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Abstract
The Tree Containment problem has many important applications in the study of evolutionary
history. Given a phylogenetic network N and a phylogenetic tree T whose leaves are labeled by
a set of taxa, it asks if N and T are consistent. While the case of binary N and T has received
considerable attention, the more practically relevant variant dealing with biological uncertainty
has not. Such uncertainty manifests itself as high-degree vertices (“polytomies”) that are “jokers”
in the sense that they are compatible with any binary resolution of their children. Contrasting
the binary case, we show that this problem, called Soft Tree Containment, is NP-hard,
even if N is a binary, multi-labeled tree in which each taxon occurs at most thrice. On the other
hand, we reduce the case that each label occurs at most twice to solving a 2-SAT instance of
size O(|T |3). This implies NP-hardness and polynomial-time solvability on reticulation-visible
networks in which the maximum in-degree is bounded by three and two, respectively.
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1 Introduction

With the dawn of molecular biology also came the realization that evolutionary trees,
which have been widely adopted by biologists, are insufficient to describe certain processes
that have been observed in nature. In the last decade, the idea of reticulate evolution,
supporting gene flow from multiple parent species, arose [2, 15]. A reticulation event can
be caused by, for example, hybridization (occurring frequently in plants) and horizontal
gene transfer (a dominating factor in bacterial evolution). Reticulate evolution is described
using “phylogenetic networks” (see the monographs by Gusfield [11] and Huson et al. [13]).
A central question when dealing with both phylogenetic trees and networks is whether or not
they represent consistent information, formulated as the question whether or not the network
“displays” the tree. This problem is known as Tree Containment and it has been shown
NP-hard [14, 17]. Due to its importance in the analysis of evolutionary history, attempts
have been made to identify polynomial-time computable special cases [6, 5, 1, 10, 14, 17, 7, 18],
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9:2 Tree Containment With Soft Polytomies

as well as moderately exponential-time algorithms [8, 18]. However, all of these works are
limited to binary networks and trees.

In reality, we cannot hope for perfectly precise evolutionary histories. In particular,
speciation events (a species splitting off another) occurring in rapid succession (only a few
thousand years between speciations) can often not be reliably placed in the correct order
they occurred. The fact that the correct order of bifurcations is unknown is usually modeled
by multifurcating vertices and, to tell them apart from speciation events resulting in multiple
species, the former are called “soft polytomies” and the latter are called “hard polytomies”. Of
course, the same argument holds for non-binary reticulation vertices indicating uncertainty
in the order of hybridization events. Soft polytomies have a noteworthy impact on the
question of whether a tree is compatible with a network: since a soft polytomy (also called
“fan”) on the taxa a, b, and c represents lack of knowledge regarding their history, we would
consider any binary tree on the taxa a, b, and c compatible with it. In this work, we present
first algorithmic results for Tree Containment with soft polytomies (which we call Soft
Tree Containment). We consider the case where the network is a multi-labeled tree
and show that the problem is cubic-time solvable if each label occurs at most twice (by
reduction to 2-SAT) and NP-hard, otherwise. This implies corresponding results for (single-
labeled) “reticulation-visible” networks, depending on their maximum in-degree. Despite
being an intermediate step in proving results for networks, multi-labeled trees are themselves
important, for example when handling gene trees, in which different versions of a gene may
be found in the same species.

Finally, our results have impact on the Cluster Containment problem [13] since it is
a special case of our problem.1

Preliminaries

A phylogenetic network (or network for short) on a set X of taxa is a rooted, leaf-labeled
DAG in which all vertices that do not have in-degree at most one have out-degree exactly
one. These vertices are called reticulations and the others are called tree vertices. A network
without reticulations is called a (phylogenetic) tree. By default, no label occurs twice in
a network, and we will make exceptions explicit by calling networks in which a label may
occur more than once multi-labeled (note that networks are a special case of multi-labeled
networks in which each label occurs only once). This allows us to use leaves and labels (taxa)
interchangeably. For brevity, we abbreviate {x, y} to xy, and {x, y, z} to xyz. Let N be a
network with root ρN . We denote the set of vertices in N by V (N). We define a relation
“≤N” on subsets of V (N) such that U ≤N W if and only if N contains a w-u-path for each
u ∈ U and w ∈ W . If u ≤N w, we call u a descendant of w and w an ancestor of u. For
each v ∈ V (N), we let Nv be the subnetwork of N induced by {u | u ≤N v} and we denote
the set of leaf-labels in Nv by L(v) and abbreviate L(N) := L(ρN ). Such a set is also called
a cluster of N . Note that, if N is a tree, Nv is the subtree rooted at v. We abbreviate
n := |L(ρN )|. For any X ⊆ V (N), we let LCAN (X) be the set of least common ancestors of
X, that is, the minima (wrt. ≤N ) among all vertices u of N with X ≤N u (in particular, if
N is a tree, LCAN (X) is a single vertex, not a set). If clear from context, we may drop the
subscript. Note that, in trees, the LCA of any three vertices has a unique minimum. For any
U ⊆ V (N), we denote the result of removing all vertices v that do not have a descendant in

