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Abstract
The (discrete) Fréchet distance (DFD) is a popular similarity measure for curves. Often the

input curves are not aligned, so one of them must undergo some transformation for the distance
computation to be meaningful. Ben Avraham et al. [5] presented anO(m3n2(1+log(n/m)) log(m+
n))-time algorithm for DFD between two sequences of points of sizes m and n in the plane under
translation. In this paper we consider two variants of DFD, both under translation.

For DFD with shortcuts in the plane, we present an O(m2n2 log2(m+n))-time algorithm, by
presenting a dynamic data structure for reachability queries in the underlying directed graph. In
1D, we show how to avoid the use of parametric search and remove a logarithmic factor from the
running time of (the 1D versions of) these algorithms and of an algorithm for the weak discrete
Fréchet distance; the resulting running times are thus O(m2n(1 + log(n/m))), for the discrete
Fréchet distance, and O(mn log(m+ n)), for its two variants.

Our 1D algorithms follow a general scheme introduced by Martello et al. [21] for the Balanced
Optimization Problem (BOP), which is especially useful when an efficient dynamic version of the
feasibility decider is available. We present an alternative scheme for BOP, whose advantage is that
it yields efficient algorithms quite easily, without having to devise a specially tailored dynamic
version of the feasibility decider. We demonstrate our scheme on the most uniform path problem
(significantly improving the known bound), and observe that the weak DFD under translation in
1D is a special case of it.
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1 Introduction

Polygonal curves play an important role in many applied domains, and it is a challenging
task to compare them in a way that will reflect our intuitive notion of resemblance. The
Fréchet distance is a useful and well studied similarity measure that has been applied in
many diverse settings. Consider a man and a dog connected by a leash, each walking along
a curve. They can control their speed but they are not allowed to backtrack. The Fréchet
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distance between the two curves is the minimum length of a leash that is sufficient for such a
dog-walk from the starting points to the end points of the curves.

Intuitively, the discrete Fréchet distance (DFD) replaces the curves by two sequences of
points A = (a1, . . . , an) and B = (b1, . . . , bm), and replaces the man and dog by two frogs
(connected by a leash), the A-frog and the B-frog, initially placed at a1 and b1, respectively.
At each move, the A-frog or the B-frog (or both) jumps from its current point to the next one.
We are interested in the minimum length of a leash that allows the A-frog and the B-frog
to reach an and bm, respectively. The discrete distance is considered a good approximation
of the continuous one, and is somewhat easier to compute. Both versions of the Fréchet
distance (continuous and discrete) can be computed in roughly O(n2)-time [1, 2, 7, 8, 14].

When the curves or the sampled sequences of points are generated by physical sensors,
such as GPS devices, inaccurate measurements may occur. Since the Fréchet distance is a
bottleneck measure and is thus very sensitive to outliers, several variants for handling outliers
have been proposed, among these are: average and summed Fréchet distance [6, 10, 13],
partial Fréchet similarity [9], and Fréchet distance with shortcuts [4, 11,12].

In the (one-sided) discrete Fréchet distance with shortcuts (DFDS), we allow the A-frog
to jump to any point that comes later in its sequence, rather than to only the next point.
The B-frog has to visit all the B points in order, as in the standard discrete Fréchet distance.
Driemel and Har-Peled [12] introduced the (continuous) Fréchet distance with shortcuts.
They considered the vertex-restricted version where the dog is allowed to take shortcuts only
by walking from a vertex v to any succeeding vertex w along the line segment connecting v
and w, and presented an O(n5 logn)-time algorithm for this version. Later, Buchin et al. [11]
showed that in the general case, where the dog is allowed to take shortcuts between any
two points on its (continuous) curve, the problem becomes NP-hard. In the discrete case,
however, the situation is much better. Ben Avraham et al. [4] presented an O((m+ n)6/5+ε)
expected-time randomized algorithm for the problem. Moreover, they showed that the
decision version in this case can be solved in linear time.

Another well-known variant of the Fréchet distance is the weak discrete Fréchet distance
(WDFD), in which the frogs are allowed to jump also backwards to the previous point in
their sequence. Alt and Godau [2] showed that the continuous weak Fréchet distance can be
computed in O(mn log(mn)) time.

In many applications, the input curves are not necessarily aligned, and one of them
needs to be adjusted (i.e., undergo some transformation) for the distance computation to be
meaningful. In the discrete Fréchet distance under translation, we are given two sequences of
points A = (a1, . . . , an) and B = (b1, . . . , bm), and wish to find a translation t that minimizes
the discrete Fréchet distance between A and B + t.

For points in the plane, Alt et al. [3] gave an O(m3n3(m+n)2 log(m+n))-time algorithm
for computing the continuous Fréchet distance under translation, and an algorithm computing
a (1 + ε)-approximation in O(ε−2mn) time. In 3D, Wenk [24] showed that the minimum
continuous Fréchet distance under any reasonable family of transformations, can be computed
in O((m+ n)3f+2 log(m+ n)) time, where f is the number of degrees of freedom for moving
one sequence w.r.t. the other. For translations only (f = 3), the minimum continuous Fréchet
distance in R3 can be computed in O((m+ n)11 log(m+ n)) time.

