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Abstract
In 2011, Aaronson gave a striking proof, based on quantum linear optics, that the problem of
computing the permanent of a matrix is #P-hard. Aaronson’s proof led naturally to hardness of
approximation results for the permanent, and it was arguably simpler than Valiant’s seminal proof
of the same fact in 1979. Nevertheless, it did not show #P-hardness of the permanent for any
class of matrices which was not previously known. In this paper, we present a collection of new
results about matrix permanents that are derived primarily via these linear optical techniques.

First, we show that the problem of computing the permanent of a real orthogonal matrix is #P-
hard. Much like Aaronson’s original proof, this implies that even a multiplicative approximation
remains #P-hard to compute. The hardness result even translates to permanents of orthogonal
matrices over the finite field Fp4 for p 6= 2, 3. Interestingly, this characterization is tight: in fields
of characteristic 2, the permanent coincides with the determinant; in fields of characteristic 3, one
can efficiently compute the permanent of an orthogonal matrix by a nontrivial result of Kogan.

Finally, we use more elementary arguments to prove #P-hardness for the permanent of a
positive semidefinite matrix. This result shows that certain probabilities of boson sampling
experiments with thermal states are hard to compute exactly, despite the fact that they can be
efficiently sampled by a classical computer.
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1 Introduction

The permanent of a matrix has been a central fixture in computer science ever since Valiant
showed how it could efficiently encode the number of satisfying solutions to classic NP-
complete constraint satisfaction problems [31]. His theory led to the formalization of many
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19:2 Permanent Hardness from Linear Optics

counting classes in complexity theory, including #P. Indeed, the power of these counting
classes was later demonstrated by Toda’s celebrated theorem, which proved that every
language in the polynomial hierarchy could be computed in polynomial-time with only a
single call to a #P oracle [26].

Let us recall the definition of the matrix permanent. Suppose A = (ai,j) is an n × n
matrix over some field. The permanent of A is

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

where Sn is the group of permutations of {1, 2, . . . , n}. Compare this to the determinant of
A:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

Since we can compute the determinant in polynomial time (in fact, in NC2; see Berkowitz
[7]), the apparent difference in complexity between the determinant and permanent comes
down to the cancellation of terms in the determinant [23, 33].

In his original proof, Valiant [31] casts the permanent in a combinatorial light, in terms of
a directed graph rather than as a polynomial. Imagine the matrix A encodes the adjacency
matrix of a weighted graph with vertices labeled {1, . . . , n}. Each permutation σ on the
vertices has a cycle decomposition, which partitions the vertices into a collection of cycles
known as a cycle cover. The weight of a cycle cover is the product of the edge weights of
the cycles (i.e.,

∏n
i=1 ai,σ(i)). Therefore, the permanent is the sum of the weights of all cycle

covers of the graph. Equipped with this combinatorial interpretation of the permanent,
Valiant constructs a graph by linking together different kinds of gadgets in such a way that
some cycle covers correspond to solutions to a CNF formula, and the rest of the cycle covers
cancel out.

Valiant’s groundbreaking proof, while impressive, is fairly opaque and full of complicated
gadgets. A subsequent proof by Ben-Dor and Halevi [6] simplified the construction, while
still relying on the cycle cover interpretation of the permanent. In 2009, Rudolph [22] noticed
an important connection between quantum circuits and matrix permanents—a version of
a correspondence we will use often in this paper. Rudolph cast the cycle cover arguments
of Valiant into more physics-friendly language, which culminated in a direct proof that
the amplitudes of a certain class of universal quantum circuits were proportional to the
permanent. Had he pointed out that one could embed #P-hard problems into the amplitudes
of a quantum circuit, then this would have constituted a semi-quantum proof that the
permanent is #P-hard. Finally, in 2011, Aaronson [2] (independently from Rudolph) gave a
completely self-contained and quantum linear optical proof that the permanent is #P-hard.

One must then ask, what is gained from converting Valiant’s combinatorial proof to
Aaronson’s linear optical one? One advantage is pragmatic—much of the difficulty of
arguments based on cycle cover gadgets is offloaded onto central, well-known theorems in
linear optics and quantum computation. In this paper, we show that the linear optical
approach has an even more important role in analyzing permanents of matrices with a global
group structure. Such properties can be very difficult to handle in the “cycle cover model."
For instance, the matrices which arise from Valiant’s construction may indeed be invertible,
but this seems to be more accidental than intentional, and a proof of their invertibility
appears nontrivial. Adapting such techniques to give hardness results for orthogonal matrices
would be extraordinarily tedious. In contrast, using the linear optical framework, we give
proofs of hardness for many such matrices.
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This gives a clean example for which a quantum mechanical approach sheds light on
a problem in classical theoretical computer science. To take another example of such a
quantum-classical connection, Kuperberg [19] shows that computing certain values of the
Jones polynomial to high accuracy is #P-hard using PostBQP = PP, a well-known result of
Aaronson [1]. For a more thorough treatment of this topic, see the survey on quantum proofs
for classical theorems of Drucker and de Wolf [11].

1.1 Results
We refine Aaronson’s linear optical proof technique and show that it can provide new #P-
hardness results. First, let us formally define what we mean by #P-hardness throughout this
paper. We say that the permanent is #P-hard for a class of matrices if all functions in #P
can be efficiently computed with single-call access to an oracle which computes permanents
of matrices in that class. That is, the permanent is hard for a function class A if, given an
oracle O for the permanent, A ⊆ FPO[1].

Our main result is a linear optical proof that the permanent of a real orthogonal matrix
is #P-hard. Consequently, the permanent of matrices in any of the classical Lie groups (e.g.,
invertible matrices, unitary matrices, symplectic matrices) is also #P-hard.

Our approach also reveals a surprising connection between the hardness of the permanent
of orthogonal matrices over finite fields and the characteristic of the field. First notice
that in fields of characteristic 2, the permanent is equal to the determinant and is therefore
efficiently computable. Over fields of characteristic 3, there exists an elaborate yet polynomial
time algorithm of Kogan [18] that computes the (orthogonal) matrix permanent. We give
the first explanation for why no equivalent algorithm was found for the remaining prime
characteristics, establishing a sharp dichotomy theorem: for fields of characteristic 2 or
3 there is an efficient procedure to compute orthogonal matrix permanents, and for all
other primes p there exists a finite field2 of characteristic p for which the permanent of an
orthogonal matrix (over that field) is as hard as counting the number of solutions to a CNF
formula mod p.3 Furthermore, there exist infinitely many primes for which computing the
permanent of an orthogonal matrix over Fp (i.e., modulo p) is hard.

Finally, we give a polynomial interpolation argument showing that the permanent of
a positive semidefinite matrix is #P-hard. This has an interesting consequence due to a
recent connection between matrix permanents and boson sampling experiments with thermal
input states [10, 21]. In particular, the probability of a particular experimental outcome is
proportional to a positive semidefinite matrix which depends on the temperatures of the
thermal states. Our result implies that it is hard to compute such output probabilities
exactly despite the fact that an efficient classical sampling algorithm exists [21].

1.2 Proof Outline
The main result concerning the #P-hardness of real orthogonal permanents follows from
three major steps:
1. Construct a quantum circuit (over qubits) with the following property: If you could

compute the probability of measuring the all-zeros state after the circuit has been applied
to the all-zeros state, then you could calculate some #P-hard quantity. We must modify

2 We prove that this field is Fp4 , although in some cases Fp2 or even Fp will suffice. See Section 4 for
more details.

3 Formally, this language is complete for the class ModpP. By Toda’s theorem, we have that PH ⊆
BPPModpP. See Appendix B for a more precise exposition of such counting classes.
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19:4 Permanent Hardness from Linear Optics

the original construction of Aaronson [2], so that all the gates used in this construction
are real.

2. Use a modified version of the Knill, Laflamme, Milburn protocol [17] to construct a linear
optical circuit which simulates the quantum circuit in the previous step. In particular,
we modify the protocol to ensure that the linear optical circuit starts and ends with
one photon in every mode. Notice that this is distinct from Aaronson’s approach [2]
because we can no longer immediately use the dual-rail encoding of KLM. We build new
postselected encoding and decoding gadgets to circumvent this problem.