1 Given a binary network N on the taxa X and some Y ⊆ X, Cluster Containment asks if N displays
any binary tree T in which L(u) = Y for any u. This is equivalent to N softly displaying the tree T in
which all taxa in X \ Y are children of the root and there is another child u of the root with children Y .
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U by N |L and N ||L is the result of suppressing all degree-two vertices in N |L. Suppressing a
vertex u in N with unique parent p and unique child c refers to the act of removing u and
adding the edge pc, unless this edge already exists. Note that, if N is a tree, then N |L is the
smallest subtree of N containing the vertices in L and the root of N and N ||L is the smallest
topological minor of N containing the vertices in L and the root of N . A vertex u in N is
called stable on v if all ρN -v-paths contain u. If, for each reticulation u in N there is some
leaf ` such that u is stable on `, then N is called reticulation visible. A network is binary if
all vertices except the root have degree (=in-degree + out-degree) at most three and the root
has degree two. A binary network NB on three leaves a, b, and c is called a triplet and we
denote it by ab|c if c is a child of the root of NB . NB is called binary resolution of a network
N if N is a contraction of NB . In this case, there is a surjective function χ : V (NB)→ V (N)
such that, contracting all edges uv of NB with χ (u) = χ (v) results in N (more formally, for
each x, y ∈ V (N), the edge xy exists in N if and only if there is an edge between χ−1 (x)
and χ−1 (y) in NB). We call such a function contraction function of NB for N . We suppose
that all binary resolutions are minimal, that is, they do not contain biconnected components
with exactly one incoming and one outgoing edge. Observe that, when contracting edges
of NB to form N , we never create vertices with in-degree and out-degree more than one.

I Observation 1. Let NB be a binary resolution of a network N , let χ be a contraction
function of NB for N , and let u ∈ V (N). Then, χ−1 (u) does not contain a reticulation and
a tree vertex with out-degree more than one.

If N contains a subgraph S that is isomorphic2 to a tree T , then we simply say that N
contains a subdivision of T . Slightly abusing notation, we consider each vertex v ∈ V (T )
equal to the vertex of S (and, thus, of N) that v is mapped to by an isomorphism. Thus,
S consists of V (T ) and some vertices of in- and out-degree one. The following definition is
paramount.

I Definition 2. Let N be a network and let T be a tree. Then,
N firmly displays T if and only if N contains a subdivision of T and
N softly displays T if and only if there are binary resolutions NB of N and TB of T such
that NB firmly displays TB .

Definition 2 is motivated by the concept of “hard” and “soft” polytomies (that is, high degree
vertices): In phylogenetics, a polytomy is called firm or hard if it corresponds to a split of
multiple species at the same time and soft if it represents a set of binary speciations whose
order cannot be determined from the available data. In this sense, a polytomy is compatible
with another if and only if there is a biological “truth”, that is, a binary resolution, that is
common to both. Note that, for binary N and T , the two concepts coincide. Furthermore,
for trees on the same label-set, the concepts of display and binary resolution coincide.

I Observation 3. Let T and TB be trees on the same leaf-label set and let TB be binary.
Then, T softly displays TB if and only if TB is a binary resolution of T .

Throughout this work we will mostly use the soft variant and we will refer to it simply as
“display” for the sake of readability. Note that a binary tree displays another binary tree
if and only if they are isomorphic. Thus, in the special case that N is a tree, the “display”
relation is symmetrical, leading to the following observation.

2 In this work, “isomorphic” always refers to isomorphism respecting leaf-labels, that is, all isomorphisms
must map a leaf of label λ to a leaf of label λ.

SWAT 2018



9:4 Tree Containment With Soft Polytomies

I Observation 4. A tree T displays a tree T ′ if and only if T ′ displays T .

Finally, the central problem considered in this work is the following.

Soft Tree Containment
Input: A network N and a tree T
Question: Does N softly display T?

2 Display with Soft Polytomies

The concept of “display” is well-researched for binary trees, in particular, triplets.

I Observation 5 ([4]). Let TB be a binary tree and let a, b, c ∈ L(TB). Then, TB displays ab|c
if and only if LCA(ab) < LCA(bc) = LCA(ac). Indeed, TB is uniquely identified by the
set D of displayed triplets, that is, TB is the only binary tree displaying the triplets in D.

However, the “display”-relation with soft polytomies lacks a solid mathematical base in the
literature. In this section, we develop alternative characterizations of the term “(softly)
display”. To do this, we use the following characterization of isomorphism for binary trees.

I Observation 6. Binary trees TB and T ′B on the same label-set are isomorphic if and only
if, for each u ∈ V (TB) and each Y ⊆ L(u), u has a child v with L(v) = Y if and only
if LCAT ′

B
(L(u)) has a child v′ with L(v′) = Y .

I Lemma 7. Let N and T be trees. Then, N displays T if and only if, for all u ∈ V (T )
and v ∈ V (N), it holds that L(u) ⊆ L(v), L(u) ⊇ L(v) or L(u) ∩ L(v) = ∅.

Proof. Since each label appears only once in N and T , it holds that N displays T if and only
if there are binary resolutions NB of N and TB of T such that NB and TB are isomorphic.

“⇒”: Let N softly display T . Towards a contradiction, assume that there are u ∈ V (N)
and w ∈ V (T ) such that L(u) * L(v), L(u) + L(v) and L(u) ∩ L(v) 6= ∅, that is, there
are x ∈ L(u) \ L(w), y ∈ L(u) ∩ L(w), and z ∈ L(w) \ L(u). Since there are binary
resolutions NB and TB of N and T , respectively, such that NB and TB are isomorphic, there
is a vertex u′ in NB with L(u′) = L(u) and a vertex v′ in T with L(v′) = L(v). Since NB

and TB are trees and each leaf-label only appears once in each of them, NB
u′ contains the

leaves x and y but not the leaf z. Analogously, TBv′ contains the leaves y and z but not the
leaf x, contradicting NB being isomorphic to TB .

