, allowing O(logn) query time, uses O(n'!)
space and preprocessing time [9]. For points on the boundary of the domain, Bae and
Okamoto [5] presented a data structure with logarithmic query time using O(n5¢) space
and preprocessing time. A variant of their result is used as a subroutine in our algorithm.

Generalizations of convex hulls of point sets have also been considered in other settings.

For example, Lubiw et al. [16] consider convex hulls in 2-dimensional globally non-positively
curved polyhedral complexes. Such spaces have a unique shortest path between any two
points. They pose as an open problem the study of convexity in domains where more than
one shortest path between two points may exist. Our work is a step in this direction.

Results. We consider the inclusion-minimum geodesically convex set that contains a given
set of sites in a polygonal domain. It is the first study of this natural generalization of convex
hulls. Not even domains with a single hole have been considered so far (see also [16], where
the problem is mentioned). It turns out that the problem of computing the geodesic convex

hull within a polygonal domain is significantly more complex than within a simple polygon.

Within a simple polygon, the structure of the geodesic convex hull only depends on the order
type of the sites and the vertices, i.e., the orientation of point triples. In general polygonal
domains, the homotopy of the shortest path between two sites depends on actual distances

between sites and vertices. In particular, all direct attempts to discretize the problem failed.

The examples given in Section 2 illustrate the differences to classic convexity and demonstrate
how naive attempts to compute the geodesic convex hull fail.

As a main result, we characterize geodesically convex sets. To this end, we define a class
of geometric objects, called cactus domains, and show that this class contains all geodesic
convex hulls of finite sets of sites inside polygonal domains. More specifically, we use two
concepts (called divisibility and tightness), and show that they are sufficient and necessary
for a cactus domain to be geodesically convex. We provide algorithms to efficiently test both
properties, resulting in a polynomial-time algorithm to compute geodesic convex hulls.

» Theorem 1. Let P be a polygonal domain with n vertices and h holes, and let S C P be a
set of O(n) sites. The geodesic convex hull of S in P can be computed in O(n3h3+e) time.

8:3
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Convex Hulls in Polygonal Domains

While the running time of our algorithm might look high at first sight, it must be
compared with algorithms and data structures that encode all geodesic paths in polygonal
domains. In this direction, one must consider the state-of-the-art structure developed by
Chiang and Mitchell [9] that uses O(n'!) space and preprocessing time; or the structure
of Bae and Okamoto [5] using O(n®¢) space and preprocessing time for paths connecting
points on the boundary. While no lower bounds are known, it is clear that the complexity of
these problems is high and still far from being understood.

To improve upon the running time stated in Theorem 1, more structural insights would
be required. As a first step in this direction, one could ask if a simpler algorithm can be
designed to test whether a point lies in the geodesic convex hull of a set of sites in a polygonal
domain.

2 Preliminaries

Polygonal domains. A simple polygon is a compact subset of R? that is bounded by a simple
closed curve formed by a finite number of line segments. For a simple polygon P denote by
V(P) the set of its vertices, by int(P) the interior of P, and by 0P its boundary. A polygonal
domain P is defined by a finite collection (P, Py, ..., Py) of h + 1 simple polygons with the
following properties: (1) P; C int(Fy), for each ¢ > 0, and (2) P,NP; = 0, for all 4, j > 0 with
1 # 7. We say that Py and 0P, are the outer polygon and outer boundary of P, respectively.
The boundary of P is 9P = |J!_, OP;, the interior of P is int(P) = int(Py) \ U}, P;, the
vertices of P are V(P) = UfZOV(Pi), and collectively P = int(P) UdP. The polygons
Py, ..., Py, are also referred to as holes of P. We also use the notation P = (Py, P1,..., P)
to indicate that P is defined by the polygons Py, P, ..., P, (although in principle we regard
P as a subset of the plane rather than a tuple of polygons).

Geodesic convex hulls. In the following consider a polygonal domain P with n vertices.
For two points x,y € P denote by IIp(x,y) the set of geodesics between = and y in P. That
is, every element of IIp(z,y) is a curve from x to y that is contained in P and corresponds
to a shortest path between = and y (among all curves between x and y in P). A set K C P
is geodesically convex (in P) if, for every z,y € K, all geodesics in IIp(x,y) are contained
in K. For S C P, the geodesic convex hull, or simply G-hull of S in P, is the (inclusion)
minimum geodesically convex set GHp(S) C P that contains S. In this paper, we study the
case in which S consists of a finite set of O(n) points (called sites).