3. Use a known connection (first pointed out by Caianiello [9]) between the transition
amplitude of a linear optical circuit and the permanent of its underlying matrix. Because
we paid special attention to the distribution of photons across the modes of our linear
optical network in the previous step, the success probability of the linear optical circuit
is exactly the permanent of the underlying transition matrix. It is then simple to work
backwards from this permanent to calculate our original #P-hard quantity.

The paper is organized as follows. Section 2 gives a brief introduction to the linear optical
framework and the relevant tools we use in this paper. In Section 3, we use this framework
to show that the permanent of a real orthogonal matrix is #P-hard. A careful analysis in
Section 4 (and Appendix D) extends these gadgets to finite fields.4 Finally, in Section 5, we
explore other matrix classes, culminating in a proof that the permanent of a real special
orthogonal symplectic involution is #P-hard.

2 Linear Optics Primer

In this section we will introduce the so-called “boson sampling" model of quantum com-
putation, which will make clear the connection between the dynamics of noninteracting
bosons and the computation of matrix permanents [9, 29]. The most promising practical
implementations of this model are based on linear optics and use photons controlled by
optical elements such as beamsplitters. We will use the term “linear optics" throughout,
although any type of indistinguishable bosons would have the same dynamics.

Let us first consider the dynamics of a single boson. At any point in time, it is in one of
finitely many modes. As the system evolves, the particle moves from one of m initial modes
to a superposition of m final modes according to a transition matrix of amplitudes. That
is, there is an m×m unitary transition matrix U ∈ Cm×m, where Uji is the amplitude of a
particle going from mode i to mode j.

The model becomes more complex when we consider a system of multiple particles
evolving on the same modes according to the same transition matrix. Let us define states in
our space of k bosons in what is called the Fock basis. A Fock state for a k-photon, m-mode
system is of the form |s1, s2, . . . , sm〉 where si ≥ 0 is the number of bosons in the ith mode
and

∑m
i=1 si = k. Therefore, the Hilbert space which is spanned by the Fock basis states

Φm,k has dimension
(
k+m−1

k

)
. Alternatively, one can think of Φm,k as the symmetrized

subspace of (Cm)⊗k. For a full exposition of the Fock space in these terms see Appendix A.
Let ϕ be the transformation which lifts the unitary U to act on a multi-particle system.

On a k-particle system, ϕ(U) is a linear transformation from Φm,k to Φm,k. Let |S〉 =
|s1, s2, . . . , sm〉 be the Fock state describing the starting state of the system, and let |T 〉 =

4 As is the case with Aaronson’s proof, our real orthogonal construction also leads naturally to hardness
of approximation results, which we discuss in Appendix E.
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|t1, t2, . . . , tm〉 be the ending state. We have:

〈T |ϕ(U)|S〉 = per(US,T )√
s1! . . . sm!t1! . . . tm!

where US,T is the matrix obtained by taking si copies of the ith row and ti copies of the
column i in U for all i ∈ {1, 2, . . . ,m}. We will refer to this formula as the ϕ-transition
formula.5

Notice that s1 + · · ·+ sm must equal t1 + · · ·+ tm in order for US,T to be square. This
expresses the physical principle that photons are not created or destroyed in the experiment.

For example, suppose U is the Hadamard gate and that we wish to apply U to two modes
each with a single photon. That is, U = 1√

2

( 1 1
1 −1

)
and |S〉 = |1, 1〉. Since the number of

photons must be conserved, the resulting state of the system is in some linear combination
of |2, 0〉, |1, 1〉, and |0, 2〉. We calculate these amplitudes explicitly below:

|T 〉 |2, 0〉 |1, 1〉 |0, 2〉
US,T

1√
2 ( 1 1

1 1 ) 1√
2

(
1 1
1 −1

)
1√
2

(
1 1
−1 −1

)
per(US,T ) 1 0 −1
〈T |ϕ(U)|S〉 1/

√
2 0 −1/

√
2

Therefore, when we apply Hadamard in a linear optical circuit to the state |1, 1〉 we
get the state |2,0〉−|0,2〉√

2 . Indeed, we have derived the famous Hong-Ou-Mandel effect—the
photons are noninteracting, yet the final state is clearly highly entangled [15].

Finally, we note that ϕ expresses the fact that linear optical systems are reversible and
can be composed together. This behavior is captured by the following theorem:

I Theorem 1 (see Facts 19 and 20 in Appendix A). The map ϕ is a group homomorphism.
Furthermore, if U ∈ Cn×n is unitary, then ϕ(U) is unitary.

We now state a landmark result in linear optics, which connects the dynamics of a
linear optical system with those of a traditional quantum circuit over qubits. Define
|I〉 = |0, 1, . . . , 0, 1〉, the Fock state with a photon in every other mode.

I Theorem 2 (Knill, Laflamme, and Milburn [17]). Postselected linear optical circuits are
universal for quantum computation. Formally, given a quantum circuit Q consisting of
CSIGN6 and single-qubit gates, there exists a linear optical network U constructible in
polynomial time such that

〈I|ϕ(U)|I〉 = 1
4Γ 〈0 · · · 0|Q|0 · · · 0〉,

where Γ is the number of CSIGN gates in Q.

We will refer to the construction of the linear optical network U from Q in Theorem 2 as
the KLM protocol. It will be helpful to give some idea of its proof here. First, each qubit of
Q is encoded in two modes of U in the classic dual-rail encoding. That is, the qubit state |0〉
is encoded by the Fock state |0, 1〉 and the state |1〉 is encoded by the Fock state |1, 0〉.

5 Once again, we refer readers, especially non-physicists, to Appendix A for a description of the ϕ-transition
formula in terms of linear operators on the space (Cm)⊗k.

6 The CSIGN gate, also often referred to as a controlled-Z gate, is the two-qubit operation which applies a
minus phase when both of its inputs are 1. That is, CSIGN|x1x2〉 = (−1)x1x2 |x1x2〉 for x1, x2 ∈ {0, 1}.
It is well-known that CSIGN and single-qubit gates are universal for quantum computation [20].
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19:6 Permanent Hardness from Linear Optics

Now suppose G is a single-qubit gate in Q. Using the ϕ-transition formula, it is not hard
to see that applying G to the corresponding pair of dual-rail modes in the linear optical
circuit implements the correct single-qubit unitary. Applying a CSIGN gate is trickier. The
KLM protocol builds the CSIGN gate from a simpler NS1 gate, which flips the sign of a
single mode if it has 2 photons and does nothing when the mode has 0 or 1 photon. Using
two NS1 gates one can construct a CSIGN gate (see Figure 5 in Appendix F).

Unfortunately, the NS1 gate cannot be implemented with a straightforward linear optical
circuit. Therefore, some additional resource is required. The original KLM protocol uses
adaptive measurements, that is, the ability to measure in the Fock basis in the middle of a
linear optical computation and adjust the remaining sequence of gates if necessary. Intuitively,
using adaptive measurements one can apply some transformation and then measure a subset
of the modes to “check” if the NS1 gate was applied. For simplicity, however, we will assume
we have a stronger resource—namely, postselection—so we can assume the measurements
always yield the most convenient outcome. Putting the above parts together completes the
proof Theorem 2.

3 Permanents of Real Orthogonal Matrices

The first class of matrices we consider are the real orthogonal matrices, that is, square
matrices A ∈ Rn×n with AAT = ATA = I. This section is devoted to proving the following
theorem, which forms the basis for many of the remaining results in this paper.

I Theorem 3 (informal). The permanent of a real orthogonal matrix is #P-hard.

The orthogonal matrices form a group under composition, the real orthogonal group,
usually denoted O(n,R). This is a subgroup of the unitary group, U(n,C), which is itself
a subgroup of the general linear group GL(n,C). Notice then that the hardness result of
Theorem 3 will carry over to unitary matrices and invertible matrices.7

Our result follows the outline of Aaronson’s linear optical proof [2] that the permanent is
#P-hard. In particular, our result depends on the KLM construction [17], and a subsequent
improvement by Knill [16], which will happen to have several important properties for our
reduction.