“⇐”: In order to show the contraposition, suppose that N does not softly display T .
Since N does not softly display T , for any binary resolutions NB of N and TB of T , it
holds that NB and TB are not isomorphic. By Observation 6, there are vertices p ∈ V (NB)
and q := LCATB (L(p)) with children p1, p2 and q1, q2, respectively, such that L(p1) 6= L(q1)
and L(p1) 6= L(q2). We will use the fact that L(p1) ] L(p2) = L(p) = L(q) = L(q1) ] L(q2).
Case 1: L(pi) ( L(qj) for any i, j. Then, there are taxa

x ∈ L(pi) ∩ L(qj) = L(qj) \ L(p3−i)
y ∈ L(qj) \ L(pi) = L(qj) ∩ L(p3−i), and
z ∈ L(q3−j) = L(q3−j) \ L(pi) = L(p3−i) \ L(qj).

The case where L(qj) ( L(pi) holds is analogous.
Case 2: None of L(p1), L(p2), L(q1), and L(q2) are subsets of one another. Then, there are

taxa x, y, z such that x ∈ L(p1) ∩ L(q1) y ∈ L(q1) \ L(p1), and z ∈ L(q1) \ L(p1). J
We can relate the two forms of “display” for triplets in non-binary trees.
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I Observation 8. Let T be a tree and let a, b, c ∈ L(T ). Then,
(a) T firmly displays ab|c if and only if LCA(ab) <T {LCA(ac),LCA(bc)}.
(b) T firmly displays ac|b or bc|a if and only if T does not softly display ab|c.

I Lemma 9. A tree T on X softly displays a tree T ′ on X ⇔ for all a, b, c ∈ X,

T firmly displays ab|c⇒ T ′ softly displays ab|c, and
T ′ firmly displays ab|c⇒ T softly displays ab|c

Proof. “⇒”: By Observation 4, it suffices to show the first of the claimed implications,
so let LCAT (ab) <T LCAT (abc) and assume towards a contradiction that T ′ does not
display ab|c. By Observation 8, we can suppose without loss of generality that T ′ firmly
displays ac|b. But then, for u := LCAT (ab) and v := LCAT ′(ac), we have a ∈ L(u) ∩ L(v),
b ∈ L(u) \ L(v), and c ∈ L(v) \ L(u). Thus, by Lemma 7, T does not display T .

“⇐”: Towards a contradiction, assume that T does not display T ′. By Lemma 7, there
are u ∈ V (T ) and v ∈ V (T ′) and a, b, c ∈ X such that a ∈ L(u) ∩ L(v), b ∈ L(u) \ L(v),
and c ∈ L(v) \ L(u). Thus, LCAT (ab) <T LCAT (abc) and LCAT ′(ac) <T ′ LCAT ′(abc). By
Observation 8, T firmly displays ab|c and T ′ firmly displays ac|b. With the implications
of the lemma, we get that T ′ softly displays ab|c and T softly displays ac|b, contradicting
Observation 8. J

The final ingredient to our alternative characterization is the observation that, in (multi-
labeled) trees, edge contraction does not change the ancestor relation.

I Observation 10. Let T be a tree, let T ′ be the result of contracting a vertex u onto its
parent v, and let Y and Z be sets of leaves common to T and T ′. Then,
(a) LCAT (Y ) ≤T LCAT (Z)⇔ LCAT ′(Y ) ≤T ′ LCAT ′(Z) and
(b) LCAT (Y ) <T LCAT (Z)⇐ LCAT ′(Y ) <T ′ LCAT ′(Z).
We can now prove the following alternative definition of “display”.

I Lemma 11. Let T be a tree on the label-set X.
(a) T displays the leaf-triplet ab|c if and only if LCA(ab) ≤ {LCA(bc),LCA(ac)}.
(b) T displays a binary tree TB on X if and only if T displays all triplets displayed by TB.
(c) T displays a tree T ′ on X (and vice versa) if and only if there is a binary tree TB on X

displayed by both T and T ′.
(d) A network N displays T if and only if N contains (as subgraph) a tree T ′ on X that

displays T .

Proof. (a) By definition, T displays ab|c if and only if there is a binary resolution TB of T dis-
playing ab|c. By Observation 5, TB displays ab|c if and only if LCATB (ab) <TB LCATB (abc) =
LCATB (ac) = LCATB (bc). Now, since TB is binary, we cannot have that LCATB (ab) =
LCATB (bc) = LCATB (bc) and, thus, LCATB (ab) ≤TB {LCATB (ac),LCATB (bc)} which, by
Observation 10, is equivalent to LCAT (ab) ≤T {LCAT (ac),LCAT (bc)}.

(b) “⇒”: Assume towards a contradiction that a triplet ab | c of TB is not displayed
by T and recall that {LCAT (ab),LCAT (ac),LCAT (bc)} has a unique minimum x. Since,
by (a), LCAT (ab) 6≤T LCAT (abc), we have x <T LCAT (ab) ≤T LCAT (abc). Without loss
of generality, let x = LCAT (ac). Then, by Observation 10, LCATB (ac) <TB LCATB (abc),
implying that TB displays ac | b. Hence, TB displays conflicting triples, contradicting
Observation 5.

