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Abstract
We study two important SVM variants: hard-margin SVM (for linearly separable cases) and
ν-SVM (for linearly non-separable cases). We propose new algorithms from the perspective of
saddle point optimization. Our algorithms achieve (1 − ε)-approximations with running time
Õ(nd + n

√
d/ε) for both variants, where n is the number of points and d is the dimensionality.

To the best of our knowledge, the current best algorithm for ν-SVM is based on quadratic
programming approach which requires Ω(n2d) time in worst case [Joachims, 1998; Platt, 1999]. In
the paper, we provide the first nearly linear time algorithm for ν-SVM. The current best algorithm
for hard margin SVM achieved by Gilbert algorithm [Gärtner and Jaggi, 2009] requires O(nd/ε)
time. Our algorithm improves the running time by a factor of

√
d/
√
ε. Moreover, our algorithms

can be implemented in the distributed settings naturally. We prove that our algorithms require
Õ(k(d+

√
d/ε)) communication cost, where k is the number of clients, which almost matches the

theoretical lower bound. Numerical experiments support our theory and show that our algorithms
converge faster on high dimensional, large and dense data sets, as compared to previous methods.
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1 Introduction

Support Vector Machine (SVM) is widely used for classification in numerous applications
such as text categorization, image classification, and hand-written characters recognition.

In this paper, we focus on binary classification. If two classes of points which are linearly
separable, one can use the hard-margin SVM [7, 9], which is to find a hyperplane that
separate two classes of points and the margin is maximized. If the data is not linearly
separable, several popular SVM variants have been proposed, such as l2-SVM, C-SVM and
ν-SVM (see e.g., the summary in [15]). The main difference among these variants is that they
use different penalty loss functions for the misclassified points. l2-SVM, as the name implied,
uses the l2 penalty loss. C-SVM and ν-SVM are two well-known SVM variants using l1-loss.
C-SVM uses the l1-loss with penalty coefficient C ∈ [0,∞) [43]. On the other hand, ν-SVM
reformulates C-SVM through taking a new regularization parameter ν ∈ (0, 1] [35]. However,
given a C-SVM formulation, it is not easy to compute the regularization parameter ν and
obtain an equivalent ν-SVM. Because the equivalence is based on some hard-to-compute
constant. Compared to C-SVM, the parameter ν in ν-SVM has a more clear geometric
interpretation: the objective is to minimize the distance between two reduced polytopes
defined based on ν [10]. However, the best known algorithm for ν-SVM is much worse than
that for C-SVM in practice (see below).

In general, SVMs can be formulated as convex quadratic programs and solved by quadratic
programs in O(n2d) time [21, 34]. However, better algorithms exists for some SVM variants,
which we briefly discuss below.

For hard-margin SVM, [15] showed that Gilbert algorithm [16] achieves a (1 − ε)-
approximation with O(nd/εβ2) running time where β is the ratio of the minimum distance to
the maximum one among the points. l2-SVM and C-SVM have been studied extensively and
current best algorithms runs in time linear in the number n of data points [2, 6, 11, 13, 36].
Moreover, if the parameter C is sufficiently small, e.g., C = Θ(1/n), then C-SVM can be
solved in Õ(d/ε) time [36], which is independent of n. However, these techniques cannot be
extended to ν-SVM directly, mainly because ν-SVM cannot be transformed to single-objective
unconstrained optimization problems. Except the traditional quadratic programming ap-
proach, there is no better algorithm known with provable guarantee for ν-SVM. Whether
ν-SVM can be solved in nearly linear time is still open.

Distributed SVM has also attracted significant attention in recent years. A number of
distributed algorithms for SVM have been obtained in the past [12, 17, 28, 30, 41]. Typically,
the communication complexity is one of the key performance measurements for distributed
algorithms, and has been studied extensively (see [25, 32, 40]). For hard-margin SVM, Liu
et al. [26] proposed a distributed algorithm with O(kd/ε) communication cost, where k is
the number of the clients. Hence, it is a natural question to ask whether the communication
cost of their algorithm can be improved.