Let us briefly summarize Aaronson’s argument. Suppose we are given a classical circuit
C, and wish to compute ∆C , the number of satisfying assignments minus the number
of unsatisfying assignments. Clearly, calculating ∆C is a #P-hard problem. The first
thing to notice is that there exists a simple quantum circuit Q such that the amplitude
〈0 · · · 0|Q|0 · · · 0〉 is proportional to ∆C . The KLM protocol of Theorem 2 implies that there
exists a postselected linear optical experiment simulating Q. This results in the following
chain which relates ∆C to a permanent.

per(UI,I) = 〈I|ϕ(U)|I〉 ∝ 〈0 · · · 0|Q|0 · · · 0〉 ∝ ∆C .

Notice that Aaronson’s result does not imply that the permanent of U ∈ U(n,C) is #P-
hard since UI,I is a submatrix of U . If, however, |S〉 = |T 〉 = |1, . . . , 1〉, then US,T = U so the
analogous chain relates ∆C directly to the permanent of U , which is a complex unitary matrix.
In fact, this is exactly what we will arrange by modifying the KLM protocol. Furthermore,
we will be careful to use real matrices exclusively during all gadget constructions, which will
result in U being real, finishing the proof of Theorem 3.

7 See Corollary 17 for a complete list of classical Lie groups for which our result generalizes.
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In the following subsections, we will focus on the exact details of the reduction and
emphasize those points where our construction differs from that of Aaronson.

3.1 Constructing the Quantum Circuit
Let C : {0, 1}n → {0, 1} be a classical Boolean circuit of polynomial size and let

∆C :=
∑

x∈{0,1}n

(−1)C(x).

In this section, we prove the following:

I Theorem 4. Given C, there exists a p(n)-qubit quantum circuit Q such that

〈0|⊗p(n)
Q|0〉⊗p(n) = ∆C

2n

where p(n) is some polynomial in n. Furthermore, Q can be constructed in polynomial time
with a polynomial number of real single-qubit gates and CSIGN gates.

To prove the theorem, it will suffice to implement OC , the standard oracle instantiation
of C on n + 1 qubits. That is, OC |x, b〉 = |x, b⊕ C(x)〉 for all x ∈ {0, 1}n and b ∈ {0, 1}.
The circuit for Q is depicted below, where H is the Hadamard gate and Z = ( 1 0

0 −1 ) is the
Pauli σZ gate.

H

OC

H

H H
...

...
H Z Z H

From this construction, we have

〈0|⊗p(n)
Q|0〉⊗p(n) = 1

2n

 ∑
x∈{0,1}n

〈x|〈−|

OC
 ∑
x∈{0,1}n

|x〉|−〉

 = ∆C

2n .

Therefore, to complete the proof, it suffices to construct OC from CSIGN and single-qubit
gates. For now let us assume we have access to the Toffoli gate as well. Since C is a classical
Boolean function of polynomial complexity, OC can be implemented with a polynomial
number of Toffoli and NOT gates8 and a polynomial number of ancillas starting in the |0〉
state [28].

Let us describe, briefly, one way to construct OC . Suppose we are given the circuit C
as a network of polynomially many NAND gates. For each wire, with the exception of the
input wires, we create an ancilla initially in state |0〉 and use the NOT gate to put it in state
|1〉. For each NAND gate (in topological ordering, i.e., such that no gate is applied before its
inputs have been computed), we apply a Toffoli gate targeting the ancilla associated with
the output wire, and controlled by the qubits associated with its input wires (whether they
are the output of an earlier NAND gate, or an actual input). Hence, the target qubit is in
state |1〉 unless both control qubits are in state |1〉, simulating a NAND gate. Once we have

8 Because we require that all ancillas start in the |0〉 state, we also need the NOT gate to create |1〉
ancillas.

CCC 2018



19:8 Permanent Hardness from Linear Optics

applied all the gates of C, the output of the function will exist in the final ancilla register.
We can now apply the same sequence of gates (ignoring the final Toffoli gate) in reverse
order, which returns all other ancillas and inputs to their original value. This completes the
construction.

Finally, we must construct the Toffoli gate from single-qubit gates and CSIGN gates.
Unfortunately, Aaronson’s proof [2] uses a classic construction of the Toffoli gate which uses
complex single-qubit gates (see, for example, Nielsen and Chuang [20]). This will later give
rise to linear optical circuits with complex matrix representations as well.9 Therefore, we
will restrict ourselves to CSIGN and real single-qubit gates in our construction of the Toffoli
gate.10

I Lemma 5. There exists a circuit of CSIGN, Hadamard, and Rπ/4 gates which implements
a Toffoli gate exactly, where

Rπ/4 = 1
2

(√
2 +
√

2 −
√

2−
√

2√
2−
√

2
√

2 +
√

2

)
.

We prove this lemma in Appendix C. This completes the proof of Theorem 4.

3.2 Postselected Linear Optical Gadgets
We will construct a postselected linear optical circuit L which will simulate the qubit circuit
Q on the all zeros input via a modified version of the KLM protocol. The following chain of
relations will hold:11

per(L) = 〈1, . . . , 1|ϕ(L)|1, . . . , 1〉 ∝ 〈0 · · · 0|Q|0 · · · 0〉 ∝ ∆C .

The first step was to convert from a classical circuit to a quantum circuit. Below we
formalize the second step: converting from a quantum circuit to a linear optical circuit.

I Theorem 6. Given an n-qubit quantum circuit Q with a polynomial number of CSIGN
and real single-qubit gates, there exists a linear optical circuit L ∈ O(4n+ 2Γ,R) such that

〈1, . . . , 1|ϕ(L)|1, . . . , 1〉 =
(

1
3

√
2
3

)Γ(
−1√

6

)n
〈0|⊗nQ|0〉⊗n,

where Γ is the number of CSIGN gates in Q. Furthermore, L can be computed in time
polynomial in n.

We now give an explicit construction of L using the original KLM protocol, subsequent
improvements by Knill [16], and a new gadget unique to our problem. First, let us recall
our main issue with using the original KLM protocol: to prove that orthogonal matrices
are #P-hard, we must have that all modes start and end with exactly one photon. There

9 Actually, the proof of Aaronson [2] claims that the final linear optical matrix consists entirely of
real-valued entries even though the matrices of the individual single-qubit gates have complex entries.
In fact, the matrix does have complex entries, but our construction for Toffoli suffices to fix this error.

10Although it is known that the Toffoli gate and the set of real single-qubit gates suffice to densely
generate the orthogonal matrices (i.e., O(2n) for every n > 0) [24], it will turn out to be both simpler
and necessary to have an exact decomposition. In particular, we will need an exact construction of the
Toffoli gate in Section 4 where we discuss the computation of permanents in finite fields.

11To clarify, |0 · · · 0〉 is a tensor product of qubits in the state |0〉 and |1, . . . , 1〉 is a Fock state with 1
photon in every mode.
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V

CSIGN

|1〉 |1〉 =

|1〉 |1〉

Figure 1 Applying a postselected V gadget to generate CSIGN.

are two instances in which the original KLM protocol requires a mode to be empty at the
beginning and end of the computation. First, the NS1 gate postselects on the Fock state
|0, 1〉, and second, KLM protocol works in a dual-rail encoding. Therefore, half of the modes
in the original KLM protocol start and end empty.