“⇐”: Assume towards a contradiction that T does not display TB . By Lemma 7, there
are vertices u ∈ V (T ) and vB ∈ V (TB) such that L(u) and L(vB) intersect, but are not in the

SWAT 2018
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ρN

uN

︸ ︷︷ ︸
Y

CN

uT
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Y

CT

ρN

uN

λ

uT

λ

Figure 1 Illustration of Lemma 14: (N,T ) left and (N1, T1) right.

subset relation, that is, there are x ∈ L(u) \ L(vB), y ∈ L(vB) \ L(u) and z ∈ L(u) ∩ L(vB).
Thus, x, z <T LCAT (xz) ≤T u <T LCAT (xyz) and y, z <TB LCATB (yz) ≤TB vB <TB
LCATB (xyz). Then, by (a), TB displays yz | x implying that T displays yz | x since all
triplets displayed by TB are displayed by T . By (a), we have LCAT (yz) ≤T LCAT (xz),
implying x, y, z <T LCAT (xz) ≤T u, which contradicts u <T LCAT (xyz).

(c) By definition, T displays T ′ if and only if there are binary resolutions TB and T ′B of T
and TB , respectively, such that TB displays T ′B . Note that, if such trees exist then they are
equal since, by (b), TB displays all triplets displayed by T ′B and, by Observation 5, TB = T ′B .
Conversely, by Observation 3, all binary trees on X displayed by T and T ′ are binary
resolutions of T and T ′.

(d) We defer this proof to the full version of this paper. J

Note that, if N contains a subdivision S of T , then any reticulation in N that is in S has in-
and out-degree one in S. Further, contracting an edge between two tree vertices of N cannot
break softly displaying T .

I Observation 12. Let N be a network that displays a tree T . Then, the result of contracting
an edge between two tree-vertices or two reticulations of N displays T .

Also note that, if N displays T , then the result of removing any label from N displays the
result of removing this label from T .

I Observation 13. Let N be a network and let T be a tree on X. Then, N displays T if
and only if N |X′ displays T |X′ for each X ′ ⊆ X.

3 Single-Labeled Trees

In a first step, we suppose that N is a tree. While Lemma 7 already provides the means to
solve this case in polynomial time, we aim to be more efficient. If N and T are both binary,
this special case is solved using the folklore “cherry reduction”: remove a pair of leaves that
are siblings in both N and T and label their parents in N and T with the same new label λ.
Here, we prove an analog for non-binary trees that allows solving the case that N is a tree in
linear time.

I Lemma 14. Let N be a network on X with root ρN , let T be tree on X, let uN ∈ V (N)
and uT ∈ V (T ) and let CN and CT be sets of children of uN and uT , respectively, such that
(a)

⋃
c∈CN L(c) =

⋃
c∈CT L(c) =: Y , and

(b) for all λ ∈ Y , all ρN -λ-paths contain some c ∈ CN .
Let λ ∈ Y , let N1 := N ||X\(Y−λ), let T1 := T ||X\(Y−λ), let N2 := N ||Y , and let T2 := T ||Y .
Then, N displays T if and only if N1 displays T1 and N2 displays T2 (see Figure 1).
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Proof. Since “⇒” follows directly from Observation 13, we only show “⇐”. By Lemma 11, for
each i ∈ {1, 2}, there is a tree Qi in Ni (containing the root of Ni) that displays Ti and there
is a binary tree TBi that is displayed by both Qi and Ti. We show that the binary tree TB
resulting from replacing the leaf λ in TB1 by TB2 is displayed by both T and a subtree Q of N .
To this end, note that T is the result of replacing the leaf λ in T1 by T2 and let Q be the result
of replacing the leaf λ in Q1 by Q2. Since TBi is displayed by both Ti and Qi for all i ∈ {1, 2},
the following argument holds for both T and Q, but we only state it for T . To show that T
displays TB , it suffices to prove that T displays all triplets displayed by TB (by Lemma 11(b)).
Towards a contradiction, assume that TB displays a triplet xy|z that T does not display.
Case 1: x, y ∈ Y . If z is also in Y , then xy|z is displayed by TB2 and, thus, by T2 and by T .

If z /∈ Y , then LCAT (xy) ≤T LCAT (Y ) ≤T uT ≤T {LCAT (xz),LCAT (yz)} by (a) (and
(b) when arguing for Q instead of T ) and, by Lemma 11(a), T displays xy|z.

Case 2: x or y is not in Y . Without loss of generality, let x /∈ Y . If also y /∈ Y , then λ can
take the role of z in the assumption, that is, TB displays xy|λ but T does not. But then, T 1

B

displays xy|λ but T1 does not, contradicting the fact that T1 displays T 1
B . Thus, y ∈ Y and,

completely analogously, z ∈ Y . But then, LCATB (yz) ≤TB LCATB (Y ) < LCATB (xy)
which, by Lemma 11(a), contradicts TB displaying xy|z.