In the discrete case, the situation is a little better. For points in the plane, Jiang et
al. [20] gave an O(m3n3 log(m + n))-time algorithm for DFD under translation, and an
O(m4n4 log(m+n))-time algorithm when both rotations and translations are allowed. Mosig
et al. [22] presented an approximation algorithm for DFD under translation, rotation and
scaling in the plane, with approximation factor close to 2 and running time O(m2n2). Finally,
Ben Avraham et al. [5] presented an O(m3n2(1 + log(n/m)) log(m+ n))-time algorithm for
DFD under translation.
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1.1 Preliminaries
Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points. We define a directed
graph G = G(V = A×B,E = EA ∪EB ∪EAB), whose vertices are the possible positions of
the frogs and whose edges are the possible moves between positions:
EA = {〈(ai, bj), (ai+1, bj)〉} , EB = {〈(ai, bj), (ai, bj+1)〉} , EAB = {〈(ai, bj), (ai+1, bj+1)〉} .

The set EA corresponds to moves where only the A-frog jumps forward, the set EB
corresponds to moves where only the B-frog jumps forward, and the set EAB corresponds
to moves where both frogs jump forward. Notice that any valid sequence of moves (with
unlimited leash length) corresponds to a path in G from (a1, b1) to (an, bm), and vice versa.

It is likely that not all positions in A × B are valid; for example, when the leash is
short. We thus assume that we are given an indicator function σ : A×B → {0, 1}, which
determines for each position whether it is valid or not. Now, we say that a position (ai, bj)
is a reachable position (w.r.t. σ), if there exists a path P in G from (a1, b1) to (ai, bj),
consisting of only valid positions, i.e., for each position (ak, bl) ∈ P , we have σ(ak, bl) = 1.

Let d(ai, bj) denote the Euclidean distance between ai and bj . For any distance δ ≥ 0,

the function σδ is defined as follows: σδ(ai, bj) =
{

1, d(ai, bj) ≤ δ
0, otherwise

.

The discrete Fréchet distance ddF (A,B) is the smallest δ ≥ 0 for which (an, bm) is a
reachable position w.r.t. σδ.

One-sided shortcuts. Let σ be an indicator function. We say that a position (ai, bj) is an
s-reachable position (w.r.t. σ), if there exists a path P in G from (a1, b1) to (ai, bj), such
that σ(a1, b1) = 1, σ(ai, bj) = 1, and for each bl, 1 < l < j, there exists a position (ak, bl) ∈ P
that is valid (i.e., σ(ak, bl) = 1). We call such a path an s-path. In general, an s-path
consists of both valid and non-valid positions. Consider the sequence S of positions that is
obtained from P by deleting the non-valid positions. Then S corresponds to a sequence of
moves, where the A-frog is allowed to skip points, and the leash satisfies σ. Since in any path
in G the two indices (of the A-points and of the B-points) are monotonically non-decreasing,
it follows that in S the B-frog visits each of the points b1, . . . , bj , in order, while the A-frog
visits only a subset of the points a1, . . . , ai (including a1 and ai), in order.

The discrete Fréchet distance with shortcuts dsdF (A,B) is the smallest δ ≥ 0 for
which (an, bm) is an s-reachable position w.r.t. σδ.

Weak Fréchet distance. Let Gw = G(V = A × B,Ew), where Ew = {(u, v)|〈u, v〉 ∈
EA ∪ EB ∪ EAB}. That is, Gw is an undirected graph obtained from the graph G of the
‘strong’ version, which contains directed edges, by removing the directions from the edges.
Let σ be an indicator function. We say that a position (ai, bj) is a w-reachable position
(w.r.t. σ), if there exists a path P in Gw from (a1, b1) to (ai, bj) consisting of only valid
positions. Such a path corresponds to a sequence of moves of the frogs, with a leash satisfying
σ, where backtracking is allowed.

The weak discrete Fréchet distance dwdF (A,B) is the smallest δ ≥ 0 for which (an, bm)
is a w-reachable position w.r.t. σδ.

The translation problem. Given two sequences of points A = (a1, . . . , an) and B =
(b1, . . . , bm), we wish to find a translation t∗ that minimizes ddF (A,B+t) (similarly, dsdF (A,B+
t) and dwdF (A,B + t)), over all translations t. Denote d̂dF (A,B) = mint{ddF (A,B + t)},
d̂sdF (A,B) = mint{dsdF (A,B + t)} and d̂wdF (A,B) = mint{dwdF (A,B + t)}.

SWAT 2018
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1.2 Our results
As mentioned earlier, Ben Avraham et al. [5] presented an algorithm that computes DFD
under translation in O(m3n2(1 + log(n/m)) log(m+ n)) time. Given sequences A and B and
an indicator function σ, they construct a dynamic data structure in O(mn) time (which also
stores the information whether (an, bm) is reachable or not). Following a single change (i.e.,
some valid position becomes non-valid or vice versa), the data structure can be updated in
O(m(1 + log(n/m))) time.

Our first major result is an efficient algorithm for DFDS under translation. We provide a
dynamic data structure which supports updates in O(log(m+ n)) time per update, where in
an update the value of σ for some position (ai, bj) changes from valid to non-valid or vice
versa. Following an update, one can determine whether the final position (an, bm) is reachable
from the starting position (a1, b1), with shortcuts, in O(log(m+n)) time. The data structure
is based on Sleator and Tarjan’s Link-Cut Trees structure [23], and, by plugging it into the
optimization algorithm of Ben Avraham et al. [5], we obtain an O(m2n2 log2(m+ n))-time
algorithm for DFDS under translation; an order of magnitude faster than the the algorithm
for DFD under translation.