To overcome the first obstacle, we appeal to subsequent work of Knill [16], in which the
NS1 gadget construction for CSIGN is replaced by a single 4-mode gadget V , which directly
implements CSIGN with two modes postselected in state |1, 1〉. From the matrix gadget

V = 1
3
√

2


−
√

2 −2 2 2
√

2
2 −

√
2 −2

√
2 2

−
√

6 + 2
√

6
√

6− 2
√

6 −
√

3 +
√

6
√

3−
√

6
−
√

6− 2
√

6 −
√

6 + 2
√

6 −
√

3−
√

6 −
√

3 +
√

6


we can directly calculate the transition amplitudes of the circuit:

〈0, 0, 1, 1|ϕ(V )|0, 0, 1, 1〉 = 1
3

√
2
3 〈0, 1, 1, 1|ϕ(V )|1, 0, 1, 1〉 = 0

〈0, 1, 1, 1|ϕ(V )|0, 1, 1, 1〉 = 1
3

√
2
3 〈1, 0, 1, 1|ϕ(V )|0, 1, 1, 1〉 = 0

〈1, 0, 1, 1|ϕ(V )|1, 0, 1, 1〉 = 1
3

√
2
3 〈2, 0, 1, 1|ϕ(V )|1, 1, 1, 1〉 = 0

〈1, 1, 1, 1|ϕ(V )|1, 1, 1, 1〉 = − 1
3

√
2
3 〈0, 2, 1, 1|ϕ(V )|1, 1, 1, 1〉 = 0

We now argue that these transition amplitudes suffice to generate a postselected CSIGN.
Consider the linear optical circuit depicted in Figure 1: the first two inputs of the V gadget
are applied to the dual rail modes which contain a photon whenever their corresponding
input qubits of the CSIGN gate are in state |1〉; the next two modes are postselected in the
|1, 1〉 state. First, because we postselect on the final two modes ending in the state |1, 1〉, we
only need to consider those transitions for which those two modes end in that state. Secondly,
because we use “fresh” ancillary modes for every CSIGN gate, we can always assume that
those two modes start in the |1, 1〉 state. This already vastly reduces the number of cases we
must consider.

Finally, we wish to know what will happen when the first two modes start in the states
|0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉. Our construction will ensure that there is never more than
one photon per mode representing one of the dual-rail encoded qubits. For instance, the
transition amplitudes of V show that whenever the first two modes of the circuit each start
with a photon, there is 0 probability (after postselection) that those photons transition to a
state in which one of those modes contains 2 photons and the other contains no photons.

We find that all other amplitudes behave exactly as we would expect for CSIGN. Since
each of the acceptable transitions (e.g. from the state |0, 1〉 to the state |0, 1〉) has equal
magnitude, we only have left to check that V flips the sign of the state whenever the input
modes are both in the |1〉 state, which is indeed the case. Importantly, because ϕ is a
homomorphism, we can analyze each such gate separately. Therefore, using the above we
can now construct a linear optical circuit where all of our postselected modes for CSIGN
start and end with exactly one photon.
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We now turn our attention to the dual-rail encoding. Instead of changing the dual-rail
encoding of the KLM protocol directly, we will start with one photon in every mode and
apply a linear optical gadget to convert to a dual-rail encoding. Of course, the number of
photons in the circuit must be conserved, so we will dump these extra photons into n modes
separate from the modes of the dual-rail encoding. Specifically, each logical qubit is our
scheme is initially represented by four modes in the state |1, 1, 1, 1〉. We construct a gadget
that moves a photon from the first mode to the third mode, postselecting on a single photon
in the last mode. That is, under postselection, we get the transition

|1, 1, 1, 1〉 → |0, 1, 2, 1〉,

where the first two modes now represent a logical |0〉 qubit in the dual-rail encoding, the third
mode stores the extra photon (which we will reclaim later), and the last mode is necessary
for postselection. We call the gadget for this task the encoding gadget E, and it is applied to
the first, third, and fourth mode of the above state. The matrix12 for E is

E = 1√
6


√

2 −
√

2
√

2
0

√
3
√

3
−2 −1 1


from which we get the following transition amplitudes

〈1, 1, 1|ϕ(E)|1, 1, 1〉 = 0, 〈2, 0, 1|ϕ(E)|1, 1, 1〉 = 0, 〈0, 2, 1|ϕ(E)|1, 1, 1〉 = 1√
3 .

After applying the encoding gadget to each logical qubit, we can implement the KLM
protocol as previously discussed.13 Therefore, the relevant amplitude in the computation of
Q is now proportional to amplitude of the Fock state which has n groups of modes in the
state |0, 1, 2, 1〉 and 2Γ modes in the state |1〉. Because we want to return to a state which
has one photon in every mode, we must reverse the encoding step.14 For this purpose, we
construct a decoding gadget D, which will not require any extra postselected modes. We
apply the gadget to the second and third modes of the logical qubit such that the two photons
in the third mode split with some nonzero probability. The matrix for D is

D = 1√
2

(
1 1
1 −1

)
from which the transition condition 〈1, 1|ϕ(D)|0, 2〉 = −1/

√
2 follows. Nearly any two-mode

linear optical gate would suffice here, but D, the familiar Hadamard gate, maximizes the
norm of the amplitude on state |1, 1〉. If the logical qubit is in state |1〉, then D is applied to
the three-photon state |1, 2〉. Therefore, the resulting amplitude on the two-photon state

12To find E, we first define a set of constraints on transition amplitudes. The following equations must
hold for this particular encoding gadget to exist: 〈1, 1, 1|ϕ(E)|1, 1, 1〉 = 0, 〈2, 0, 1|ϕ(E)|1, 1, 1〉 = 0,
〈0, 2, 1|ϕ(E)|1, 1, 1〉 6= 0. That is, starting from the state |1, 1, 1〉, there is some nonzero amplitude on
the state |0, 2, 1〉 and zero amplitude on the states |1, 1, 1〉 and |2, 0, 1〉. We then solve these constraints
using Mathematica.

13One might wonder why we cannot simply apply the encoding gadget to the entire input, thus circum-
venting the need to use Knill’s more complicated V gadget to implement CSIGN. Examining Theorem 2
carefully, we see that all the postselection actually happens at the end of the computation. One might
be concerned that once we measured the state |0, 1〉 to implement NS1, those modes would remain in
that state. Nevertheless, it is possible to compose the gadgets in such a way to allow for postselection on
|0〉 while maintaining that the desired amplitude is still on the |1, . . . , 1〉 state. We omit such a design
since V will turn out to have some nice properties, including its minimal usage of ancillary modes.

14Notice that postselection was required for the encoding gadget, so it does not have a natural inverse.
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|1, 1〉 is zero by conservativity. To complete the proof of the theorem, let the linear optical
circuit L simply be the composition of the encoding gadget, the KLM scheme, and the
decoding gadget.

3.3 Main Result
We are finally ready to prove the Theorem 3, which we restate formally below.

I Theorem 3. The permanent of a real orthogonal matrix is #P-hard. Specifically, given
a polynomially sized Boolean circuit C, there exist integers a, b ∈ Z and a real orthogonal
matrix L over a finite Galois extension Q(α) (where α =

√
2 +
√

2 +
√

3 +
√

6) computable
in polynomial time such that

per(L) = 2a3b∆C .

Proof. We reduce from the problem of calculating ∆C for some polynomially sized Boolean
circuit C on n bits. By Theorem 4, we first construct the quantum circuit Q from CSIGN
and single-qubit gates such that 〈0|⊗p(n)

Q|0〉⊗p(n) = ∆C/2n. Let Γ be the number of CSIGN
gates in Q. We then convert the qubit circuit Q to a linear optical circuit L on 4p(n) + 2Γ
modes using Theorem 6. Notice that we can assume without loss of generality that p(n) and
Γ are both even since we can always add an extra qubit to the circuit Q and/or apply an
extra CSIGN gate to the |00〉 state. Combined with the fact that the output amplitudes of
linear optical experiments can be described by permanents via the ϕ-transition formula, we
have the following chain of consequences

per(L) = 〈1, . . . , 1|ϕ(L)|1, . . . , 1〉

=
(

1
3

√
2
3

)Γ(
−1√

6

)p(n)
〈0|⊗p(n)

Q|0〉⊗p(n)

=
(

1
3

√
2
3

)Γ(
−1√

6

)p(n)( 1
2n

)
∆C

= 2a3b∆C ,

where the last equality comes from the fact that Γ and p(n) are even. J

We now turn to the question of how to represent entries of the orthogonal matrix. First,
the problem is clearly still hard if we generalize the matrix to arbitrary algebraic numbers
(say, represented implicitly with integer polynomials) instead of only Q(α). More practically,
the entries may be represented as floating point numbers, such that the matrix is only
approximately orthogonal due to rounding error. To this end, we state without proof the
following corollary:

I Corollary 7. Given Ã ∈ Qn×n such that ‖A − Ã‖∞ ≤ 2−cn for some orthogonal matrix
A ∈ Rn×n, the problem of computing per(Ã) to within additive 2−cn precision is #P-hard
for some constant c.