Finally, let T ∗ be the result of contracting LCAQ(Y ) (that is, the former root of T ∗2 ) onto its
parent in Q. Then, T ∗ is a subtree of N since N is (isomorphic to) the result of replacing `
by N2 in N1 and contracting the the root of N2 onto its parent in the result. Since Q
displays TB, so does T ∗ (by Observation 12). Thus, T ∗ is a subtree of N that displays T
and, by Lemma 11(d) N displays T . J

In the following, the operation of splitting off a subnetwork B with root u in a network
N means to
remove B and
add a new leaf labeled λ /∈ X to u.

This gives rise to the networks N1 (containing the new leaf λ) and N2 := B. Lemma 14
implies correctness of the following reduction rule.

I Reduction Rule 1. Let (N,T ) be an instance of Soft Tree Containment, let B be a
lowest biconnected component (such that B does not consist of a leaf and a non-leaf) or a
cherry of N with root u. Then, split off B from N and split-off TLCAT (L(u)) from T (giving
the new leaf in N and T the same new label λ).

Note that Reduction Rule 1 can be applied exhaustively in linear time. This is because
(a) biconnected components can be found in linear time [12], and
(b) no biconnected component of N (except B) is modified by application of Reduction

Rule 1.
Now, if N is a (single-labeled) tree, then Reduction Rule 1 splits-off only cherries from N

and each such cherry can be checked against the subtree split-off from T in linear time.

I Theorem 15. Soft Tree Containment can be solved in linear time if N and T are
trees.

4 Tree Containment in Multilabeled Trees

To show that Soft Tree Containment is NP-hard even when restricting N to be a
multilabeled tree, we reduce from 2-Union Independent Set, which asks if a graph
(V,E1 ∪E2) has a size-k independent set, and which is NP-hard even if (V,E1) is a collection

SWAT 2018



9:8 Tree Containment With Soft Polytomies

of disjoint K2s (that is, a matching) and (V,E2) is a collection of disjoint P2s and P3s [16].
For our reduction, we allow (V,E1) to also contain K3s and demand that k equals the number
of cliques in (V,E1). To prove that this variant remains NP-hard, we slightly modify the
reduction from 3-SAT given by van Bevern et al. [16].

I Construction 1. Consider an instance ϕ with n variables xi and m clauses cj of 3-SAT
such that each variable occurs at least twice in ϕ and at most once in each clause. For each
variable xi, let Ji be the list of indices of clauses that contain xi or ¬xi and let Ji[`] denote the
`th element of this list. Construct a graph (V,E) as follows. For each variable xi, construct
a cycle Vi of 2|Ji| vertices: (u1

i , u
1
i , u

2
i , u

2
i , . . .). For each clause cj on the variables xi, xk, x`,

construct a triangle Cj = (wij , wkj , w`j). For each variable xi and each ` ≤ |Ji|, connect wiJi[`]
to u`i if cJi[`] contains xi, and to u`i if cJi[`] contains ¬xi. Now, (V,E1) (bold in the figure)
consist of all triangles and all edges {uji , u

j+1 mod |Ji|
i } while E2 contains all other edges.

V0 V1

C0

Note that (V,E1) consists of disjoint K2s and K3s and (V,E2) consist exclusively of P3s.
Also note that this generalizes to k-SAT but (V,E1) becomes a collection of disjoint K2s and
Kks.

I Lemma 16. ϕ is satisfiable if and only if (V,E) has a size-k independent set, where k is
the number of cliques in (V,E1).

Proof. Note that
k equals the number of cliques in (V,E1),
each clique contains at most one independent vertex, and
all vertices in V are incident with some edge in E1.
Hence, (V,E) contains a size-k independent set, if and only if a largest independent set
in (V,E) contains exactly one vertex of each clique in (V,E1). We will first show that if (V,E)
contains an independent set of size k, then ϕ is satisfiable and afterwards the other direction.

“⇐”: Let I be an independent set of size k in (V,E). Then, for each i, I contains
either u1

i or u1
i . By construction of Vi, it holds that if uhi ∈ I for some h, then u`i , v`i ∈ I for

all ` ≤ |Ji|. Analogously, if uhi ∈ I for some h, then u`i , v`i ∈ I for all ` ≤ |Ji|. Consider any
vertex wij in the clause gadgets that is in I. Then, wij has a unique neighbor in the variable
gadget of xj which is either uhj for some h if ¬xj occurs in clause i or u`j otherwise. If the
neighbor is uhj , then all vertices u`j with 1 ≤ ` ≤ |Jj | are in I and otherwise all vertices u`j .

We set xi to true if u1
i is in I and to false if u1

i is in I. Consider any clause cj in ϕ. The
literal whose corresponding vertex is in I is then set to true as its neighboring vertex u is
not in I and u has a neighbor uhi for some h if xi occurs in cj and a neighbor uhi for some h
if ¬xi appears in cj . Since each clause has at least one variable set to true, ϕ is satisfiable.