In 1D, the optimization algorithm of [5] yields an O(m2n(1 + log(n/m)) log(m+n))-time
algorithm for DFD, using their reachability structure, an O(mn log2(m+ n))-time algorithm
for DFDS, using our reachability with shortcuts structure, and an O(mn log2(m+ n))-time
algorithm for WDFD, using a reachability structure of Eppstein et al. [15] for undirected
planar graphs. We describe a simpler optimization algorithm for 1D, which avoids the need
for parametric search and yields an O(m2n(1 + log(n/m)))-time algorithm for DFD and
O(mn log(m + n))-time algorithms for DFDS and WDFD; i.e., we remove a logarithmic
factor from the bounds obtained with the algorithm of Ben Avraham et al.

Our optimization algorithm for 1D follows a general scheme introduced by Martello et
al. [21] for the Balanced Optimization Problem (BOP). BOP is defined as follows. Let
E = {e1, . . . , el} be a set of l elements (where here l = O(mn)), c : E → R a cost function,
and F a set of feasible subsets of E. Find a feasible subset S∗ ∈ F that minimizes
max{c(ei) : ei ∈ S} −min{c(ei) : ei ∈ S}, over all S ∈ F . Given a feasibility decider that
decides whether a subset is feasible or not in f(l) time, the algorithm of [21] finds an optimal
range in O(lf(l) + l log l)-time.

The scheme of [21] is especially useful when an efficient dynamic version of the feasibility
decider is available, as in the case of DFD (where f(l) = O(m(1 + log(n/m)))), DFDS (where
f(l) = O(log(m+ n))), and WDFD (where f(l) = O(log(m+ n))).

Our second major result is an alternative scheme for BOP. Our optimization scheme
does not require a specially tailored dynamic version of the feasibility decider in order
to obtain faster algorithms (than the naive O(lf(l) + l log l) one), rather, whenever the
underlying problem has some desirable properties, it produces algorithms with running time
O(f(l) log2 l+ l log l). Thus, the advantage of our scheme is that it yields efficient algorithms
quite easily, without having to devise an efficient dynamic version of the feasibility decider, a
task which is often difficult if at all possible.

We demonstrate our scheme on the most uniform path problem (MUPP). Given a weighted
graph G = (V,E,w) with n vertices and m edges and two vertices s, t ∈ V , the goal is to
find a path P ∗ in G between s and t that minimizes max{w(e) : e ∈ P}−min{w(e) : e ∈ P},
over all paths P from s to t. This problem was introduced by Hansen et al. [18], who gave
an O(m2)-time algorithm for it. By using a dynamic connectivity data structure of Holm et
al. [19], one can reduce the running time to O(m log2 n). We apply our scheme to MUPP
to obtain a much simpler algorithm with the same (O(m log2 n)) running time. Finally, we
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observe that WDFD under translation in 1D can be viewed as a special case of MUPP, so
we immediately obtain a much simpler algorithm than the one based on Eppstein et al.’s
dynamic data structure (see above), at the cost of an additional logarithmic factor.

2 DFDS under translation

The discrete Fréchet distance (and its shortcuts variant) between A and B is determined by
two points, one from A and one from B. Consider the decision version of the translation
problem: given a distance δ, decide whether d̂dF (A,B) ≤ δ (or d̂sdF (A,B) ≤ δ).

Ben Avaraham et al. [5] described a subdivision of the plane of translations: given two
points a ∈ A and b ∈ B, consider the disk Dδ(a− b) of radius δ centered at a− b, and notice
that t ∈ Dδ(a − b) if and only if d(a − b, t) ≤ δ (or d(a, b + t) ≤ δ). That is, Dδ(a − b) is
precisely the set of translations t for which b + t is at distance at most δ from a. They
construct the arrangement Aδ of the disks in {Dδ(a− b) | (a, b) ∈ A× B}, which consists
of O(m2n2) cells. Then, they initialize their dynamic data structure for (discrete Fréchet)
reachability queries, and traverse the cells of Aδ such that, when moving from one cell to its
neighbor, the dynamic data structure is updated and queried a constant number of times in
O(m(1 + log(n/m)) time. Finally, they use parametric search in order to find an optimal
translation, which adds only a O(log(m+ n)) factor to the running time.

In this section we present a dynamic data structure for s-reachability queries, which
allows updates and queries in O(log(m+ n)) time. We observe that the same parametric
search can be used in the shortcuts variant, since the critical values are the same. Thus,
by combining our dynamic data structure with the parametric search of [5], we obtain an
O(m2n2 log2(m+ n))-time algorithm for DFDS under translation.

We now describe the dynamic data structure for DFDS. Consider the decision version
of the problem: given a distance δ, we would like to determine whether dsdF (A,B) ≤ δ, i.e.,
whether (an, bm) is an s-reachable position w.r.t. σδ. In [4], Ben Avraham et al. presented a
linear time algorithm for this decision problem. Informally, the decision algorithm on the
graph G is as follows: starting at (a1, b1), the B-frog jumps forward (one point at a time) as
long as possible, while the A-frog stays in place, then the A-frog makes the smallest forward
jump needed to allow the B-frog to continue. They continue advancing in this way, until
they either reach (an, bm) or get stuck.

Consider the (directed) graph Gδ = G(V = A×B,E = E′A ∪ E′B), where
E′A = {〈(ai, bj), (ai+1, bj)〉 | σδ(ai, bj) = 0, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}, and
E′B = {〈(ai, bj), (ai, bj+1)〉 | σδ(ai, bj) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}.