1.1 Our Contributions
We summarize our main contributions as follows.
1. Hard-Margin SVM: We provide a new (1− ε)-approximation algorithm with running

time Õ(nd+n
√
d/
√
εβ), where β is the ratio of the minimum distance to the maximum one

among the points (see Theorem 9).1 Compared to Gilbert algorithm [15], our algorithm

1 Õ notation hides logarithm factors such as log(n), log(β) and log(1/ε).
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improves the running time by a factor of
√
d/
√
ε. First, we regard hard-margin SVM as

computing the polytope distance between two classes of points. Then we translate the
problem to a saddle point optimization problem using the properties of the geometric
structures (Lemma 2), and provide an algorithm to solve the saddle point optimization.

2. ν-SVM: Then, we extend our algorithm to ν-SVM and design an Õ(nd+n
√
d/
√
εβ) time

algorithm, which is the most important technical contribution of this paper. To the best
of our knowledge, it is the first nearly linear time algorithm for ν-SVM. It is known that
ν-SVM is equivalent to computing the distance between two reduced polytopes [10, 5].
The obstacle for providing an efficient algorithm based on the reduced polytopes is that
the number of vertices in the reduced polytopes may be exponentially large. However, in
our framework, we only need to implicitly represent the reduced polytopes. We show that
using the similar saddle point optimization framework, together with a new nontrivial
projection method, ν-SVM can be solved efficiently in the same time complexity as in the
hard-margin case. Compared with the QP-based algorithms in previous work [21, 34],
our algorithm significantly improves the running time, by a factor of n.

3. Distributed SVM: Finally, we extend our algorithms for both hard-margin SVM and
ν-SVM to the distributed setting. We prove that the communication cost of our algorithm
is Õ(k(d+

√
d/ε)), which is almost optimal according to the lower bound provided in [26].

For the hard-margin SVM, compared with the current best algorithm [26] with O(kd/ε)
communication cost, our algorithm is more suitable when ε is small and d is large. For
ν-SVM, our algorithm is the first practical distributed algorithm.

Besides, the numerical experiments support our theoretical bounds. We compare our
algorithms with Gilbert Algorithm [15] and NuSVC in scikit-learn [33]. The experiments
show that our algorithms converge faster on high dimensional, large and dense data sets. See
the full version for the details.

1.2 Other Related Work
For the hard-margin SVM, there is an alternative to Gilbert’s method, called the MDM
algorithm, originally proposed by [29]. Recently, López and Dorronsoro proved that the rate
of convergence of MDM algorithm is O(n2d log(1/ε)) [27] which is a linear convergence w.r.t.
ε, but worse than Gilbert Algorithm w.r.t. n.

Both C-SVM and l2-SVM have been studied extensively in the literature. Basically, there
are three main algorithmic approaches: the primal gradient-based methods [24, 36, 13, 11, 2],
dual quadratic programming methods [22, 37, 20] and dual geometry methods [39, 38].
Recently, [2] provided the current best algorithms which achieve O(nd/

√
ε) time for l2-SVM

and O(nd/ε) time for C-SVM.
Sublinear time algorithms for hard-margin SVM and l2-SVM have been proposed [8, 19].

These algorithms are sublinear w.r.t. nd, (i.e., the size of the input), but have worse
dependency on 1/ε.

The algorithmic framework for saddle point optimization was first developed by Nesterov
for structured nonsmooth optimization problem [31]. He only considered the full gradient in
the algorithm. Recently, some studies have extended it to the stochastic gradient setting [42, 3].
The most related work is [3], in which the author obtained an Õ(nd+ n

√
d/
√
ε) algorithm

for the minimum enclosing ball problem (MinEB) in Euclidean space, using the saddle point
optimization. This result also implies an algorithm for l2-SVM, by the connection between
MinEB and l2-SVM (see [39, 38, 18]). However, the implied algorithm is not as efficient.
Based on [39, 38], the dual of l2-SVM is equivalent to MinEB by a specific feature mapping.

SWAT 2018
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It maps a d-dimensional point to the (d+ n)-dimensional space. Thus, after the mapping, it
takes quadratic time to solve l2-SVM. To avoid this mapping, they designed an algorithm
called Core Vector Machine (CVM), in which they can solve l2-SVM by solving O(1/ε)
MinEB problems sequentially.

2 Formulate SVM as Saddle Point Optimization

In this section, we formulate both hard-margin SVM and ν-SVM, and show that they can be
reduced to saddle point optimizations. All vectors in the paper are all column vectors by
default.