“⇒”: We will now show that if ϕ is satisfiable, then (V,E) contains an independent set
of size k. Let β be a satisfying assignment for ϕ. We construct an independent set I for
(V,E) as follows. For each xi and each ` ≤ |Ji|, the set I contains the vertices u`i and v`i
if β(xi) = 1, and the vertices u`i and v`i , otherwise. For each clause cj we pick one literal
that is satisfied by our assignment of the variables and put the corresponding vertex into I.
Observe that I is of size k as exactly one vertex of each clique in (V,E1) is in I. Further, I
is independent since, in each variable gadget, we pick every second vertex and, if a vertex
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N T

Figure 2 Illustration of Construction 2. Left: the initial instance of 2-Union Independent Set
with 4 colors ( , , , ) and a size-4 solution encircled. Right: the non-binary tree T (boxes and
triangles indicating label i1 and i2 for a color i). Middle: the binary multi-labeled tree N with a
subdivision of T (bold, gray) corresponding to the solution to the left instance.

in a clause gadget is picked, then its neighbor in the corresponding variable gadget is not
picked. J

We reduce this version of 2-Union Independent Set to Soft Tree Containment
for multilabeled trees. To this end, we use an equivalent formulation where each clique
in (V,E1) is represented by a color. The problem then becomes the following: Given a
vertex-colored collection of P3s, select exactly one vertex per color such that all selected
vertices are independent. Note that the number of occurrences of each color equals the size
of its corresponding clique in (V,E1).

I Construction 2 (See Figure 2). Given a vertex-colored collection G of P3s constructed by
Construction 1, we construct a multi-labeled tree N and a tree T as follows. Construct T by
first creating a star that has exactly one leaf of each color occurring in G and then, for each
leaf x with color i, adding two new leaves colored i1 and i2, respectively, and removing the
color from x. Construct N from G as follows: For each P3 (u, v, w) where black, gray, and
white denote the colors of u, v, and w, respectively, construct the binary tree depicted below,
where a box or a triangle colored i represents color i1 or i2, respectively. Then, add any
binary tree on |V (G)| leaves and identify its leaves with the roots of the constructed subtrees.
Notice u, v, w ∈ V (G) ∩ V (N).

v

u w

I Lemma 17. Construction 2 is correct, that is, N displays T if and only if the given
collection G of P3s has a colorful independent set using each color exactly once.

Proof. Note that N is binary and let k be the number of colors in G.
“⇒”: Let N display T , that is, N contains a binary tree S displaying T which, by

Lemma 11 is equivalent to T displaying S. Consider any color i occurring in G. Then, S
contains leaves u1 and u2 in S labeled i1 and i2, respectively, and we denote their least
common ancestor in S by ui. If u1 and u2 are neither siblings, nor in an uncle-nephew-
relation3, then we modify S to include the sibling/uncle of u1 in N into S instead of u2.

3 Two vertices are in an uncle-nephew relation if the sibling of one is the parent of the other
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Thus, we do not lose generality by assuming that u1 and u2 are either siblings or in an
uncle-nephew-relation. We show that the set Q =

⋃
i u

i is a size-k colorful independent set
in G. First, for each color i, we know that S contains exactly one leaf labeled i1 and one leaf
labeled i2, so ui is unique and, by construction of N , no two ui coincide, implying that Q
contains exactly one vertex of each color. Towards a contradiction, suppose that Q is not
independent in G, that is, there are colors i and j such that ui and uj are adjacent in G.
Without loss of generality, ui is the center of a P3 in G, implying that S contains the subtree
((((j1, j2), i1), i2) (that is, a caterpillar with leaves labeled j1, j2, i1, i2 in preorder). But
then, j1i1|i2 is displayed by S but not by T , thereby contradicting Definition 2(b).

“⇐”: Let Q be a size-k colorful independent set of G, let L be the set of leaves that,
for each u ∈ Q of color i, contains the leaves labeled i1 and i2 in Nu, and let S := N |L.
Note that S is a subgraph of N and, as N is binary, S is a subdivision of a binary tree.
Since Q contains exactly one vertex of each color in G, we know that S contains all labels
that occur in T . By Definition 2(d), to show that N displays T , it suffices to show that S
displays T . To this end, assume that S displays a triplet xy |z that T does not display.
Then Definition 2(a) lets us assume LCAT (xz) <T {LCAT (xy),LCAT (yz)} without loss
of generality. Thus, x = i1, z = i2, and y = j1 for colors i 6= j. By Definition 2(a),
we have LCAS(i1j1) ≤S LCAS(i1i2). Then, i1 and i2 cannot form a cherry in S and,
thus, S|{i1,i2,j1,j2} is the subtree (((j1, j2), i1), i2). By construction of S, this implies that Q
contains two vertices of a P3 in G, one of color i and one of color j, and the latter is in the
middle, contradicting independence of Q in G. J

I Theorem 18. Soft Tree Containment is NP-hard, even if N is a binary 3-labeled
tree.

Note that the number of occurrences of each label in N equals the number of occurrences
of each color in G which, in turn, equals the size of a largest clique in (V,E1) (instance of
2-Union Independent Set), which equals the size of a largest clause (instance of 3-SAT),
we can state the following generalization of Theorem 18.

I Corollary 19. For each k, k-SAT reduces to Soft Tree Containment on binary k-labeled
trees. Further, CNF-SAT reduces to Soft Tree Containment on binary multilabeled trees.

Corollary 19 immediately raises the question of what happens in the case that N is a 2-labeled
tree and we address this question in Section 4.1. Note that, for Soft Tree Containment,
the case that N is a multilabeled tree reduces straightforwardly to the case that N is a
reticulation-visible network, simply by merging all leaves with the same label i into one
reticulation and adding a new child labeled i to it.

I Corollary 20. Soft Tree Containment is NP-hard on reticulation-visible networks,
even if the maximum in-degree is three and the maximum out-degree is two.

Theorem 18 and Corollary 20 stand in contrast with results for (Strong) Tree Contain-
ment, which is linear-time solvable in both cases [18, 7].