4 Permanents over Finite Fields

Valiant’s foundational work on #P is well-known, but his contemporary work on the relation-
ship between the permanent and the class we now know as ModkP is less appreciated. In
another 1979 paper [32], Valiant showed that the permanent modulo p is ModpP-complete,
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19:12 Permanent Hardness from Linear Optics

except when p = 2, in which case the permanent coincides with the determinant because
1 ≡ −1 (mod 2).

I Theorem 8 (Valiant [32]). The problem of computing per(M) mod p for a square matrix
M ∈ Fn×np is ModpP-complete for any prime p 6= 2 (and in NC2 otherwise).

As discussed in Appendix B, ModpP-hardness provides evidence for the difficulty of computing
the permanent, even modulo a prime. In particular, an efficient algorithm for the problem
would collapse the polynomial hierarchy.

In the spirit of our result on real orthogonal matrices, we ask whether the permanent
is still hard for orthogonal matrices in a finite field. We are not the first to consider the
problem; there is the following surprising theorem of Kogan [18] in 1996.

I Theorem 9 (Kogan [18]). Let F be any field of characteristic 3. There is a polynomial
time algorithm to compute the permanent of any orthogonal matrix over F.

In other words, for orthogonal matrices, the permanent is easy to compute for fields of
characteristic 2 (since it is easy in general), but it is also easy for fields of characteristic 3
(by a much more elaborate argument)! Could it be that the permanent is easy for all finite
fields of some other characteristic? No, it turns out. Using the gadgets from Section 3, we
prove a converse to Theorem 9.

I Theorem 10. Let p 6= 2, 3 be a prime. There exists a finite field of characteristic p, namely
Fp4 , such that the permanent of an orthogonal matrix in Fp4 is ModpP-hard.

We prove the theorem by carefully porting Theorem 3 to the finite field setting. Recall that
Theorem 3 takes a circuit C and constructs a sequence of gadgets G1, . . . , Gm such that

per(G1 · · ·Gm) = 2a3b∆C , (1)

for some a, b ∈ Z. In general, there is no way to convert such an identity on real numbers
into one over finite fields, but all of our gadgets are built out of algebraic numbers. In
particular, all of the entries are in some algebraic field extension Q(α) of the rationals, where
α ≈ 4.182173283 is the largest real root of irreducible polynomial

f(x) = x16 − 40x14 + 572x12 − 3736x10 + 11782x8 − 17816x6 + 11324x4 − 1832x2 + 1.

Each element in Q(α) can be written as a polynomial (of degree less than 16) in α over the
rationals. In Appendix D.1, we give explicit canonical representations for a set of numbers
which generate (via addition, subtraction and multiplication, but not division) the entries of
all our gadgets.

Each entry of a gadget Gi is a polynomial in α with rational coefficients, so observe that
we can take a common denominator for the coefficients and write the entry as an integer
polynomial divided by some positive integer. By the same token, we can take a common
denominator for the entries of a gadget Gi, and write it as 1

ki
Ĝi where Ĝi is a matrix over

Z[α], and ki is a positive integer.
Now we would like to take Equation 1 modulo a prime p. In principle, we can pull

k1, . . . , km out of the permanent, multiply through by Z = (k1 · · · km)n2|a|3|b| to remove all
fractions on both sides, and obtain an equation of the form

K per(Ĝ1 · · · Ĝm) = K ′∆C ,

where K,K ′ are integers. Then the entire equation is over Z[α], so if we reduce all the
coefficients modulo p, we get an equation over Fp[α].
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We show in Appendix D.1 that for each gadget we use, the denominator ki may have
prime divisors 2, 3, and 23, but no others. Hence, as long as p 6= 2, 3, 23 (and in the case
p = 23, there is an alternative representation we can use, see Appendix D), we can divide
through by Z, pull it back inside the permanent as the 1

ki
s, and distribute each 1

ki
into the

corresponding Ĝi. This gives

per(G1 · · ·Gm) ≡ 2a3b∆C (mod p),

the equivalent of Equation 1, but over Fp[α]. In particular, G1, . . . , Gm are now orthogonal
matrices in Fp[α], and ∆C has been reduced modulo p.

Note that Fp[α] ∼= Fp[x]/(f(x)) is a ring, not a field. If f(x) were irreducible modulo p
then it would be a field, but this will never happen for our f . Consider the following lemma.

I Lemma 11. Let q be a prime power. Suppose Fq is the subfield of order q contained in
the finite field Fq2 . Then every element in Fq has a square root in Fq2 .

Proof. Let a be an arbitrary element of Fq. By definition, a has a square root if the
polynomial f(x) := x2 − a has a root. If f has a root in Fq then we are done. Otherwise, f
is irreducible, but has a root in Fq[x]/〈f(x)〉 ∼= Fq2 . J

By Lemma 11, the square roots of 2 and 6 are in Fp2 , and therefore so are 2 +
√

2 and 3 +
√

6.
Then their square roots are in Fp4 , so α =

√
2 +
√

2 +
√

3 +
√

6 is in Fp4 . All the other
roots of f can be expressed as polynomials in α (see Appendix D.2), so they are all in Fp4 .
It follows that f factors over Fp as a product of irreducible polynomials, each of degree 1, 2,
or 4.

Suppose g is some irreducible factor of f . The ideal (g(x)) contains (f(x)), so there exists
a ring homomorphism σ from Fp[x]/(f(x)) to Fp[x]/(g(x)). Note that Fp[x]/(g(x)) is a field
because g(x) is irreducible over Fp. Also, σ fixes Fp, so we obtain

per(σ(G1) · · ·σ(Gm)) = σ(per(G1 · · ·Gm)) = 2a3b∆C

as an equation over the field Fp[x]/(g(x)). For each i, σ(Gi) is orthogonal in Fp[x]/(g(x)) as
well:

σ(Gi)σ(Gi)T = σ(GiGTi ) = σ(I) = I.

It follows that M := σ(G1) · · ·σ(Gm) is orthogonal.
Depending on the degree of g, the field Fp[x]/(g(x)) is isomorphic to Fp, Fp2 , or Fp4 . But

Fp4 contains Fp and Fp2 , so M can be lifted to a matrix over Fp4 . Given the permanent of
M in Fp4 , we can easily solve for ∆C , so this completes the proof of Theorem 10.

Theorem 10 shows that for any prime p 6= 2, 3 there is some finite field of characteristic p
where computing permanents (of orthogonal matrices) is hard. In particular, p = 2 and p = 3
are the only cases where the permanent of an orthogonal matrix is easy to compute in every
finite field of characteristic p, assuming the polynomial hierarchy does not collapse. We will
now show that there are primes p for which this problem is hard in any field of characteristic
p, by showing that it is hard to compute in Fp (which is contained in every other field of
characteristic p).

I Theorem 12. For all but finitely many primes p that split completely in Q(α), computing
the permanent of an orthogonal matrix over Fp is ModpP-complete. This is a sequence of
primes with density 1

16 beginning

191, 239, 241, 337, 383, 433, 673, 863, 911, 1103, 1151, 1249, 1583, 1871, 1873, 2017, . . .
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Proof. Recall that in the proof of Theorem 10, if g is an irreducible factor of f , then the
result applies over the field Fp[x]/(g(x)) ∼= Fpdeg g . We show that g is degree at most 4, but
in special cases this can be improved. In particular, we want g to be degree 1 (i.e., a linear
factor) for our orthogonal matrix to be over Fp.

First, observe that Q(α) is a Galois extension of Q. That is, every root of the minimal
polynomial for α is in Q(α). See Appendix D.2 for details. We apply Chebotarev’s density
theorem [30], which says that if K is a finite Galois extension of Q of degree n, then the
density of primes which split completely in K is 1

n . We take K = Q(α), a degree 16 extension
of Q.