I Definition 1 (Hard-margin SVM). Given n points xi ∈ Rd for 1 ≤ i ≤ n, each xi has
a label yi ∈ {±1}. The hard-margin SVM can be formalized as the following quadratic
programming [9].

min
w,b

1
2‖w‖

2

s.t. yi(wTxi − b) ≥ 1, ∀i
(1)

The dual problem of (1) is defined as follows, which is equivalent to finding the minimum
distance between the two convex hulls of two classes of points when they are linearly
separable [5]. We call the problem the C-Hull problem.

min
η,ξ

1
2‖Aη −Bξ‖

2

s.t. ‖η‖1 = 1, ‖ξ‖1 = 1. η ≥ 0, ξ ≥ 0.
(2)

where A and B are the matrices in which each column represents a vector of a point with
label +1 or −1 respectively.

Denote the set of points with label +1 by P and the set with label −1 by Q. Let n1 = |P|
and n2 = |Q|. Since

∑
i ηi = 1, we can regard it as a probability distribution among points

in P (similarly for Q). We denote ∆n1 to be the set of n1-dimensional probability vectors
over P and ∆n2 to be that over Q. Then, we prove that the C-Hull problem (2) is equivalent
to the following saddle point optimization in Lemma 2.

I Lemma 2. Problem C-Hull (2) is equivalent to the saddle point optimization (3).

OPT = max
w

min
η∈∆n1 ,ξ∈∆n2

wTAη − wTBξ − 1
2‖w‖

2 (3)

Proof. Consider the saddle point optimization (3). First, note that

wTAη − wTBξ − 1
2‖w‖

2 = wT(Aη −Bξ)− 1
2‖w‖

2

The range of the term (Aη−Bξ) for η ∈ ∆n1 , ξ ∈ ∆n2 is a convex set, denoted by S. Since the
convex hulls of P and Q are linearly separable, we have 0 /∈ S. Denote φ(w, z) = wTz− 1

2‖w‖
2

for any w ∈ Rd, z ∈ S. Then (3) is equivalent to maxw minz∈S φ(w, z). Note that

max
w

min
z∈S

φ(w, z) ≥ min
z∈S

φ(0d, z) = 0.

Thus, we only need to consider those directions w ∈ Rd such that there exists a point z ∈ S
with wT z ≥ 0. We use W to denote the collection of such directions.
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Figure 1 The equivalence between C-Hull and saddle point optimization (3).

Let u be a unit vector in W. Denote

zu := arg min
z∈S

φ(u, z) = arg min
z∈S

uT z.

By this definition, zu is the point with smallest projection distance to u among S (see Figure 1).
Observe that if a direction w = c ·u (c > 0), then we have arg minz φ(w, z) = arg minz φ(u, z).
Also note that

max
w=c·u:c>0

wTzu −
1
2‖w‖

2 = max
w=c·u:c>0

1
2(−‖w − zu‖2 + ‖zu‖2).

Let wu := arg maxw=c·u:c>0 φ(w, zu) = arg minw=c·u:c>0 ‖w − zu‖2 be the projection point
of zu to the line ou, where o is the origin. See Figure 1 for an example. Overall, we have

max
w

min
η∈∆n1 ,ξ∈∆n2

wT(Aη −Bξ)− 1
2‖w‖

2 = max
u∈W:‖u‖=1

1
2(−‖wu − zu‖2 + ‖zu‖2)

= max
u∈W:‖u‖=1

1
2‖wu‖

2.

The last equality is by the Pythagorean theorem. Let z∗ be the closest point in S to the
origin point. Next, we show that maxu∈W:‖u‖=1 ‖wu‖2 = ‖z∗‖2. Given a unit vector u ∈ W ,
define w′ to be the projection point of z∗ to the line ou. By the definition of zu and wu, we
have that maxu ‖wu‖2 ≤ ‖w′‖2 ≤ ‖z∗‖2. Moreover, let u = z∗/‖z∗‖. In this case, we have
‖wu‖2 = ‖z∗‖2. Thus, we conclude that maxu ‖wu‖2 = ‖z∗‖2.

Overall, we prove that

max
u∈W:‖u‖=1

1
2‖wu‖

2 = 1
2‖z

∗‖2 min
z∈S

1
2‖z‖

2 = min
η∈∆n1 ,ξ∈∆n2

1
2‖Aη −Bξ‖

2.