One way to conceive the G-hull of S is to start with Cy = S and iteratively add more
points as follows. In the i-th step, for every pair of points z,y € C;_; (possibly infinitely
many) take all geodesics in IIp(x,y) and add them to the new set C;. Continue until
C; = C;_1 at the end of some step. Note that this procedure as described is not an algorithm
because (i) the number of pairs/geodesics to consider is not finite in general and (ii) it is not
clear whether the procedure terminates after a finite number of steps.

Visibility graphs and shortest path maps. Every geodesic in IIp(z,y), for z,y € S, forms
a path in the visibility graph Visp(S) of S with respect to P. This graph is defined on the
vertex set V' =S UV(P) and two vertices x,y € V are visible and connected by an edge in
Visp(9) if the relative open line segment 7y \ {z, y} is contained in P\ V. For given P and
S, the graph Visp(S) can be computed in O(|V|?) time and space [22].

For a point s € P, the shortest path map (SPM) for s is the subdivision of P into cells to
which the geodesic from s passes through the same sequence of vertices of P. There are O(n)
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Figure 2 No site appears in the boundary (left). In the middle figure there is no way of partitioning
the four sites so that the convex hulls of the two sets intersect. To the right, the top point (cross)
belongs to the G-hull of the four sites, but it is not included in the G-hull of any three sites. The
geodesics between pairs of sites are shown in black.

d(v,v') = 14.5
d(a,a’) =18 < d(a,v) + d(v,v") + d(v',a’) = 19.5
d(b,b") =5+ 10+ 14.5 = 19.79

<20 =d(b,a) 4+ d(a,a’) + d(a’,b")
d(a,d) =20 < d(a,v) + d(v,v’") + d(v', ') =~ 20.33
d(a’,c) =20 < d(a’,v") + d(v,v") + d(v,c) = 20.1
d(a,b") =19 < d(a,v) + d(v,v") + d(v', V") ~ 19.73
d(a’,b) =19 < d(a’,v’") + d(v,v") + d(v,b) ~ 19.66

Figure 3 A partial drawing of a domain (violet), in which eight points have been highlighted.

The geodesic between b and b’ passes through v and v’, while the geodesics between pairs a and a’
or ¢ and ¢’ do not pass through v or v'. The function d(-,-) denotes the geodesic distance.

such cells, and the boundaries between these cells are formed by curves of constant algebraic
degree. Hershberger and Suri [15] provide an O(nlogn) time algorithm to construct the
SPM for a given point s. Given the SPM for s, we can compute the geodesic distance from s
to any query point p € P in O(logn) time using point location. In the same time, we can
also get the first and last vertex (other than s and p, if any) of some path in IIp(s, p).

Remarkable properties of g-hulls. Figure 2 depicts a polygon P with all sites in the interior
of GHp(S), as well as an example where an analogue of Radon’s Theorem does not hold, i.e.,

there is no partition of S into two non-empty sets S; U .Sy such that GHp(S1) N GHp(S2) # 0.

Similarly, Figure 2 (right) depicts an example where the natural extension of Carathéodory’s
Theorem does not hold: there exists a point in GHp(.S) that does not belong to the G-hull of
any three sites of S. An example where the actual distance between points influences the
structure of the G-hull is given in the (partial) instance depicted in Figure 3. Moving the
points slightly without changing the order type can have large influence on the structure of
the G-hull.

3 Cactus domains and general properties

Even in a single simple polygon, the G-hull of two segments on its boundary forms a so-called
funnel [13], which, in general, is not simple. It is therefore natural to study a slightly
more general class of polygons to be able to describe G-hulls. A frequently used relaxation
is referred to as a weakly simple polygon, which, intuitively speaking, allows the curve
that describes the boundary to touch but not properly cross itself. However, to make this
intuition formally precise is surprisingly cumbersome [8]. For describing G-hulls, a much

more restricted class of polygons is sufficient, which we will define in the next paragraphs.

(We refrain from using the term “weakly simple polygon” to emphasize this difference.)

8:5
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In a plane drawing or embedding of a connected graph, the vertices are represented by
pairwise distinct points, edges are represented by Jordan arcs connecting their endpoints,
and no two edges intersect except at a common endpoint. In a straight-line drawing, all
Jordan arcs representing edges are (straight) line segments. A cactus is a connected graph in
which every edge belongs to at most one simple cycle. Cacti are outerplanar, that is, they
can be embedded in the plane so that all vertices are incident to one particular face (which
is usually the outer face).