In Gδ, if the current position of the frogs is valid, only the B-frog may jump forward
and the A-frog stays in place. And, if the current position is non-valid, the B-frog stays
in place and only the A-frog may jump forward. Let Mδ be an n ×m matrix such that
Mi,j = σδ(ai, bj). Each vertex in Gδ corresponds to a cell of the matrix. The directed edges
of Gδ correspond to right-moves (the B-frog jumps forward) and upward-moves (the A-frog
jumps forward) in the matrix. Any right-move is an edge originating at a valid vertex, and
any upward-move is an edge originating at a non-valid vertex (see Figure 1).

I Observation 1. Gδ is a set of rooted binary trees, where a root is a vertex of out-degree 0.

Proof. Clearly, G is a directed acyclic graph, and Gδ is a subgraph of G. In Gδ, each vertex
has at most one outgoing edge. It is easy to see (by induction on the number of vertices)
that such a graph is a set of rooted trees. J

SWAT 2018
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a1

a2

a3

an

...

b1 b2 b3 bn· · ·

Figure 1 The graph Gδ on the matrix Mδ. The black vertices are valid and the white ones are
non-valid.

We call a path P in G from (ai, bj) to (ai′ , bj′), i ≤ i′, j ≤ j′, a partial s-path, if for
each bl, j ≤ l < j′, there exists a position (ak, bl) ∈ P that is valid (i.e., σδ(ak, bl) = 1).

I Observation 2. All the paths in Gδ are partial s-paths.

Proof. Let P be a path from (ai, bj) to (ai′ , bj′) in Gδ. Each right-move in P advances the
B-frog by one step forward. If j = j′ then the claim is vacuously true. Else, P must contain
a right-move for each bl, j ≤ l < j′. Any right-move is an edge originating at a valid vertex,
thus for any j ≤ l < j′ there exists a position (ak, bl) ∈ P such that σδ(ak, bl) = 1. J

Denote by r(ai, bj) the root of (ai, bj) in Gδ.

I Lemma 3. (an, bm) is an s-reachable position in G w.r.t. σδ, if and only if σδ(a1, b1) = 1,
σδ(an, bm) = 1, and r(a1, b1) = (ai, bm) for some 1 ≤ i ≤ n.

Proof. Assume that σδ(a1, b1) = 1, σδ(an, bm) = 1, and r(a1, b1) = (ai, bm) for some
1 ≤ i ≤ n. Then by Observation 2 there is a partial s-path from (a1, b1) to (ai, bm) in Gδ,
and since σδ(a1, b1) = 1 and σδ(an, bm) = 1 we have an s-path from (a1, b1) to (an, bm).

Now assume that (an, bm) is an s-reachable position in G w.r.t. σδ. Then, in particular,
σδ(a1, b1) = 1 and σδ(an, bm) = 1, and there exists an s-path P in G from (a1, b1) to (an, bm).
Let P ′ be the path in Gδ from (a1, b1) to r(a1, b1). Informally, we claim that P ′ is always
not above P . More precisely, we prove that if a position (ai, bj) is an s-reachable position in
G, then there exists a position (ai′ , bj) ∈ P ′, i′ ≤ i, such that σδ(ai′ , bj) = 1. In particular,
since (an, bm) is an s-reachable position in G, there exists a position (ai′ , bm) ∈ P ′, i′ ≤ n,
such that σδ(ai′ , bm) = 1, and thus r(a1, b1) = (ai′′ , bm) for some i′ ≤ i′′ ≤ n.

We prove this claim by induction on j. The base case where j = 1 is trivial, since (a1, b1) ∈
P ∩P ′ and σδ(a1, b1) = 1. Let P be an s-path from (a1, b1) to (ai, bj+1), then σδ(ai, bj+1) = 1.
Let (ak, bj), k ≤ i, be a position in P such that σδ(ak, bj) = 1. (ak, bj) is an s-reachable
position in G, so by the induction hypothesis there exists a vertex (ak′ , bj) ∈ P ′, k′ ≤ k, such
that σδ(ak′ , bj) = 1. By the construction of Gδ, there is an edge 〈(ak′ , bj), (ak′ , bj+1)〉, and we
have (ak′ , bj+1) ∈ P ′. Now, let k′ ≤ i′ ≤ i be the smallest index such that σδ(ai′ , bj+1) = 1.
Since there are no right-moves in P ′ before reaching (ai′ , bj+1), we have (ai′ , bj+1) ∈ P ′. J

We represent Gδ using the Link-Cut tree data structure, which was developed by Sleator
and Tarjan [23]. The data structure stores a set of rooted trees and supports the following
operations in O(logn) amortized time:
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Link(v, u) – connect a root node v to another node u as its child.
Cut(v) – disconnect the subtree rooted at v from the tree to which it belong.
FindRoot(v) – find the root of the tree to which v belongs.

Now, in order to maintain the representation of Gδ following a single change in σδ (i.e.,
when switching one position (ai, bj) from valid to non-valid or vice versa), one edge should
be removed and one edge should be added to the structure. We update our structure as
follows: Let T be the tree containing (ai, bj).