Thus, C-Hull (2) is equivalent to the saddle point optimization (3). J

Let φ(w, η, ξ) = wTAη − wTBξ − ‖w‖2/2. Note that φ(w, η, ξ) is only linear w.r.t. η and ξ.
However, in order to obtain an algorithm which converges faster, we hope that the objective
function is strongly convex with respect to η and ξ. For this purpose, we can add a small

SWAT 2018
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regularization term which ensures that the objective function is strongly convex. This is a
commonly used approach in optimization (see [3] for an example). Here, we use the entropy
function H(u) :=

∑
i ui log ui as the regularization term. The new saddle point optimization

problem is as follows.

max
w

min
η∈∆n1 ,ξ∈∆n2

wTAη − wTBξ + γH(η) + γH(ξ)− 1
2‖w‖

2, (4)

where γ = εβ/2 logn. The following lemma describes the efficiency of the above saddle point
optimization (4). We defer the proof to the full version.

I Lemma 3. Let (w∗, η∗, ξ∗) and (w◦, η◦, ξ◦) be the optimal solution of saddle point optim-
izations (3) and (4) respectively. Define OPT as in (3). Define

g(w) := min
η∈∆n1 ,ξ∈∆n2

wTAη − wTBξ − 1
2‖w‖

2.

Then g(w∗)− g(w◦) ≤ εOPT (note that g(w∗) = OPT).

We call the saddle point optimization (4) the Hard-Margin Saddle problem, abbreviated as
HM-Saddle. Next, we discuss ν-SVM (see [35, 10]) and again provide an equivalent saddle
point optimization formulation.

I Definition 4 (ν-SVM). Given n points xi ∈ Rd for 1 ≤ i ≤ n, each xi has a label
yi ∈ {+1,−1}. ν-SVM is the quadratic programming as follows.

min
w,b,ρ,δ

1
2‖w‖

2 − ρ+ ν
2
∑
i δi

s.t. yi(wTxi − b) ≥ ρ− δi, δi ≥ 0, ∀i
(5)

Crisp and Burges [10] presented a geometry interpretation for ν-SVM. They proved ν-SVM
is equivalent to the following problem of finding the closest distance between two reduced
convex hulls.

min
η,ξ

1
2‖Aη −Bξ‖

2

s.t. ‖η‖1 = 1, ‖ξ‖1 = 1, 0 ≤ ηi ≤ ν, 0 ≤ ξj ≤ ν, ∀i, j
(6)

We call the above problem the Reduced Convex Hull problem, abbreviated as RC-Hull. The
difference between C-Hull (2) and RC-Hull (6) is that in the latter one, each entry of η and
ξ has an upper bound ν. Geometrically, it means to compress the convex hull of P and
Q such that the two reduced convex hulls are linearly separable. We define Dn1 to be the
domain of η in RC-Hull, i.e., {η | ‖η‖1 = 1, 0 ≤ ηi ≤ ν,∀i} and Dn2 to be the domain of ξ,
i.e., {ξ | ‖ξ‖1 = 1, 0 ≤ ξj ≤ ν, ∀j}. Similar to Lemma 2, we have the following lemma.

I Lemma 5. RC-Hull (6) is equivalent to the following saddle point optimization.

OPT = max
w

min
η∈Dn1 , ξ∈Dn2

wTAη − wTBξ − 1
2‖w‖

2. (7)

Proof. The proof is almost the same to the proof of Lemma 2. The only difference is that
the range of the term (Aη −Bξ) is another convex set defined by η ∈ Dn1 , ξ ∈ Dn2 . J

Again, we add two entropy terms to make the objective function strongly convex with
respective to η and ξ.

max
w

min
η∈Dn1 ,ξ∈Dn2

wTAη − wTBξ + γH(η) + γH(ξ)− 1
2‖w‖

2. (8)
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where γ = εβ/(2 logn). We call this problem a ν-Saddle problem. Similar to Lemma 3, we
have the following lemma which states that ν-Saddle (8) is a (1− ε)-approximation of the
saddle point optimization (7). The proof can be found in the full version.