A cactusgon is a domain K that is represented by an outerplane straight-line drawing
©(G) of a cactus G: The interior int(K) is formed by the union of all (open) bounded faces
in (@), the boundary 0K is formed by the union of all edges in ¢(G), and collectively
K =int(K) UJK. We obtain a combinatorial representation of K as the unique circular
sequence of edges and vertices as they appear along the boundary of the outer face of ¢(G)
in counterclockwise order. A closed curve that traverses 0K of some cactusgon K in this
fashion is a cactus curve. Note that K is a compact subset of R? and that every simple
polygon is a cactusgon whose associated graph G is a simple cycle. Consider a face of a
cactus that is incident to all vertices (which may or may not be unbounded); we call this
open subset of the plane a cactus face. The boundary of a cactus face is defined analogously
to the one of a cactusgon (but note that the boundary is not part of the cactus face).

» Definition 2. A cactus domain or, for short, C-domain K is a planar region bounded by
an outer polygon C and t > 0 inner voids K, ..., K, where (1) C is a cactusgon, (2) K; CC
is a bounded cactus face, for 1 <i <t, and Ky,..., K; are pairwise disjoint. The outer void
Ky of K is is an unbounded cactus face (or, equivalently, the outer face of C). The interior
of K is int(K) = R? \ J;_,(K; UJK;), the boundary of K is 0K = J;_, 0K;, the vertices
of K are V(K) = Uﬁ:o V(K;), and collectively K = int(K) U 0K.

Note that the above definition slightly abuses notation since V'(-) was only defined for
polygons. Along the paper we do a similar abuse for structures defined for polygons (such as
shortest path map and visibility graph) and apply them to cactusgons. The extension of
these concepts (and the algorithims) are straighforward. Thus, for simplicity we omit them.

Observe that 9C = 0Ky and so V(C) = V(Ky). Again, we write K = (C, K1,...,K};) as
a shorthand. As usual, int(K) is an open subset of R? and K is a compact subset of R?
with R?\ K = Uﬁ:o int(K;). Observe that the cycles of K may share edges or points of their
boundary. As an extreme example, if C is simple, then we may even have ¢ = 1 and one
large hole K7 = C (in this case, K is just a one-dimensional polygonal cycle). While the
theorem below is not hard to prove in a stand-alone way, it will follow from our algorithmic
construction of G-hulls, as our algorithm produces a C-domain that we prove to coincide
with the G-hull of S.

» Theorem 3. Given a polygonal domain P with n vertices in total and a set S C P of
O(n) sites, the geodesic convex hull GHp(S) of S in P is a cactus domain whose vertices are
from S U V(P) and whose edges are edges of the visibility graph Visp(S). In particular, the
boundary of GHp(S) can be described as a plane straight-line graph on O(n) vertices.

4 Characterization of geodesically convex sets

The aim of this section is to give a characterization of C-domains that are geodesically convex
in a polygonal domain P = (P, ..., P,). Consider a C-domain K = (C, Ky,...,K;). If K is
not geodesically convex, then there exist two points p,q € K and a geodesic m € IIp(p, q)
such that = ¢ K. For simplicity, assume that # N K = {p,q}. (That is, the geodesic only



L. Barba, M. Hoffmann, M. Korman, and A. Pilz

a)
R :

~x

Py Py \A Py

A X

Figure 4 a) A C-domain K that is divisible by 7. b) An indivisible C-domain K that is not tight.

¢) An indivisible and tight C-domain K.

touches K at the endpoints. This can be achieved by restricting 7.) As Ko,..., K, are
pairwise interior-disjoint, p and ¢ lie in the same component of 0K, say 0K;. Therefore, =
splits the void K; into two parts A and B; refer to Figure 4 for illustrations.

In the case in which one of the two parts, say A, contains no hole of P and also not its
outer face (Figure 4b), we use a local operation to enlarge K following the rubber band
metaphor. We show in Lemma 4 that all of A is in GHp(K). A C-domain without such a
geodesic is called tight.

The other possible situation is that both A and B contain at least one hole or the outer
face of P. In this case we have a path that is topologically different from all paths in K, and
we say that K is divisible by 7 (Figure 4a). If no such path exists, then K is indivisible.