When switching (ai, bj) from valid to non-valid, we first need to remove the edge
〈(ai, bj), (ai, bj+1)〉, if j < m, by disconnecting (ai, bj) (and its subtree) from
T (Cut(ai, bj)). Then, if i < n, we add the edge 〈(ai, bj), (ai+1, bj)〉 by connecting (ai, bj)
(which is now the root of its tree) to (ai+1, bj) as its child (Link((ai, bj), (ai+1, bj))).
When switching a position from non-valid to valid, we need to remove the edge 〈(ai, bj),
(ai+1, bj)〉, if i < n, by disconnecting (ai, bj) (and its subtree) from T (Cut(ai, bj)). Then,
if j < m, we add the edge 〈(ai, bj), (ai, bj+1)〉 by connecting (ai, bj) (which is now the
root of its tree) to (ai, bj+1) as its child (Link((ai, bj), (ai, bj+1))).

Assume σδ(a1, b1) = σδ(an, bm) = 1. By Lemma 3, in the Link-Cut tree data structure
representing Gδ, FindRoot(a1, b1) is (ai, bm) for some 1 ≤ i ≤ n if and only if (an, bm) is an
s-reachable position in G w.r.t. σδ. We thus obtain the following theorem.

I Theorem 4. Given sequences A and B and an indicator function σδ, one can construct a
dynamic data structure in O(mn log(m+ n)) time, which supports the following operations
in O(log(m+ n)) time: (i) change a single value of σδ, and (ii) check whether (an, bm) is an
s-reachable position in G w.r.t. σδ.

I Theorem 5. Given sequences A and B with n and m points respectively in the plane,
d̂sdF (A,B) can be computed in O(m2n2 log2(m+ n))-time.

3 Translation in 1D

The algorithm of [5] can be generalized to any constant dimension d ≥ 1; only the size of the
arrangement of balls, Aδ, changes to O(mdnd). The running time of the algorithm for two
sequences of points in Rd is therefore O(md+1nd(1 + log(n/m)) log(m+ n)), for DFD, and
O(mdnd log2(m+ n)), for DFDS and WDFD; see relevant paragraph in Section 1.2.

When considering the translation problem in 1D, we can improve the bounds above
by a logarithmic factor, by avoiding the use of parametric search and applying a direct
approach instead. We thus obtain an O(m2n(1 + log(n/m)))-time algorithm, for DFD, and
an O(mn log(m+ n))-time algorithm, for DFDS and WDFD.

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in Rd. Consider
the set D = {ai − bj | ai ∈ A, bj ∈ B}. Then, each vertex v = (ai, bj) of the graph G has
a corresponding point v = (ai − bj) in D. Given a path P in G from (a1, b1) to (an, bm),
denote by V (P ) the set of points of D corresponding to the vertices V (P ) of P . Denote
by S(o, r) the sphere with center o and radius r. We define a new indicator function:

σS(o,r)(ai, bj) =
{

1, d(ai − bj , o) ≤ r
0, otherwise

.

I Lemma 6. Let S = S(t∗, δ) be a smallest sphere for which (an, bm) is a reachable position
w.r.t. σS. Then, t∗ is a translation that minimizes ddF (A,B + t), over all translations t,
and ddF (A,B + t∗) = δ.
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s (a1 − b1) (an − bm) t

Figure 2 The points of V (P ).

Proof. Let t be a translation such that ddF (A,B + t) = δ′, and denote S′ = S(t, δ′). Thus,
there exist a path P from (a1, b1) to (an, bm) in G such that for each vertex (a, b) of P ,
d(a, b+ t) ≤ δ′. But d(a, b+ t) = d(a− b, t), so for each vertex (a, b) of P , d(a− b, t) ≤ δ′,
and thus (an, bm) is a reachable position w.r.t. σS′ . Since S is the smallest sphere for which
(an, bm) is a reachable position w.r.t. σS , we get that δ′ ≥ δ.

Now, since (an, bm) is a reachable position w.r.t. σS , there exists a path P from
(a1, b1) to (an, bm), such that for each vertex (a, b) of P , d(a − b, t∗) ≤ δ. But again
d(a− b, t∗) = d(a, b+ t∗), and thus ddF (A,B + t∗) ≤ δ. J

Notice that the above lemma is true for the shortcuts and the weak variants as well, by
letting (an, bm) be an s-reachable or a w-reachable position, respectively.

Thus, our goal is to find the smallest sphere S for which (an, bm) is a reachable position
w.r.t. σS . We can perform an exhaustive search: check for each sphere S defined by d+ 1
points of D whether (an, bm) is a reachable position w.r.t. σS . There are O(md+1nd+1) such
spheres, and checking whether (an, bm) is a reachable position in G takes O(mn) time. This
yields an O(md+2nd+2)-time algorithm.

When considering the problem on the line, the goal is to find a path P from (a1, b1) to
(an, bm), such that the one-dimensional distance between the leftmost point in V (P ) and the
rightmost point in V (P ) is minimum (see Figure 2). In other words, our indicator function

is now defined for a given range [s, t]: σ[s,t](ai, bj) =
{

1, s ≤ ai − bj ≤ t
0, otherwise

.

We say that a range [s, t] is a feasible range if (an, bm) is a reachable position in G

w.r.t σ[s,t]. Now, we need to find the smallest feasible range delimited by two points of D.
Consider the following search procedure: Sort the values in D = {d1, . . . , dl} such that

d1 < d2 < · · · < dl, where l = mn. Set p← 1, q ← 1. While q ≤ l, if (an, bm) is a reachable
position in G w.r.t. σ[dp,dq ], set p ← p + 1, else set q ← q + 1. Return the translation
corresponding to the smallest feasible range [dp, dq] that was found during the while loop.

We use the data structure of [5] for the decision queries, and update it in O(m(1+log(n/m))
time in each step of the algorithm. For DFDS we use our data structure, and for WDFD we
use the data structure of [15], where in both the cost of a decision query or an update is
O(log(m+ n)).