For our purposes, a prime p splits completely if and only if the ideal (p) factors into 16
distinct maximal ideals in the ring of integers of Q(α). For all by finitely many such primes,15
we also have that f (the minimal polynomial for α) factors into distinct linear terms modulo
p by Dedekind’s theorem. Furthermore, since Q(α) is a Galois extension, f will split into
equal degree factors. Hence, if any factor is linear, then all the factors are linear.

Therefore, according to Chebotarev’s theorem, (1/16)th of all primes split completely
and yield the desired hardness result. We verified the list of primes given in the theorem
computationally. J

Note that as a consequence of the proof above theorem, we can also prove a hardness
result over Fp2 for 3/16 of all primes. We leave open how hard it is to compute the permanent
of an orthogonal matrix over Fp for the remaining 15/16 of all primes. Other linear optical
gadgets can be used for CSIGN instead of V , resulting in different field extensions where
different primes split. For instance, there exists an orthogonal gadget for KLM’s NS1 gate
for which computing the permanent modulo 97 is hard (see Appendix F). However, it seems
impossible to design linear optical gadgets that do not involve 2 or 3 photons at a time, in
which case writing down ϕ(L) requires

√
2 and

√
3. By quadratic reciprocity, these square

roots only exist if p ≡ ±1 (mod 24) (i.e., for about a quarter of all primes), so the remaining
primes may require some other technique.

5 Expanding Permanent Hardness

In this section, we try to fill in some of the remaining landscape of matrix permanents. In
particular, we will focus on the permanents of positive semidefinite (PSD) matrices and
their connection to boson sampling. We will conclude by listing some matrix variants and
their accompanying permanent complexities, many of which are simple consequences of the
reduction in Section 3.

5.1 Positive Semidefinite Matrix Permanents

Permanents of PSD matrices have recently become relevant to the expanding theory of boson
sampling [21]. Namely, permanents of PSD matrices describe the output probabilities of a
boson sampling experiment in which the input is a tensor product of thermal states. Suppose
we have a thermal state with m modes. The ith mode of the system starts in a state of the
form

15Actually, we can compute these primes explicitly as those that divide the index of Z[α] in the ring of
integers of Q(α). For our choice of field, this number is 19985054955504338544361472 = 275232.
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ρi = (1− τi)
∞∑
n=0

τni |n〉〈n|

where τi = 〈ni〉 /(〈ni〉+1) and 〈ni〉 is average number of photons one observes when measuring
ρi. In particular, notice that τi ≥ 0.

Let U be a unitary matrix representing the linear optical network applied to our thermal
state. Define D to be the diagonal matrix with τ1, . . . , τm along the diagonal, and let
A = UDU†. Since τi ≥ 0 for all i, A is PSD. We can calculate the probability of detecting
one photon in each mode:16

〈1, . . . , 1|
(
ϕ(U)

(
m⊗
i=1

ρi

)
ϕ(U)†

)
|1, . . . , 1〉 = per(A)∏m

i=1(1 + 〈ni〉)
.

One might then reasonably ask, “how hard is it to compute such probabilities?” The
following theorem answers that question in the exact case.

I Theorem 13. The permanent of a positive-definite matrix in Zn×n is #P-hard. This
implies #P-hardness for the larger class of positive semidefinite matrices.

Proof. It is well-known that the permanent of a 0-1 matrix is #P-hard [31]. Therefore, let
B ∈ {0, 1}n×n and consider the matrix

ΛB =
(

0 B

BT 0

)
Since per(B) ≥ 0, we have per(B) =

√
per(ΛB). Also observe that ΛTB = ΛB, so ΛB is

Hermitian, that is, diagonalizable with real eigenvalues. Furthermore, since B is a 0-1
matrix, its spectral radius is at most 2n. Defining ΛB(x) := ΛB + xI, we see that ΛB(x) is
positive-definite for all x > 2n.

Notice now that per(ΛB(x)) is a degree-2n polynomial in x. Therefore, given an oracle that
calculates the permanent of a positive-definite matrix, we can interpolate a monic polynomial
through the points x = 2n+ 1, 2n+ 2, . . . , 4n to recover the polynomial per(ΛB(x)). Since
per(ΛB(0)) = per(ΛB), the permanent of a positive-definite matrix under Turing reductions
is #P-hard.

We now only have left to prove that the above reduction can be condensed into a single
call to the positive-definite matrix permanent oracle. Since the matrix B is a 0-1 matrix,
the polynomial per(ΛB(x)) has positive integer coefficients, the largest of which is at most
(2n)!. Therefore, if x > (2n)!, then we can deduce the constant term of per(ΛB(x)) with a
single oracle call. Clearly, this requires at most a polynomial increase in the bit length of the
integers used in the reduction. J

Theorem 13 implies that there is some linear optical experiment one can perform with
thermal input states for which calculating the exact success probability is computationally
difficult. We would like to say that this also precludes an efficient classical sampling
algorithm (unless PH collapses), as is done in work by Aaronson and Arkhipov [3] and
Bremner, Jozsa, Shepherd [8]. Unfortunately, those arguments rely on the fact that even
finding an approximation to their output probabilities is difficult, but the following theorem
heavily suggests that such a result cannot exist.

16A similar formula arises for detecting 1 photon in each of k distinct modes and 0 photons in the
remaining m− k modes.
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I Theorem 14 (Rahimi-Keshari, Lund, Ralph [21]). There exists an efficient classical sampling
algorithm for Boson Sampling with thermal input states. Furthermore, multiplicatively
approximating the permanent of a PSD matrix is in the class FBPPNP .

Intuitively, such an algorithm exists because it is possible to write the permanent of a
PSD matrix as an integral17 of a nonnegative function, on which we can use Stockmeyer’s
approximate counting algorithm [25]. Such a representation as a sum of positive terms also
implies that the permanent of a PSD matrix is nonnegative.

Notice that this also justifies our use of techniques distinct from the linear optical
approach. Suppose we can encode the answer to a GapP-hard problem into the permanent of
a PSD matrix as we do with real orthogonal matrices, then multiplicatively approximating
the permanent of a PSD matrix would also be GapP-hard under Turing reductions (see
Theorem 30 in Appendix E). On the other hand, Theorem 14 says that such a multiplicative
approximation does exist, so

PH ⊆ PGapP ⊆ BPPNP ⊆ ΣP
3 .

Therefore, either such a reduction does not exist or the polynomial hierarchy collapses to the
third level.

5.2 More Permanent Consequences of the Main Result
In this section, we try to give a sense in which our proof for the hardness of the permanent
for real orthogonal matrices leads to new hardness results for many classes of matrices. The
structure of this section is as follows: we will first restrict as much as possible the class of
matrices for which the permanent is #P-hard; we will then observe that the permanent for
any larger class of matrices must also be hard, which will show hardness for many natural
classes of matrices.

We call matrix A an involution if A = A−1.

I Theorem 15. Let A be a real orthogonal involution with per(A) ≥ 0. The permanent of A
is #P-hard.

Proof. Let C : {0, 1}n → {0, 1} be a Boolean function for which we want to calculate
∆C . We will construct a new circuit C ′ : {0, 1}n+1 → {0, 1} such that for x ∈ {0, 1}n and
b ∈ {0, 1} we have C ′(x, b) = C(x) ∨ b. It is not hard to see then that ∆C′ = ∆C + 2n.
Importantly, this implies that ∆C′ ≥ 0.

Now let us leverage the reduction in Theorem 3 to build a real orthogonal matrix B such
that per(B) ∝ ∆C′ . As in the proof of Theorem 13, let

ΛB =
(

0 B

BT 0

)
.