Clearly, any geodesically convex C-domain must be indivisible and tight. In the remainder
of this section, we prove in form of a characterization that the reverse implication holds as
well, i.e., a C-domain K is geodesically convex if and only if it is indivisible and tight.

Tightness of cactus domains. For 1 <i <t, let V(i) = Up,cf, V(F;) be the vertices of
all holes P; of P for which P; is contained in the void K;. Observe that, in general, dK;
may contain vertices of holes of P not contained in K;. Thus, Vi (i) may be different from
the set of vertices of P contained in K;. As P, is not contained in any inner void of K, for
the outer void, we let Vi (0) = V(Py) U UPngo V(P;). In particular, Vg (0) # 0.

A curve v separates two compact subsets A, B C R? if every curve that connects a point
in A with a point in B intersects v. Given a void K; of K with V(i) # 0, we define
the reduction o(K;) as the minimum length curve in P that separates Vi (i) from int(K)
(possibly o(K;) = 0K;). We can think of o(K;) as being obtained by continuously tightening

a curve tracing 0K; as much as possible while maintaining separation between Vg (i) and K.

Algorithmically, an inner void K;, i > 1, can usually be treated as a simple polygon. It
follows from Toussaint’s algorithm [20] that o(K;) is a (non-simple, in general) closed walk
in Visg, (Vi (7)); in fact, o(K;) is a cactus curve. Similarly, for the outer void Ky the outside
domain is formed by the outer void and a collection of simple polygons (P, and possibly
some holes in the exterior of K). The algorithm of de Berg [10] asserts that o(Kj) is a cactus
curve in this case as well.

For an inner void Kj;, i > 1, the boundary 0K; encloses o(K;). For the outer void Ky,
the curve o(Kj) encloses 0Ky; see Figure 5. Regardless, 0K; and o(K;) form an annulus
(possibly with no interior point). We say that any point in this annulus lies between 0K; and
o(K;). Given a C-domain K, a void K; of K is tight if Vg (i) # 0 and 0K; = o(K;). We say
that K is tight if K; is tight for each 0 < i < t¢. If K is tight, then for each 1 < i < ¢, the
void K; contains at least one hole of P; otherwise, Vi (i) would be empty.

8:7
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Ky

o(Ko)

Figure 5 Left: A C-domain K with two inner voids. Right: The reductions of the voids Ko
and K are depicted. The curve (K1) is enclosed by 0K1, while 9K is enclosed by o(Ko) (curves
shown in solid red and blue, respectively). Every point between 0K; and o(K;) belongs to GHp (K).
Notice that, since K> has no hole, we have Ko C GHp(K).

» Lemma 4. Let P be a polygonal domain, K = (C,K1,...,K;) a C-domain in P, and K;
a void of K, for 0 <i <t. (1) If V(i) # 0, then each point that lies between OK; and o(K;)
belongs to GHp(K). (2) If Vk (i) =0, then K; C GHp(K).

Characterization of geodesically convex cactus domains. Using the above lemma, we are
ready to give sufficient and necessary conditions for a C-domain to be geodesically convex.
It remains to formally define divisibility. Given a void K;, we say that two points p,q € 0K;
separate K; if a geodesic in I1p(p, q), called separating geodesic, splits K; into two connected
components, each containing either at least one hole of P or the outer face of P; see Figure 4a.
We say that K; is divisible if some pair of points on JK; separates K;. Analogously, K; is
indivisible if no pair of points on JK; separates K;. A C-domain is divisible if at least one of
its voids is divisible; otherwise, it is indivisible.

» Theorem 5. A C-domain K is geodesically convex if and only if it is indivisible and tight.

Theorem 5 is the main structural result our algorithm relies on. To algorithmically test
divisibility of a C-domain, we use the following lemma.

» Lemma 6. If a C-domain K is divisible, then there exists a geodesic w separating a void
K; with the following three properties. (i) The intersection of m with OK consists only of its
endpoints. (ii) It contains a vertex of P in its relative interior or both of its endpoints are
vertices of K;. (i) It consists of at least one segment that intersects the interior of K;.

5 Computing the geodesic convex hull

In this section, we present an algorithm that, given a polygonal domain P and a set S of
sites, computes GHp(S). To simplify the presentation and the analysis, we assume that
|S| = O(n), where n is the number of vertices of P. But the exact dependency on |S| can be
easily derived from our proofs.