I Theorem 7. Let A and B be two sequences of n and m points (m ≤ n), respectively, on
the line. Then, d̂dF (A,B) can be computed in O(m2n(1 + log(n/m))) time, and d̂sdF (A,B)
and d̂wdF (A,B) can be computed in O(mn log(m+ n)) time.

4 A general scheme for BOP

In the previous section we showed that DFD, DFDS, and WDFD, all under translation and
in 1D, can be viewed as BOP. In this section, we present a general scheme for BOP, which
yields efficient algorithms quite easily, without having to devise an efficient dynamic version
of the feasibility decider.
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Figure 3 The matrix of possible ranges. (a) The shaded cells are invalid ranges. (b) The cell
M m

2 ,j
induces a partition of M into 4 submatrices: M1, M2, M3, M4. (c) The four submatrices at

the end of the second level of the recursion tree.

BOP’s definition (see Section 1.2) is especially suited for graphs, where, naturally, E is
the set of weighted edges of the graph, and F is a family of well-defined structures, such as
matchings, paths, spanning trees, cut-sets, edge covers, etc.

Let G = (V,E,w) be a weighted graph, where V is a set of n vertices, E is a set of
m edges, and w : E → R is a weight function. Let F be a set of feasible subsets of E.
For a subset S ⊆ E, let Smax = max{w(e) : e ∈ S} and Smin = min{w(e) : e ∈ S}. The
Balanced Optimization Problem on Graphs (BOPG) is to find a feasible subset S∗ ∈ F
which minimizes Smax − Smin over all S ∈ F . A range [l, u] is a feasible range if there
exists a feasible subset S ∈ F such that w(e) ∈ [l, u] for each e ∈ S. A feasibility decider
is an algorithm that decides whether a given range is feasible.

We assume for simplicity that each edge has a unique weight. Our goal is to find the
smallest feasible range. First, we sort the m edges by their weights, and let e1, e2, . . . , em be
the resulting sequence. Let w1 = w(e1) < w2 = w(e2) < · · · < wm = w(em).

Let M be the matrix whose rows correspond to w1, w2, . . . , wm and whose columns
correspond to w1, w2, . . . , wm (see Figure 3(a)). A cell Mi,j of the matrix corresponds to the
range [wi, wj ]. Notice that some of the cells of M correspond to invalid ranges: when i > j,
we have wi > wj and thus [wi, wj ] is not a valid range.

M is sorted in the sense that range Mi,j contains all the ranges Mi′,j′ with i ≤ i′ ≤ j′ ≤ j.
Thus, we can perform a binary search in the middle row to find the smallest feasible range
Mm

2 ,j
= [wm

2
, wj ] among the ranges in this row. Mm

2 ,j
induces a partition of M into 4

submatrices: M1,M2,M3,M4 (see Figure 3(b)). Each of the ranges in M1 is contained in
a range of the middle row which is not a feasible range, hence none of the ranges in M1 is
a feasible range. Each of the ranges in M4 contains Mm

2 ,j
and hence is at least as large as

Mm
2 ,j

. Thus, we may ignore M1 and M4 and focus only on the ranges in the submatrices
M2 and M3.

Sketch of the algorithm. We perform a recursive search in the matrix M . The input to
a recursive call is a submatrix M ′ of M and a corresponding graph G′. Let [wi, wj ] be a
range in M ′. The feasibility decider can decide whether [wi, wj ] is a feasible range or not by
consulting the graph G′. In each recursive call, we perform a binary search in the middle
row of M ′ to find the smallest feasible range in this row, using the corresponding graph G′.
Then, we construct two new graphs for the two submatrices of M ′ in which we still need to
search in the next level of the recursion.
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Algorithm 1 Balance(G([l, l′]× [u′, u]))
1. Set i = l+l′

2
2. Perform a binary search on the ranges [i, j], u′ ≤ j ≤ u, to find the smallest feasible

range, using the feasibility decider with the graph G([l, l′]× [u′, u]) as input.
3. If there is no feasible range, then:

a. If l = l′, return ∞.
b. Else, construct G1 = G([l, i− 1]× [u′, u]) and return Balance(G1).

4. Else, let [wi, wj ] be the smallest feasible range found in the binary search.
a. If l = l′, return (wj − wi).
b. Else, construct two new graphs, G1 = G([i+1, l′]×[j, u]) andG2 = G([l, i−1]×[u′, j−1]),

and return min{(wj − wi),Balance(G1),Balance(G2)}.

The number of potential feasible ranges is equal to the number of cells in M , which is
O(m2). But, since we are looking for the smallest feasible range, we do not need to generate all
of them. We only useM to illustrate the search algorithm, its cells correspond to the potential
feasible ranges, but do not contain any values. We thus represent M and its submatrices
by the indices of the sorted list of weights that correspond to the rows and columns of M .
For example, we represent M by M([1,m]× [1,m]), M2 by M([m2 + 1,m]× [j,m]), and M3
by M([1, m2 − 1] × [1, j − 1]). We define the size of a submatrix of M by the sum of its
number of rows and number of columns, for example, M is of size 2m, |M2| = 3m

2 − j + 1,
and |M3| = m

2 + j − 2.
Each recursive call is associated with a range of rows [l, l′] and a range of columns [u′, u]

(the submatrix M([l, l′]× [u′, u])), and a corresponding input graph G′ = G([l, l′]× [u′, u]).
The scheme does not state which edges should be in G′ or how to construct it, but it does
require the followings properties:
1. The number of edges in G′ should be O(|M ′|).
2. Given G′, the feasibility decider can answer a feasibility query for any range in M ′, in

O(f(|G′|)) time.
3. The construction of the graphs for the next level should take O(|G′|) time.