I Lemma 6. Let (w∗, η∗, ξ∗) and (w◦, η◦, ξ◦) be the optimal solution of saddle point optim-
izations (7) and (8) respectively. Define OPT as in (7). Define

g(w) := min
η∈Dn1 ,ξ∈Dn2

wTAη − wTBξ − 1
2‖w‖

2.

Then g(w∗)− g(w◦) ≤ εOPT.

Overall, we formulate hard-margin SVM and ν-SVM as saddle point problems and prove
that through solving HM-Saddle and ν-Saddle, we can solve hard-margin SVM and ν-SVM.2

3 Saddle Point Optimization Algorithms for SVM

In this section, we propose efficient algorithms to solve the two saddle point optimizations:
HM-Saddle (4) and ν-Saddle (8). The framework is inspired by the prior work by [3].
However, their algorithm does not imply an effective SVM algorithm directly as discussed in
Section 1.2. We modify the update rules and introduce new projection methods to adjust
the framework to the HM-Saddle and ν-Saddle problems. We highlight that both the new
update rules and projection methods are non-trivial.

First, we introduce a preprocess step to make the data vectors more homogeneous in each
coordinate. Then, we explain the update rules and projection methods of our algorithm:
Saddle-SVC.

For convenience, we assume that in the hard margin case ‖xi‖2 ≤ 1 for 1 ≤ i ≤ n. 3 Let
W be the d× d Walsh-Hadamard matrix and D be a d× d diagonal matrix whose entries
are i.i.d. chosen from ±1 with equal probability. We transform the data by left-producting
the matrix WD. Then with high probability, for any point xi satisfied that [1]

∀j ∈ [d], |(WDxi)j | ≤ O(
√

logn/d).

Let X+ = WDA and X− = WDB. It means that after transformation, with high probability,
the value of each entry in X+ or X− is at most O(

√
logn/d). This transformation can

be completed in O(nd log d) time by FFT. Note that WD is an invertible matrix which
represents a rotation and mirroring operation. Hence, it does not affect the optima of the
problem. In fact, the “Hadamard transform trick" has been used in the numerical analysis
literature explicitly or implicitly (see e.g., [14, 23, 3]). Roughly speaking, the main purpose of
the transform is to make all coordinates of X more uniform, such that the uniform sampling
(line 1 in Algorithm 2) is more efficient (otherwise, the large coordinates would have a
disproportionate effect on uniform sampling).

After the data transformation, we define some necessary parameters. See line 4 of
Algorithm 1 for details.4 We use “α[t]” to represent the value of variable “α” at iteration t.

2 Some readers may wonder why the formulations of HM-Saddle and ν-Saddle only depends on (w, η, ξ)
but not the offset b. In fact, according to the fact that the hyperplane bisects the closest points in the
(reduced) convex hulls, it is not difficult to show that b∗ = w∗T(Aη∗ +Bξ∗)/2.

3 It can be achieved by scaling all data by factor 1/max ‖xi‖2 in O(nd) time.
4 Careful readers may notice that γ = εβ/(2 logn). But β is an unknown parameter, which is the ratio

of the minimum distance to the maximum one among the points. The same issue also appears in the
previous work [3]. The role of β is similar to the step size in the stochastic gradient descent algorithm.
In practice, we could try several β = 10−k for k ∈ Z and choose the best one.

SWAT 2018
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Algorithm 1 Pre-processing
Input: P: n1 points x+

i with label +1 and Q: n2 points x−i with label −1
1: W ← d-dimensional Walsh-Hadamard Matrix
2: D ← d× d diagonal matrix whose entries are i.i.d. chosen from ±1
3: X+ ←WD · [x+

1 , x
+
2 , . . . , x

+
n1

], X− ←WD · [x−1 , x
−
2 , . . . , x

−
n2

]
4: γ ← εβ

2 logn , q ← O(
√

logn), τ ← 1
2q

√
d
γ , σ ←

1
2q
√
dγ, θ ← 1− 1

d+q
√
d/
√
γ

5: w[0] = 0T, η[−1] = η[0] = 1T/n1, ξ[−1] = ξ[0] = 1T/n2

Algorithm 2 Update Rules of Saddle-SVC
1: Pick an index i∗ in [d] uniformly at random
2: δ+