Our algorithm is founded upon the characterization of Theorem 5. We first start with the
C-domain formed by the union of all geodesics going from an arbitrary site of S to all other
sites. As a next step, we make use of Lemma 4 on the resulting C-domain to obtain a new
tight C-domain that we test for divisibility. If this tight C-domain is divisible, our procedure
reports a geodesic that separates it, which we add to the C-domain. The addition of this
separating geodesic generates a new C-domain that is not necessarily tight. We repeat the
procedure iteratively until we obtain a C-domain that is both tight and indivisible. Then by
Theorem 5 this domain is GHp(S).
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KZ KO

Figure 6 Left: A C-domain K and the reduction of each of its voids. Right: The new C-domain K’
obtained from K after applying steps (1) and (2) of the tightening process. In the left figure we have
two inner voids. The reduction of Ky and K; are shown in solid blue and red curves, respectively
(K2 need not be reduced because it has no holes). The right figure shows the resulting C-domain K.
This domain is not tight, so step (2) needs to be applied a second time (the region to be added is
shown dashed). Note that the indivisible void K5 may become divisible after the tightening process
(due to the geodesic between points = and y).

Computing tightenings of cactus domains. We introduce the tightening process of a C-
domain K = (C, Ky, ..., K;). Intuitively speaking, we want to enlarge K as little as possible
until it is tight. The result is another C-domain K’, which we call the tightening of K. In
order to do so, we proceed as follows: (1) for each 1 < i < ¢ such that Vg (i) = 0, we add
each point in this void to the tightening of K (effectively removing this void from K), and
(2) for each 0 < i <t such that Vg (i) # 0, compute the reduction of K; and add the space
in the annulus between 0K; and o(K;) to the tightening of K. Recall that the reduction
o(K;) of a void K; of K need not be a simple curve. Therefore, to obtain a valid C-domain,
we consider each bounded component of R? \ o(K;) (which are cactus faces) and add them
as new voids replacing K;. In particular, the resulting C-domain may have more voids than
K (and they need not be tight, see Figure 6). Thus, we apply again step (2) iteratively until
we obtain a C-domain in which the boundary of each void coincides with its reduction. Since
every newly created void needs to contain a hole of P, we obtain this C-domain after at
most h iterations. Since in the resulting domain the boundary of each void coincides with its
reduction, we obtain a tight C-domain K’, the tightening of K.

» Lemma 7. Given a C-domain K with O(n) vertices, we can compute the tightening of
K in O(hnlogn) time. Moreover, the tightening of K is a C-domain whose edges belong
to Visp(V(K)).

Testing divisibility of cactus domains. In this section we provide a deterministic algorithm
to determine if a C-domain is divisible. This property is considerably harder to test than
tightness. In fact, this test is the main bottleneck of our algorithm and the main algorithmic
challenge of this paper.

Let K = (C,Ky,...,K}:) be a tight C-domain. To test the divisibility of K, we test each
void K; separately. Using Lemma 6, it is sufficient to determine whether there is a separating
geodesic containing a vertex of P in its relative interior or that is a segment between two
vertices of K; that see each other. The latter can be easily tested using the visibility graph

of P. For testing the former, we modify an algorithm by Bae and Okamoto [5]: this O(n°*¢)-

time algorithm takes a polygonal domain on n vertices, and encodes all geodesics between
pairs of points on its boundary as the lower envelope of a collection of constant-degree distance
functions. While their algorithm serves to construct a data structure for shortest-path queries
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among points on the boundary of a polygonal domain, we are able to translate its main
ideas to test divisibility. Additionally, several new observations allow us to replace a factor
of O(n?*¢) for a factor of O(h?*) in the running time. The remaining part of this section
describes our algorithm in detail.

As a preprocessing step, compute the SPM from every vertex of P in overall O(n?logn)
time [15]. Then, for each edge e of K, split e at each point of intersection with the boundary
of a cell in the SPM of some vertex of P. In this way, we obtain the spm-subdivison of e into
spm-segments. The spm-subdivision of OK; is the union of the spm-subdivision of its edges.

Let spM(p) be the SPM for a point p. We claim that if, for some vertex v of P and cell ¢
of SPM(v), ¢ intersects OK; in three or more connected components, then there is a segment ¢
contained in this cell connecting two points of JK; through the interior of K;. Moreover, ¢
must be a separating geodesic, as otherwise ¢t would split K; into two components, one of
which would not contain a vertex of Vg (i). However, since ¢t can be used as a shortcut to
reduce the length of OK; while separating Vg (i) from K, we obtain a contradiction with
the tightness of K, which proves our claim. Thus, if a cell of the SPM of some vertex of P
intersects OK; in three or more connected components, then K; is divisible.