The optimization scheme is given in Algorithm 1; its initial input is G = G([1,m]× [1,m]).

Correctness. Let g be a bivariate real function with the property that for any four values of
the weight function c ≤ a ≤ b ≤ d, it holds that g(a, b) ≤ g(c, d). In our case, g(a, b) = b− a.
We prove a somewhat more general theorem – that our scheme applies to any such monotone
function g; for example, g(a, b) = b/a (assuming the edge weights are positive numbers).

I Theorem 8. Algorithm 1 returns the minimum value g(Smin, Smax) over all feasible subsets
S ∈ F .

Proof. We claim that given a graph G′ = G([l, l′] × [u′, u]) as input, Algorithm 1 returns
the minimal g(Smin, Smax) over all feasible subsets S ∈ F , such that Smin ∈ [l, l′] and
Smax ∈ [u′, u]. Let M ′ = M([l, l′] × [u′, u]) be the corresponding matrix. The proof is by
induction on the number of rows in M ′.

First, notice that the algorithm runs the feasibility decider only on ranges from M ′. The
base case is when M ′ contains a single row, i.e. l = l′. In this case the algorithm returns the
minimal feasible range [wl, wj ] such that j ∈ [u′, u], or returns ∞ if there is no such range.
Else, M ′ has more than one row. Assume that there is no feasible range in the middle row
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of M ′. In other words, there is no j ∈ [u′, u] such that [wi, wj ] is a feasible range. Trivially,
for any i′ > i we have wi′ > wi, and therefore for any j ∈ [u′, u], [wi′ , wj ] is not a feasible
range, and the algorithm continues recursively with G1 = G([l, i− 1]× [u′, u]). Now assume
that [wi, wj ] is the minimal feasible range in the middle row. We can partition the ranges in
M ′ to four types (submatrices):
1. All the ranges [wi′ , wj′ ] where i′ ∈ [i+ 1, l′] and j′ ∈ [j, u].
2. All the ranges [wi′ , wj′ ] where i′ ∈ [l, i− 1] and j′ ∈ [u′, j − 1].
3. All the ranges [wi′ , wj′ ] where i′ ∈ [i, l′] and j′ ∈ [u′, j − 1]. For any such valid range

(j′ > i′), we have [wi′ , wj′ ] ⊆ [wi, wj ], so it is not a feasible range (otherwise, the result
of the binary search would be [wi, wj′ ]).

4. All the ranges [wi′ , wj′ ] where i′ ∈ [l, i] and j′ ∈ [j, u]. Since j ≥ i, all these ranges are
valid. For any such range, we have wi′ ≤ wi ≤ wj ≤ wj′ , therefore, all these ranges are
feasible, but since g(wi, wj) ≤ g(wi′ , wj′), there is no need to check them.

Indeed, the algorithm continues recursively with G1 and G2 (corresponding to ranges of
type 1 and 2, respectively), which may contain smaller feasible ranges. By the induction
hypothesis, the recursive calls return the minimal g(Smin, Smax) over all feasible subsets
S ∈ F , such that Smin ∈ [i+ 1, l′] and Smax ∈ [j, u] or Smin ∈ [l, i− 1] and Smax ∈ [u′, j− 1].
Finally, the algorithm returns the minimum over all the feasible ranges in M ′. J

I Lemma 9. The total size of the matrices in each level of the recursion tree is at most 2m.

Proof. By induction on the level. The only matrix in level 0 is M , and |M | = 2m. Let
M ′ = M([l, l′]× [u′, u]) be a matrix in level i− 1. The size of M ′ is l′ − l+ u− u′ + 2 (it has
l′ − l + 1 rows and u− u′ + 1 columns). In level i we perform a binary search in the middle
row of M ′ to find the smallest feasible range [w l+l′

2
, wj ] in this row. It is easy to see that the

resulting two submatrices are of sizes l′ − l+l′
2 + u− j + 1 and l+l′

2 − l + j − u′, respectively,
which sums to l′ − l + u− u′ + 1. J

Running time. Consider the recursion tree. It consists of O(logm) levels, where the i’th
level is associated with 2i disjoint submatrices of M . Level 0 is associated with the matrix
M0 = M , level 1 is associated with the submatrices M2 and M3 of M (see Figure 3), etc.

In the i’th level we apply Algorithm 1 to each of the 2i submatrices associated with this
level. Let {M i

k}2i

k=1 be the submatrices associated with the i’th level. Let Gik be the graph
corresponding to M i

k. The size of Gik is linear in the size of M i
k. The feasibility decider runs

in O(f(|M i
k|)) time, and thus the binary search in M i

k runs in O(f(|M i
k|) log |M i

k|) time. Con-
structing the graphs for the next level takes O(|M i

k|) time. By lemma 9, the total time spent on
the i’th level is O(

∑2i

k=1(|M i
k|+f(|M i

k|) log |M i
k|)) ≤ O(

∑2i

k=1 |M i
k|+

∑2i

k=1 f(|M i
k|) logm) =

O(m+ logm
∑2i

k=1 f(|M i
k|)). Finally, the running time of the entire algorithm is O(m logm+∑logm

i=1 (m+ logm
∑2i

k=1 f(|M i
k|))) = O(m logm+ logm

∑logm
i=1

∑2i

k=1 f(|M i
k|)).