i∗ ← 〈X
+
i∗ , η[t] + θ(η[t]− η[t− 1])〉, δ−i∗ ← 〈X

−
i∗ , ξ[t] + θ(ξ[t]− ξ[t− 1])〉

3: ∀i ∈ [d], wi[t+ 1] ←
{

(wi[t] + σ(δ+
i − δ

−
i ))/(σ + 1), if i = i∗

wi[t], if i 6= i∗

4: η[t+ 1]← arg min
η∈S1
{ 1
d (w[t] + d(w[t+ 1]− w[t]))TX+η +γ

dH(η) + 1
τ Vη[t](η)}

5: ξ[t+ 1]← arg min
ξ∈S2
{− 1

d (w[t] + d(w[t+ 1]− w[t]))TX−ξ +γ
dH(ξ) + 1

τ Vξ[t](ξ)}

For example, w[0], η[0], ξ[0] are the initial value of w, η, ξ and are defined in line 5 of
Algorithm 1.

Update Rules: In order to unify HM-Saddle and ν-Saddle in the same framework, we use
(S1,S2) to represent the domains (∆n1 ,∆n2) in HM-Saddle (see formula (3)) or (Dn1 ,Dn2)
in ν-Saddle (see formula (7)).

Generally speaking, the update rules alternatively maximize the objective with respect to
w and minimize with respect to η and ξ. See the details in Algorithm 2.

Firstly, we update w according to line 3 in Algorithm 2. It is equivalent to a variant of
the proximal coordinate gradient method with l2-norm regularization as follows.

wi∗ [t+ 1] = arg max
wi∗
−
{
− (δ+

i∗ − δ
−
i∗)wi∗ + w2

i∗/2 + (wi∗ − wi∗ [t])2/2σ
}

(9)

We briefly explain the intuition of (9). Note that the term (δ+
i∗ − δ

−
i∗) in (9) can be considered

as the term 〈X+
i∗ , η[t]〉−〈X−i∗ , ξ[t]〉 adding extra momentum terms 〈X+

i∗ , θ(η[t]−η[t−1])〉 and
−〈X−i∗ , θ(ξ[t]− ξ[t− 1])〉 for dual variable η[t] and ξ[t] respectively (see line 2 in Algorithm 2).
Further, (〈X+

i∗ , η[t]〉 − 〈X−i∗ , ξ[t]〉)wi∗ − w2
i∗/2 is the term in the objective function (4) and

(8) which are related to w. The (wi∗ − wi∗ [t])2/2) is the l2-norm regularization term.
Moreover, rather than update the whole w vector, randomly selecting one dimension

i∗ ∈ [d] and updating the corresponding wi∗ in each iteration can reduce the runtime per
round.

The update rules for η and ξ are listed in line 4 and 5 in Algorithm 2, which are the proximal
gradient method with a Bergman divergence regularization Vx(y) = H(y) − 〈∇H(x), y −
x〉 −H(x). Similar to (δ+

i∗ − δ
−
i∗) in (9), we also add a momentum term d(w[t+ 1]−w[t]) for

primal variable w when updating η and ξ.

Projection Methods: However, the update rules for η and ξ are implicit update rules. We
need to show that we can solve the corresponding optimization problems in line 4 and 5 of
Algorithm 2 efficiently. In fact, for both HM-Saddle and ν-Saddle, we can obtain explicit
expressions of these two optimization problems using the method of Lagrange multipliers.
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First, we can solve the optimization problem for HM-Saddle (line 4 and 5 of Algorithm 2)
directly, and the explicit expressions for η and ξ are as follows. The proof can be found in
the full version.

I Lemma 7 (Update Rules of HM-Saddle). For linearly separable cases, the update rules in
line 4 and 5 of Algorithms 2 is equivalent to

ηi[t+ 1] ← Φ(ηi[t], X+)/Z+, ∀i ∈ [n1],
ξj [t+ 1] ← Φ(ξj [t], X−)/Z−, ∀j ∈ [n2], (10)

where Z+ and Z− are normalizers that ensures
∑
i ηi[t+ 1] = 1 and

∑
j ξj [t+ 1] = 1, and

Φ(λi, X) = exp
{

(γ + dτ−1)−1(dτ−1 log λi − yi · 〈w[t] + d(w[t+ 1]− w[t], X·i)〉)
}

(11)

Note that the factors Z+ and Z− are used to project the value Φ(ηi[t], X+) and
Φ(ξj [t], X−) to the domains ∆n1 and ∆n2 . The above update rules of η and ξ can be
also considered as the multiplicative weight update method (see [4]).