Therefore, to compute the spm-subdivision, we first compute the intersection points of the
SPM of each vertex with 0K, and then sort all these intersection points along the boundary
of K; to obtain the spm-subdivision of K. If at some point during this process we find a cell
of a SPM that intersects JK; in more than two connected components, then the algorithm
finishes and reports the separating geodesic contained in this cell. Thus, we assume from
now on that no cell of an SPM intersects 0K; in more than two connected components, i.e.,
each cell of an SPM contributes to O(1) spm-segments to the spm-subdivision. Because
we consider the SPM of the n vertices of P, each with O(n) cells, the spm-subdivision of
K consists of O(n?) spm-segments, and the total running time of our preprocessing step is
bounded by O(n?logn).

An important property of the spm-subdivision is that for a spm-segment s and a point
x € s, the set of vertices of P that are visible from x remains unchanged as x moves along s.
Thus, we let V; be the set of vertices of P visible from s. For a pair of spm-segments s and s’,
each geodesic with at least two segments from a point in s to a point in s’ starts with a vertex
v in Vi (i.e., v is the first vertex visited by this path after leaving s). Moreover, because s’ is
contained in a single cell of spPM(v), a geodesic from v to any point in s’ must have the same
combinatorial structure. Let v* be the last vertex visited in the path from v to any point
of s’ (note that we may have v = v*). Then, any path from a point = € s to a point y € s’
can be parametrized by the distance function f,(z,y) = d(z,v) + d(v,v*) + d(v*,y). Because
d(v,v*) is a known constant, f, is a constant degree algebraic function from s x s’ to R.
We could then compute the minimization diagram of the set Fy o = {fu(x,y) : v € Vi},
i.e., the lower envelope of these distance functions over all different starting vertices. This
diagram has the following property: the algebraic surface patch of f, appears in this lower
envelope if and only if there is a geodesic from a point x € s to a point y € s’ that passes
through v. We now look for a vertex v that lies in the interior of K; and f, appears in the
lower envelope. If this happens, there is a separating geodesic connecting s with s’ starting
at v (and thus we conclude that K; is divisible); note that by Lemma 6 this is sufficient
to determine divisibility. This gives us an algorithm to decide divisibility whose running
time is dominated by the computation of O(n?) minimization diagrams, one for each pair of
spm-segments. We will improve this later but first, we look in more detail at the starting
vertices of the geodesics we need to consider. The following observation leads to our main
improvement when compared to the algorithm of Bae and Okamoto [5].
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» Lemma 8. Given an spm-segment s and a hole H of P, there are at most two starting
vertices in H among all geodesics going from a point in s to a point in OK;. Moreover, they
are the counterclockwise- and clockwise-most vertices in Vs NV (H), when sorted radially
around any point in s.

Therefore, at most two geodesics from s to OK; can start at different vertices of V,NV (H).
That is, each hole can contribute to at most two start vertices, hence only a total of O(h)
starting vertices must be considered.

By Lemma 8, we can let V' C V; denote the set of O(h) starting vertices of paths going
from s to OK;. Moreover, we can compute V* in O(n) time by computing the maximum
and minimum element, among the vertices of each hole of P, in the radial order around
an arbitrary point of s. Because we need to consider only O(h) vertices in V*, we notice
that there are many divisions among spm-segments that do not correspond to the boundary
of a cell in the SPM of a vertex in V;*. Thus, we could modify our spm-subdivision with
respect to s and consider only the breaking points induced by the SPM of a vertex in V.
Because each SPM has complexity O(n) and since |V;*| = O(h), this induces at most O(nh)
divisions. In this way, we obtain a partition of 9K, into O(nh) s-segments, each being
a collection of consecutive spm-segments. The idea of using this subdivision is that, to
compute a minimization diagram of distance functions between s and an s-segment, we need
to consider only O(h) functions defined by the vertices in V*.

» Theorem 9. We can determine if a tight C-domain K of O(n) wvertices in a polygonal
domain P = (P, ..., Py) of n vertices is divisible in O(n3h?T¢) time.

Proof. Let s be a spm-segment. Note that, when going from one s-segment to a neighboring
one, the SPM cell of at most one vertex in V. can change. Intuitively, this means that the

distance functions we need to consider have “little” variation among neighboring s-segments.