Notice that the number of potential ranges is O(m2), while the number of weights is only
O(m). Nevertheless, whenever f(|M ′|) is a linear function, our optimization scheme runs in
O(m log2 m) time. More generally, whenever f(|M ′|) is a function for which f(x1) + · · ·+
f(xk) = O(f(x1+· · ·+xk)), for any x1, . . . , xk, our scheme runs in O(m logm+f(2m) log2 m)
time.

5 MUPP and WDFD under translation in 1D

In Section 3 we described an algorithm for WDFD under translation in 1D, which uses a
dynamic data structure due to Eppstein et al. [15]. In this section we present a much simpler
algorithm for the problem, which avoids heavy tools and has roughly the same running time.

SWAT 2018



20:12 Algorithms for the Discrete Fréchet Distance Under Translation

As shown in Section 3, WDFD under translation in 1D can be viewed as BOP. More
precisely, we say that a range [s, t] is a feasible range if (an, bm) is a w-reachable position in
Gw w.r.t. σ[s,t]. Now, our goal is to find a feasible range of minimum size.

Consider the following weighted graph G̃w = (Ṽw, Ẽw, ω), where Ṽw = (A×B)∪{ve | e ∈
Ew}, Ẽw = {(u, ve), (ve, v) | e = (u, v) ∈ Ew}, and ω(((ai, bj), ve)) = ai − bj . In other words,
G̃w is obtained from Gw by adding, for each edge e = (u, v) of Gw, a new vertex ve, which
splits the edge into two new edges, (u, ve), (ve, v), whose weight is the distance associated
with their original vertex.

Now (an, bm) is a w-reachable position in Gw w.r.t. σ[s,t], if and only if there exists a
path P between (a1, b1) and (an, bm) in Gw such that V (P ) ∈ [s, t], if and only if there exists
a path P̃ between (a1, b1) and (an, bm) in G̃w such that for each edge e ∈ P̃ , ω(e) ∈ [s, t].

We have reduced our problem to a special case of the most uniform path problem (MUPP).
We show below how to apply our scheme to MUPP, with a linear-time feasibility decider,
and thus obtain the following theorem as a by-product:

I Theorem 10. Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in 1D.
Then, the weak discrete Fréchet distance under translation, d̂wdF (A,B), can be computed in
O(mn log2(m+ n)) time.

Most uniform path. Given a weighted graph G = (V,E,w) with n vertices and m edges,
and two vertices s, t ∈ V , the goal is to find a path P ∗ in G between s and t, which minimizes
max{w(e) : e ∈ P} −min{w(e) : e ∈ P}, over all paths P between s and t.

Here F is the set of paths in G between s and t. The matrix for the initial call is M and
G is its associated graph. Consider a recursive call, and let M ′ be the submatrix and G′
the graph associated with it. Throughout the execution of the algorithm, we maintain the
following properties: (i) The number of edges and vertices in G′ is at most O(|M ′|), and (ii)
Given a range [wp, wq] in M ′, there exists a path between s and t in G′ with edges in the
range [wp, wq] if and only if such a path exists in G.

Construction of the graphs for the next level. Given the input graph G′ and a submatrix
M ′′ = M([p, p′]× [q′, q]) of M ′, we construct the corresponding graph G′′ as follows: First,
we remove from G′ all the edges e such that w(e) /∈ [wp, wq]. Then, we contract edges with
weights in the range (wp′ , wq′), and finally we remove all the isolated vertices. Notice that
G′′ is a graph minor of G′, and, clearly, all the properties hold.

The feasibility decider. Let [wp, wq] be a range from M ′. Run a BFS in G′, beginning from
s, while ignoring edges with weights outside the range [wp, wq]. If the BFS finds t, return
“yes”, otherwise return “no”. The algorithm returns “yes” if and only if there exists a path
between s and t in G′ with edges in the range [wp, wq], i.e., if and only if such a path exists
in G. The running time of the decider is O(|G′|) = O(|M ′|).

I Theorem 11. The most uniform path problem in G can be solved in O(m log2 n) time.

I Remark. We have introduced an alternative optimization scheme for BOP and demonstrated
its power. It would be interesting to find additional applications of this scheme. For example,
using it we easily obtain an O(m log2 n)-time algorithm for the Most Uniform Spanning Tree
problem; slower than the specialized algorithm of Galil and Schieber [17] by only a log-factor.
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6 Discussion

In an unpublished manuscript [16], we suggested a new variant of DFD – the discrete Fréchet
gap. Given two sequences of points A = (a1, . . . , an) and B = (b1, . . . , bn), the discrete
Fréchet gap between them is the smallest range [s, t], s ≥ t ≥ 0, for which (an, bm) is a
reachable position w.r.t. σ[s,t], where σ[s,t](ai, bj) = 1 if and only if d(ai, bj) ∈ [s, t]. We used
a less general version of our scheme for BOP to solve two variants of the gap problem: the
discrete Fréchet gap with shortcuts (where (an, bm) is an s-reachable position), and the weak
discrete Fréchet gap (where (an, bm) is a w-reachable position).

It is interesting to note that DFDS and WDFD, both in 1D under translation, are in
some sense analogous to their respective gap variants (in d dimensions and no translation):
We can use similar algorithms to compute them, but with different indicator functions. This
connection supports the intuition that there is some connection between the discrete Fréchet
gap and DFD under translation.
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