Next, we consider ν-Saddle. Compared to HM-Saddle, ν-Saddle has extra constraints
that ηi, ξj ≤ ν. Thus, we need another projection process to ensure that η[t+ 1] and ξ[t+ 1]
locate in domain Dn1 and Dn2 respectively. For convenience, we only present the projection
for η by the following Lemma 8. The projection for ξ is similar. Due to the space limit, we
defer the proof of Lemma 8 to the full version.

I Lemma 8 (Update Rules of ν-Saddle). The following three update rules are equivalent.

Rule 1:

η[t+ 1] := arg min
η∈Dn1

{1
d

(w[t] + d(w[t+ 1]− w[t]))TXη + γ

d
H(η) + 1

τ
Vη[t](η)

}
Rule 2:

Step 1:

ηi := Z−1 exp
{

(γ + dτ−1)−1(dτ−1 log ηi[t]− 〈w[t] + d(w[t+ 1]− w[t]), X·i〉)
}

for each i ∈ [n1], where Z ensures
∑
i ηi = 1.

Step 2:

while ς :=
∑
ηi>ν

(ηi − ν) 6= 0 :
Ω =

∑
ηi<ν

ηi
∀i, if ηi ≥ ν, then ηi[t+ 1] = ν

∀i, if ηi < ν, then ηi[t+ 1] = ηi(1 + ς/Ω)

(12)

Rule 3:
Step 1:

ηi = Z−1 exp
{

(γ + dτ−1)−1(dτ−1 log ηi[t]− 〈w[t] + d(w[t+ 1]− w[t]), X·i〉)
}

for each i ∈ [n1], where Z ensures
∑
i ηi = 1.

Step 2: Sort ηi by the increasing order. W.l.o.g., assume that η1, . . . , ηn1 is in increasing
order. Define ςi =

∑
j≥i(ηj − ν) and Ωi =

∑
j<i ηj. Find the largest index i∗ ∈ [n] such

that ςi∗ ≥ 0 and ηi∗−1(1 + ςi∗/Ωi∗) < ν by binary search.
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Step 3:

∀i, ηi[t+ 1] =
{
ηi(1 + ςi∗/Ωi∗), if i < i∗

ν, if i ≥ i∗

We use Rule 2 when 1/ν is constant. Note that there are at most 1/ν (a constant) entries ηi
of value ν during the whole projection process. In each iteration, there must be at least 1
more entry ηi = ν since we make all entries ηj > ν equal to ν after the iteration. Thus, the
number of iterations in (12) is at most 1/ν. By (12), we project η and ξ to the domains Dn1

and Dn2 respectively. Thus, we need O(n/ν) time to compute η[t+ 1]. Since we assume ν is
a constant, it only costs linear time.

When ν is extremely small, we use Rule 3 to project η and ξ to the domains Dn1 and Dn2

respectively. It takes O(n logn) time because of sorting. Finally, we give our main theorem
for our algorithm as follows. See the proof in the full version.

I Theorem 9. Algorithm 2 computes (1 − ε)-approximate solutions for HM-Saddle and
ν-Saddle by Õ(d+

√
d/εβ) iterations. Moreover, it takes O(n) time for each iteration.

Combining with Lemmas 2, 3 and 5, we obtain (1− ε)-approximate solutions for C-Hull and
RC-Hull problems. Hence by strong duality, we obtain (1−ε)-approximations for hard-margin
SVM and ν-SVM in Õ(n(d+

√
d/εβ)) time.

I Theorem 10. A (1 − ε)-approximation for either hard-margin SVM or ν-SVM can be
computed in Õ(n(d+

√
d/εβ)) time.

4 Distributed SVM

Server and Clients Model: We extend Saddle-SVC to the distributed setting and call it
Saddle-DSVC. We consider the popular distributed setting: the server and clients model.
Denote the server by S. Let C be the set of clients and |C| = k. We use the notation C.α to
represent any variable α saved in client C and use S.α to represent a variable α saved in the
server.