4.1 2-Labeled Trees
In the following, N is a 2-labeled tree and T is a (single-labeled) tree. To solve Soft Tree
Containment in this case, we compute a mapping M : V (T ) → 2V (N) such that M(u)
contains the at most two minima (with respect to ≤N ) among all vertices v of N such that Nv
displays Tu. If N displays T , there is a single-labeled subtree S of N that displays T . If, for
each u ∈ V (T ), we have LCAS(L(u)) ∈M(u), then we call S canonical for T . We show that
such a canonical subtree always exists.



M. Bentert, J. Malík, and M.Weller 9:11

I Lemma 21. N displays T if and only if N has a canonical subtree for T .

Proof. As “⇐” is evident, we just prove “⇒”. To this end, let S be a single-labeled subtree
of N that is a subdivision of T . If S is not canonical, then there is some u ∈ V (T )
with x := LCAS(L(u)) /∈M(u). Since Sx displays Tu, so does Nx. Thus, by definition of M ,
there is some y ∈M(u) with y <N x (recall that x /∈M(u)). But then, we can replace the
subtree of S rooted at x with the unique x-y-path in N and the subtree of Ny displaying Tu.
Iterating this construction yields a canonical subtree of N for T . J

To compute M , we consider vertices u ∈ V (T ) and ρ ∈ V (N) in a bottom-up manner and
check if Nρ displays Tu. For each v ∈ V (Tu) with parent p in Tu, each x ∈M(v) has at most
one ancestor y in M(p) since M contains only minima. For v = u, we let y := ρ. In both
cases, we call the unique x-y-path in Nρ the ascending path of x. A crucial lemma about
ascending paths is the following.

I Lemma 22. Let S be a canonical subtree of some N ′ for some T ′ and let u, v ∈ V (T ′) not
be siblings. Let LCAS(L(u)) and LCAS(L(v)) have ascending paths r and q, respectively.
Then, r and q are edge-disjoint.

Proof. Note that, if u <T ′ v then LCAS(L(p)) ≤S LCAS(L(v)) where p is the parent of u
in T ′. Thus, the highest vertex of r (with respect to ≤Nρ) is a descendant of the lowest
vertex of q and, hence, the lemma holds. Thus, we suppose in the following that u and v are
incomparable in T ′.

Towards a contradiction, assume that there is a vertex z ∈ V (S) that is internal vertex
of both r and q and, hence, is an ancestor of both u and v in T ′. Then, L(u) ] L(v) ⊆ L(z).
Further, since u and v are not siblings, one of u and v has a parent p <T ′ LCAT ′(uv).
Without loss of generality, let p be the parent of u, implying L(p) ∩ L(z) ⊇ L(u) 6= ∅
and L(z) \ L(p) ⊇ L(v) 6= ∅. Since S is canonical, we have LCAS(L(p)) ∈M(p) and, thus,
the ascending path r of u ends in LCAS(L(p)). Hence, as z is an internal vertex of r, it holds
that z <S LCAS(L(p)), implying L(p) \ L(z) 6= ∅. Since S displays T ′, the three established
relations between L(p) and L(z) contradict Lemma 7. J

Clearly, N displays T if and only if M(ρT ) 6= ∅, where ρT is the root of T . Further,
computation of M(u) is trivial if u is a leaf. Thus, in the following, we show how to
compute M(u) given M(v) for all v ∈ V (Tu)− u.

In a first step, compute N |L where L is the set of leaves of N whose label occurs in Tu.
Then, we know that M(v) ⊆ V (N |L) for all v ∈ V (Tu). Second, we mark all vertices ρ
in N |L such that, for each child ui of u in T , there is some xi ∈M(ui) with xi ≤N|L ρ. For
each marked vertex ρ in a bottom-up manner, we test whether Nρ displays Tu using the
following formulation as a 2-SAT problem4.

I Construction 3. Construct ϕu→ρ as follows. For each v ∈ V (Tu)− u,
(i) for each y ∈M(v), introduce a variable xv→y.
(ii) add the clause

⊕
y∈M(v) xv→y (recall that |M(v)| ≤ 2).

(iii) if the parent p of v in Tu is not u then, for all y ∈M(v) and all z ∈M(p) with y �N z,
add the clause xv→y ⇒ ¬xw→z.

(iv) for each w ∈ V (Tu)−u that is not a sibling of v and each y ∈M(v) and each z ∈M(w)
such that the ascending paths of y and z share an edge, add the clause xv→y ⇒ ¬xw→z.

4 We are using the XOR operation ((x⊕y) := (x∨y)∧(¬x∨¬y)) as well as implications ((x⇒ y) := (¬x∨y))
in the construction, which can be formulated as clauses with two variables as shown.
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By definition of M(u), no two vertices in M(u) can be in an ancestor-descendant relation.
Thus, we can ignore all ancestors of a vertex ρ that satisfies ϕu→ρ and we can assume that
no strict ancestor of our current ρ satisfies ϕu→z.

I Lemma 23. ϕu→ρ is satisfiable if and only if Nρ displays Tu.