Since ∆C′ ≥ 0, we have per(B) ≥ 0, which implies that per(B) =
√

per(ΛB). However, since
B is orthogonal, we have that Λ2

B = I, so ΛB is an involution. Furthermore, ΛB = ΛTB, so

17 Suppose we have PSD matrix A = CC† where C = {ci,j}. Then the permanent of A can be expressed
as the following expected value over complex Gaussians:

per(A) = E
x∈GC(0,1)n

[
n∏
i=1

∣∣∣∣∣
n∑
j=1

ci,jxj

∣∣∣∣∣
2]

.
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ΛB is a real orthogonal matrix. Therefore, the permanent of real orthogonal involutions is
#P-hard. J

We call a matrix A special if det(A) = 1. Furthermore, a matrix A is symplectic if
ATΩA = Ω where Ω =

( 0 In

−In 0
)
. We strengthen Theorem 15 to provide the smallest class of

matrices for which we know the permanent is #P-hard.

I Theorem 16. Let A be a real special orthogonal symplectic involution with per(A) ≥ 0.
The permanent of A is #P-hard.

Proof. Let B be a real orthogonal involution, and let In be the n × n identity matrix.
Consider the matrix

I2 ⊗B =
(
B 0
0 B

)
.

Notice that

det(I2 ⊗B) = det(B)2 = det(B2) = det(In) = 1,

where we use that B2 = In is an involution for the third equality. Therefore, I ⊗B is special.
It is also easy to verify that I2 ⊗ B is real orthogonal symplectic involution. Assuming
per(B) ≥ 0, we have per(B) =

√
per(I2 ⊗B). Combining the above with Theorem 15, we

get that the permanent of real special orthogonal involutions is #P-hard. J

Since the set of n × n real special orthogonal matrices form a group SO(n,R), we
immediately get #P-hardness for all the matrix groups containing it.

I Corollary 17. The permanent of an n× n matrix A in any of the classical Lie groups over
the complex numbers is #P-hard. That is, it is hard for the following matrix groups:

General linear: A ∈ GL(n) iff det(A) 6= 0
Special linear: A ∈ SL(n) iff det(A) = 1

Orthogonal: A ∈ O(n) iff AAT = In

Special orthogonal: A ∈ SO(n) iff AAT = In and det(A) = 1
Unitary: A ∈ U(n) iff AA† = In

Special unitary: A ∈ SU(n) iff AA† = In and det(A) = 1
Symplectic: A ∈ Sp(2n) iff ATΩA = Ω where Ω =

( 0 In

−In 0
)

Proof. Since SO(n,R) is a subgroup of all the stated Lie groups besides the symplectic group
Sp(2n), their permanents are #P-hard by Theorem 16. Theorem 16 handles the symplectic
case separately. J

6 Open Problems

This paper gives many new classes of matrices for which the permanent is hard. Nevertheless,
there exist classes of matrices which have unknown permanent complexity, and proving
#P-hardness or otherwise remains a central open problem. For instance, is computing the
permanent of an orthogonal matrix modulo a prime p hard for all p 6= 2, 3? Notice that our
result only gives ModpP-hardness for 1/16th of all primes.

Another interesting open question about permanents concerns the complexity of multi-
plicatively approximating permanents of PSD matrices. Although we show the exact version
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of this problem to be #P-hard in this paper, we know that an FBPPNP algorithm exists
[21]. Could this problem actually just be in P? Is there any more insight to be gained
by viewing PSD permanents as probabilities of certain boson sampling experiments? For
instance, Chakhmakhchyan, Cerf, and Garcia-Patron [10] have recently detailed conditions
on the eigenvalues of a PSD matrix for which a linear optical sampling algorithm gives a
better additive approximation to the permanent than the classic approximation algorithm of
Gurvits [14].
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A Linear optics as a symmetric subspace

The Fock space Φm,k can alternatively be described as a linear subspace of (Cm)⊗k, the
Hilbert space of k qudits with local dimension m.

A single photon can be in one ofmmodes, so is described as a unit vector in Cm. Therefore,
transformations on single photons are unitary matrices in U(m). Linear optical states with
multiple photons are described by the symmetric tensor. That is, for v1, v2, . . . , vk ∈ Cm, let

v1 � v2 � . . .� vk = 1
k!
∑
σ∈Sk

vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(k)
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be their symmetric tensor. Notice that the symmetric tensor is invariant under permutations;
that is, v1 � v2 � . . . � vk = vσ(1) � vσ(2) � . . . � vσ(k) for any σ ∈ Sk. This captures the
physical intuition that the photons are indistinguishable.

We can extend the usual inner product to the symmetric setting:

〈v1 � . . .� vk, w1 � . . .� wk〉

=
(

1
k!
∑
σ∈Sk

v†σ(1) ⊗ . . .⊗ v
†
σ(k)

) 1
k!
∑
ρ∈Sk

wρ(1) ⊗ . . .⊗ wρ(k)


=
(

1
k!

)2 ∑
σ,ρ∈Sk

(
v†σ(1)wρ(1)

)
· · ·
(
v†σ(k)wρ(k)

)
= 1
k!
∑
ρ∈Sk

〈v1, wρ(1)〉 · · · 〈vk, wρ(k)〉

= 1
k! per(〈vi, wj〉)i,j .

We are now ready to define an orthonormal basis for Φm,k. Let e1, . . . , em be the standard
basis for Cm, where ei represents a photon in mode i. The basis vectors for Φm,k will be
k-fold symmetric tensors of the ei vectors. Let v1 � . . .� vk be one such symmetric tensor
with vj ∈ {e1, . . . , em}. Let si = |{vj | vj = ei}|; that is, there are si photons in mode i. We
will denote the corresponding basis vector in Φm,k as |s1, . . . , sm〉. Formally,

|s1, . . . , sm〉 =
√

k!
s1!s2! · · · sm! (v1 � v2 � . . .� vk) .

Notice that if we specify the symmetric tensor by the si in this way, we lose the relative
ordering of the elements v1, . . . , vk. Recall, however, that any choice will do since the
symmetric tensor is invariant under permutation.

I Theorem 18. The elements |s1, . . . , sm〉 such that
∑m
i=1 si = k form an orthonormal basis

for Φm,k.

Proof. First, it should be clear that every symmetrized basis vector of (Cm)⊗k corresponds
to some element |s1, . . . , sm〉 such that

∑m
i=1 si = k. We need now only show orthonormality.

For states |s1, . . . , sm〉 and |t1, . . . , tm〉, we have

〈t1, . . . , tm | s1, . . . , sm〉 = k!√
s1! · · · sm!t1 · · · tm

〈v1 � . . .� vk, w1 � . . .� wk〉

= per(〈vi, wj〉)i,j√
s1! · · · sm!t1 · · · tm

Since the ei form an orthonormal basis for Cm, we have 〈vi, wj〉 = 1 when vi = wj and 0
otherwise. Therefore, if there exists i such that si 6= ti, then per(〈vi, wj〉)i,j = 0. Otherwise,
the value of this permanent is equal to the number of permutations σ ∈ Sk such that
vσ(j) = vj for all j. In other words, these permutations only permute the photons within
each mode. Since there are si many photons in mode i, there are si! many permutations
of photons in that mode. Therefore, per(〈vi, vj〉)i,j = s1!s2! · · · sm!, which completes the
proof. J

Finally, we must describe the transformations of the space Φm,k. These are just those
transformations that act identically on all photons. For A ∈ Cm×m, we write ϕ(A) = A⊗k
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as its k-fold tensor product. This notation is often convenient because it suppresses the
parameter k. Notice that ϕ(A) fixes the subspace Φm,k since

A⊗k (v1 � . . .� vk) = 1
k!
∑
σ∈Sk

Avσ(1) ⊗ . . .⊗Avσ(k) = w1 � . . .� wk,

where wi = Avi ∈ Cm. We get the following other important properties of ϕ from this
definition:

I Fact 19. If U is unitary, then ϕ(U) is unitary.

Proof. If U ∈ U(m), then U⊗k ∈ U(mk). J

I Fact 20. ϕ is a group homomorphism: ϕ(AB) = ϕ(A)ϕ(B) for A,B ∈ Cm×m.

Proof. (AB)⊗k = A⊗kB⊗k. J

Finally, we ready to state and prove the ϕ-transition formula.