We formalize this intuition as follows. Group h consecutive s-segments lying on the same
edge of 0K, and take their union to produce an s-block g. We claim that O(h) distance
functions need to be considered to compute the minimization diagram encoding all geodesics
from s to any s-block g. To show this, for each v € V*, let 7, be the number of cells of
SsPM(v) that intersect s-block g. Let o be a cell of sPM(v) that intersects g. Notice that
there is exactly one ending vertex v* in any geodesic from v to 0 Ng. Thus, we can define an
s-g-function f, s x (6 Ng) = R such that f, ,(z,y) = d(z,v) + d(v,v*) + d(v*,y). Note
that there are exactly 7, s-g-functions defined for each vertex v of V. Because ¢ consists
of h s-segments, we know that g can be intersected by at most O(h) cells among the SPMs
of the vertices in V*. Therefore, Zuev; Ty = O(h), i.e., there are in total O(h) s-g-functions
defined for all vertices of V. Moreover, any geodesic from s to g needs to start with a vertex
of V* and hence, it is considered in one of these functions. Consequently, the minimization
diagram of the s-g-functions encodes the distance of all geodesics going from s to g. Note
that this minimization diagram can be computed in O(h%*¢) time [19]. After computing it,
we can check within the same time whether there is a geodesic between s and g that goes
through the interior of K; by going through all elements of this lower envelope.

By grouping all O(nh) s-segments into consecutive s-blocks of at most h spm-segments,
each contained in a single edge of 9K;, we obtain O(n) s-blocks in total along 0K;. Therefore,
we need to compute O(n) minimization diagrams for a given spm-segment s, one for each
s-block, each in O(h?*¢) time. Repeating this over all O(n?) spm-segments gives a total
running time of O(n3h%+¢). <

» Theorem 1. Let P be a polygonal domain with n vertices and h holes, and let S C P be a
set of O(n) sites. The geodesic convex hull of S in P can be computed in O(n3h3+e) time.
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Proof. Let s be a site of S. For each s’ € S\ {s}, choose an arbitrary path in IIp(s,s’). Let
K9 be the plane connected graph obtained by taking the union of all chosen paths. Notice
that K° is a connected C-domain that contains all sites of S. Moreover, because K© is
plane (as no two geodesics from s can cross), K consists of O(n) vertices and edges and
K° C GHp(9) (as it consists of geodesics between points of S). We describe now a recursive
procedure that incrementally constructs the G-hull of S starting from K°.

Given a C-domain K" for some even number r, we construct K"*! as the tightening of
K" using Lemma 7 in O(hnlogn) time. Since P has h holes, K" is a tight C-domain with
at most h voids whose vertices and edges are contained in Visp(S). Thus, because K" is
plane, it has complexity O(n). We then use Theorem 9 to test whether K" ! is divisible or
not, which takes O(n3h?*¢) time. If K" is indivisible, then as it is also tight, Theorem 5
implies that K"*! is geodesically convex. Thus, as S C K"*! and since GHp(S) is the
smallest geodesically convex set that contains S, we get that GHp(S) C K"*!. Moreover,
because all points in K"*! belong to GHp(S) by Lemma 4, we know that K™+ C GHp(S).
Therefore, if K™*! is indivisible, then K™™' = GHp(S) and we are done.

Otherwise K"*! is divisible and we have found a separating geodesic, i.e., there is some
void of K™™' and two points x and y such that the path 7, (z,y) separates K"*1. In this
case, we add the path 7, (z,y) to K"! and obtain a new C-domain K™% C GHp(S) that is
not necessarily tight. Because 7 + 2 is even, we can repeat this procedure recursively until
finding a tight indivisible C-domain. One may think that one test for divisibility suffices, i.e.,
that this does not need to be repeated every time that a tightening is computed. However,
the tightening of an indivisible C-domain may be divisible; see Figure 6.

Note that in each round, if the tight C-domain K1 is divisible, then we find a new
separating geodesic that separates two holes of P that were previously in the same void of
K"+, In particular, we create a new void with at least one hole. Since we can have at most
h such voids, the above procedure will iterate at most h times and must end with a tight
indivisible domain that coincides with GHp(S).

The running time is dominated by the divisibility test given by Theorem 9 which has to be
executed at most h times. Thus, the total running time becomes O(n®h3+¢) as claimed. =
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