First, we initialize some parameters in each client as the pre-processing step in Section 3.
Each client maintains the same random diagonal matrix Dd×d and the total number of points
in each type (i.e, |P| = n1 and |Q| = n2).5 Moreover, each client C applies a Hadamard
transformation to its own data and initialize the partial probability vectors C.η and C.ξ for
its own points.

Formally speaking, assume there are m1 points x+
1 , x

+
2 , . . . , x

+
m1

and m2 points x−1 , x
−
2 ,

. . . , x−m2
maintained in C. We use 1m to denote a vector with all components being 1. The

initialization is as follows.

C.X+ = WD · [x+
1 , x

+
2 , . . . , x

+
m1

], C.η[−1] = C.η[0] = n−1
1 1m1

C.X− = WD · [x−1 , x
−
2 , . . . , x

−
m2

], C.ξ[−1] = C.ξ[0] = n−1
2 1m2

We first consider HM-Saddle. The interaction between clients and the server can be
divided into three rounds in each iteration.
1. In the first round, the server randomly chooses a number i∗ ∈ [d] and broadcasts i∗ to all

clients. Each client computes C.δ+
i∗ and C.δ−i∗ and sends them back to the server.

5 It can be realized using O(k) communication bits.
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2. In the second round, the server sums up all C.δ+
i∗ and C.δ−i∗ and computes S.δ+

i∗ and
S.δ−i∗ . We can see that S.δ+

i∗ (resp. S.δ−i∗) is exactly δ
+
i∗ (resp. δ−i∗) in Algorithm 2. The

server broadcasts S.δ+
i∗ and S.δ−i∗ to all clients. By S.δ+

i∗ and S.δ−i∗ , each client updates
w individually. Moreover, each client C ∈ C updates its own C.η and C.ξ according to
the new directional vector w. In order to normalize the probability vectors η and ξ, each
client sends the summation C.Z+ and C.Z− to the server.

3. In the third round, the server computes (S.Z+, S.Z−)←
∑
C∈C(C.Z+, C.Z−) and broad-

casts to all clients the normalization factors S.Z+ and S.Z−. Finally, each client updates
its partial probability vector C.η and C.ξ based on the normalization factors.

As we discuss in Section 3, for ν-Saddle, we need another O(1/ν) rounds to project η and ξ
to the domains Dn1 and Dn2 .

4. Each client computes C.ς+, C.ς− and C.Ω+, C.Ω− according to (12) and sends them
to the server. The server sums up all C.ς+, C.ς−, C.Ω+, C.Ω− respectively and gets
S.ς+, S.ς−, S.Ω+, S.Ω−. If both S.ς+ and S.ς− are zeros, the server stops this iteration.
Otherwise, the server broadcasts to all clients the factors S.ς+, S.ς−, S.Ω+, S.Ω−. All
clients update their C.η and C.ξ according to (12) and repeat Step 4 again.

We give the pseudocode in the full version. Note that all clients in Saddle-DSVC get the
same w[t] in each iteration as the w[t] in Saddle-SVC. Hence Saddle-DSVC has the same rate
of convergence as Saddle-SVC. Finally, after T = Õ(d+

√
d/ε) iterations (see Theorem 9) ,

all clients compute the same (1− ε)-approximate solution w = w[T ] for SVM. W.l.o.g, let the
first client send w to the server. Based on the w (at most O(n) more communication cost),
the server can compute the offset b, the margin for hard-margin SVM and the objective value
for the ν-SVM.

Communication Complexity of Saddle-DSVC: Note that in each iteration, the server and
clients interact three times for hard-margin SVM and O(1/ν) times for ν-SVM. Thus, the
communication cost of each iteration is O(k). By Theorem 9, it takes Õ(d+

√
d/ε) iterations.

Thus, we summarize the following theorem.

I Theorem 11. The communication cost of Saddle-DSVC is Õ(k(d+
√
d/ε)).

Liu et al. [26] prove that the lower bound of the communication cost for distributed SVM is
Ω(kmin{d, 1/ε}).

I Theorem 12 (Theorem 6 in [26]). Consider a set of d-dimension points distributed at k
clients. The communication cost to achieve a (1− ε)-approximation of the distributed SVM
problem is at least Ω(kmin{d, 1/ε}) for any ε > 0.

If d = Θ(1/ε), the communication lower bound is Ω(k(d +
√
d/ε)) which matches the

communication cost of Saddle-DSVC.
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