Proof. “⇐”: Let S be a canonical subtree of Nρ for Tu and let β be an assignment for ϕu→ρ
that sets each xv→y to 1 if and only if y = LCAS(L(v)). Since the LCA of L(v) in S is
unique, all clauses of type (ii) are satisfied by β. If a clause of type (iii) is not satisfied, then
there is some v with parent p in Tu such that y ≤N z for some y ∈ M(v) and z ∈ M(p)
and β(xv→y) = 1 and β(xp→z) = 0. Let z′ ∈ M(p) − z with β(xp→z′) = 1, which exists
since all clauses of type (ii) are satisfied. Since L(p) ⊇ L(v), we know that y ≤S z′ and, as S
is a subtree of N , we have y ≤N z′, implying z ≤N z′ or z′ ≤N z, which contradicts the
construction of M . If a clause of type (iv) is not satisfied, then there are xv→y and xw→z
such that v and w are not siblings in T , β(xv→y) = β(xw→z) = 1, and the ascending paths
of y = LCAS(L(v)) and z = LCAS(L(w)) share an edge. But this contradicts Lemma 22.

“⇒”: Let β be a satisfying assignment for ϕu→ρ. Let ψ ⊆ V (T )× V (N) be a relation
such that (v, y) ∈ ψ if and only if β(xv→y) = 1. Since β satisfies the clauses of type (ii), ψ
describes a function and, slightly abusing notation, we call this function ψ. Let Y be the
image of ψ and let S := N |Y ∪{ρ}. Note that, for all v <T u with parent p 6= u, we know
that ψ(v) ≤N ψ(p), since β satisfies the clauses of type (iii). Thus, for all v, w ∈ V (Tu)− u,
we have w ≤T v ⇒ ψ(w) ≤N ψ(v) ⇒ ψ(w) ≤S ψ(v) We show for all (v, y) ∈ ψ ∪ {(u, ρ)}
that y = LCAS(L(v)) and Sy is a canonical subtree of Ny for Tv. The proof is by induction
on the height of v in T . Clearly, if v is a leaf, y is a leaf with the same label and the claim
follows. Otherwise, suppose that the claim holds for all w <T v. Towards a contradiction,
assume that Sy does not display Tv. By Lemma 7, there are w ∈ V (Tv) and z ∈ V (Sy)
such that there are leaves a ∈ L(z) \ L(w), b ∈ L(w) \ L(z), and c ∈ L(w) ∩ L(z). Note
that LCAT (bc) ≤T w <T {LCAT (ab),LCAT (ac)}. Let α be the highest ancestor of a in T
with b �T α and let pα be its parent in T . Let γ be the highest ancestor of c in T with b �T γ
and let pγ be its parent in T . Since b, c <T w and a �T w, we know that pγ <T pα, implying
that α and γ are not siblings in T . Then, as LCAS(ac) ≤S z <S {LCAS(ab),LCAS(bc)},
LCAS(ab) ≤S ψ(pα), and LCAS(bc) ≤S ψ(pγ), we know that the ascending paths of ψ(α)
and ψ(γ) share an edge, contradicting (iv). J

I Theorem 24. Soft Tree Containment can be solved in O(n3) time on instances (N,T )
for which N is a 2-labeled tree.

Proof. As correctness follows from Lemma 23, we only show the running time. To this end,
note the N |L can be computed in O(|L|) = O(|L(u)|) time (see, for example [3, Section 8]).
To mark all vertices of N |L that, for each child ui of u in T , have an ancestor in M(ui), we
compute the restriction of N |L to

⋃
iM(ui). Again, this can be done in O(degT (u)) time.

For each vertex in this restriction, we can store the set of leaves that descend from it. In a
bottom-up manner, we can thus mark the correct vertices in O(degT (u)2) time.

We construct ϕu→ρ for each pair (u, ρ) as follows. To check y �N z efficiently in
Construction 3(iii), we can prepare a 0/1-matrix with an entry for each pair of vertices in N .
This table has size O(n2) and can be computed in the same time by a simple bottom-up
scan of N . To construct the clauses of type (iv), we first order the vertices in Nρ. For
each v in this order, we construct its ascending path in O(|Nρ|) time and store v in all
edges on this path. Thus, when constructing the clauses of type (iv) for a vertex v, we can
merge the lists of vertices whose ascending path shares an edges with that of v. Thus, ϕu→ρ
can be constructed and solved in O(|Nρ|2) = O(|L(u)|2) time and the total time to decide
whether N displays T is O(

∑
u∈V (T ) |L(u)|2) = O(n3). J
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Theorem 24 implies 5 that we can solve bifurcating reticulation-visible networks in polynomial
time, complementing Corollary 20.

I Corollary 25. Soft Tree Containment can be solved in O(n3) time on reticulation-
visible networks of in-degree at most two.

5 Conclusion

We introduced a practically relevant variant of the Tree Containment problem handling
soft polytomies and showed that its (classical) complexity depends heavily on the maximum
in-degree in the network. Multiple avenues are opened for future work. Motivated by
our hardness result, the search for parameterized or approximative algorithms is a logical
next step. Previous work for Tree Containment [8, 18] might lend promising ideas
and parameterizations to this effort. While multi-labeled trees were our starting point to
analyze Soft Tree Containment, only the hardness result (Theorem 20) is transferable
to multi-labeled networks, leaving many open questions in this direction. Finally, given the
close relationship to Cluster Containment, (see Section 1), we hope to apply ideas and
methods used there to also attack Soft Tree Containment. In particular, we hope that
the ideas in Theorem 24 can be adapted since Cluster Containment seems to exhibit a
close relationship to SAT [9]—similar to what we exploited to prove Theorem 24.
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