I Theorem 21. For A ∈ Cm×m, |S〉 = |s1, . . . , sm〉 ∈ Φm,k, and |T 〉 = |t1, . . . , tm〉 ∈ Φm,k,
we have

〈t1, . . . , tm|ϕ(A)|s1, . . . , sm〉 = per(AS,T )√
s1! · · · sm!t1! · · · tm!

provided
∑m
i=1 si =

∑m
i=1 ti = k. Let AS,T be the matrix obtained by taking si copies of the

ith row and ti copies of the column i in A for all i ∈ {1, 2, . . . ,m}.

Proof. By definition, we have

〈t1, . . . , tm|ϕ(A)|s1, . . . , sm〉 = k!· 〈v1 � . . .� vk, Aw1 � . . .�Awk〉√
s1! · · · sm!t1 · · · tm

= per(〈vi, Awj〉)i,j√
s1! · · · sm!t1 · · · tm

.

where vi, wj ∈ {e1, . . . , em}, si = {wj | wj = ei}, and ti = {vj | vj = ei}. Notice that
if vi = ek, then the ith row of the matrix (〈vi, Awj〉)i,j corresponds to the kth row of A.
Following this reasoning, we get that (〈vi, Awj〉)i,j = AS,T . J

B Counting Classes

Let us introduce the complexity classes we use in this paper. Note that the permanent is a
function, so computing it is a function problem. Hence, we will sometimes need the class FP
to stand in for P when we are talking about function problems.

I Definition 22. FP is the class of functions computable by deterministic Turing machines
in polynomial time.

Of course, computing the permanent is, in general, thought to be intractable (i.e., not in FP).
We use a variety of different classes to capture the difficulty of computing the permanent
(depending on the kind of matrix, underlying field, etc.), but the most important class is #P:

I Definition 23. #P is the class of function problems of the form “compute the number
of accepting paths of a polynomial-time non-deterministic Turing machine." For example,
given a classical circuit of NAND gates as input, the problem of computing the number of
satisfying assignments is in #P (and indeed, is #P-complete).

CCC 2018
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Since #P is a class of function problems (more specifically, counting problems), we often
consider P#P to compare #P to decision classes. Observe that P#P = PPP since, on the one
hand, the #P oracle can count paths to simulate PP, and on the other hand, we can use the
PP oracle to binary search (on the number of accepting paths) to count exactly. We add
that P#P ⊆ PSPACE is a upper bound for #P, and Toda’s theorem [26] gives PH ⊆ P#P.

Fenner, Fortnow, and Kurtz [13] define a very closely related class, GapP, which is also
relevant to us.

I Definition 24. GapP is the class of function problems of the form “compute the number of
accepting paths minus the number of rejecting paths of a polynomial-time non-deterministic
Turing machine."

We have GapP ⊇ #P since we can take a #P problem (manifest as a non-deterministic
Turing machine) and at the end of each rejecting path, add a non-deterministic branch which
accepts in one half and rejects in the other. In the other direction, any GapP problem can be
solved with at most two calls to a #P oracle (one for accepting paths, one for rejecting), and
a subtraction. Hence, for most of our results we neglect the difference.

Nonetheless, GapP and #P are different. For one, functions in #P are non-negative (and
integral) by definition, whereas functions in GapP can take negative values. The distinction
is also important in the context of approximation; Stockmeyer’s approximate counting gives
a multiplicative approximation to any #P problem in BPPNP, whereas it is known that
multiplicative approximation to a GapP-hard problem remains GapP-hard under Turing
reductions (see Theorem 30).

One cannot even get very bad multiplicative approximations to GapP-hard problems.
Even the worst multiplicative approximation will distinguish zero from non-zero outputs,
and this problem is captured by the class C=P, defined below.

I Definition 25. C=P is the class of decision problems of solvable by a non-deterministic
polynomial-time machine which accepts if it has the same number of accepting paths as
rejecting paths.

A good upper bound for C=P is simply PP. This is easily seen once we have the following
theorem.

I Theorem 26. Suppose f1, f2 ∈ Σ∗ → Z are functions computable in GapP. Then f1 + f2,
−f1, and f1f2 are computable in GapP.

Proof. Let M1 and M2 be non-deterministic machines witnessing f1 ∈ GapP and f2 ∈ GapP
respectively. Then the machines for f1 + f2, −f1, and f1f2 are defined as follows.
1. For f1 + f2, non-deterministically branch at the start, then run M1 in one branch and

M2 in the other.
2. For −f1, take the complement of M1. That is, make every accepting path reject, and

make every rejecting path accept.
3. For f1f2, run M1 to completion, then run M2 to completion (in every branch of M1).

Accept if the two machines produce the same outcome, otherwise reject.
The last construction may require some explanation. Let a1, a2 be the number of accepting
paths of M1 and M2 respectively, and similarly let b1, b2 be the numbers of rejecting paths.
Then there are a1a2 + b1b2 accepting paths for the new machine and a1b2 + a2b1 rejecting
paths, so as a GapP machine it computes

a1a2 − a1b2 − a2b1 + b1b2 = (a1 − b1)(a2 − b2) = f1(x)f2(x). J
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Theorem 26 implies that C=P ⊆ PP because we can square and negate the gap. In other
words, we can find a machine such that the gap is always negative (i.e., strictly less than
half of all paths accept) unless the original machine had gap zero, in which case the gap is
still zero (or, WLOG, very slightly positive). It is also worth noting that coC=P is known to
equal NQP, by a result of Fenner et al. [12].

I Definition 27. The class NQP contains decision problems solvable by a polynomial-time
quantum Turing machine (or, equivalently, a uniform, polynomial-size family of quantum
circuits) where we accept if there is any nonzero amplitude on the accept state at the end of
the computation.

Quantum classes with exact conditions on the amplitudes (e.g., NQP or EQP) tend to be
very sensitive to the gate set, or QTM transition amplitudes allowed. Adleman, Demarrais,
and Huang [5] are careful to define NQP for the case where the transition amplitudes are
algebraic and real.

Finally, we specify computational hardness for our finite field problems using a mod k
decision version of #P.

I Definition 28. For any integer k ≥ 2, let ModkP be the class of decision problems solvable
by a polynomial time non-deterministic machine which rejects if the number of accepting
paths is divisible by k, and accepts otherwise. In the special case k = 2, ModkP is also known
as “parity P", and denoted ⊕P.

Clearly P#P is an upper bound for ModkP. We are finally ready to state the main hardness
result for these counting classes, namely, the celebrated theorem of Toda [26] and a subsequent
generalization by Toda and Ogiwara [27]. There are many important consequences of Toda’s
work, but we only require the following formulation.

I Theorem 29 (Toda’s Theorem [26, 27]). Let A be one of the counting classes ModkP, C=P,
#P , PP, or GapP. Then PH ⊆ BPPA.

This means in particular that, if a problem is hard for any of these classes, then there is
no efficient algorithm for the problem unless PH collapses.

C Real Construction of Toffoli (Proof of Lemma 5)

In this appendix we prove Lemma 5 from Section 3. Let us first define Rθ as the rotation by
θ about the Y -axis. That is, Rθ = cos(θ/2)I − i sin(θ/2)Y where Y is the Pauli σY matrix.
For our purposes, we only require the following two matrices:

Rπ/4 = 1
2

(√
2 +
√

2 −
√

2−
√

2√
2−
√

2
√

2 +
√

2

)
Rπ =

(
0 −1
1 0

)
Let us now recall the statement of the lemma:

I Lemma 5. There exists a circuit of CSIGN, Hadamard, and Rπ/4 gates which implements
a Toffoli gate exactly.

Proof. We construct the Toffoli gate from the CSIGN, Hadamard, and Rπ/4 gates in three
steps:
1. Construct a controlled-controlled-Rπ gate (CC-Rπ) from CSIGN and Rπ/4 gates.

CC-Rπ is a three-qubit gate that applies Rπ to the third qubit if the first two qubits are
in the state |11〉. Notice that CC-Rπ is already a kind of “poor man’s” Toffoli gate. If it
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• • •

• • = •

Rπ/4 R−1
π/4 Rπ/4 R−1

π/4 Rπ

Figure 2 Generating CC-Rπ from the CNOT and Rπ/4 gates.

Rπ • • •

• • • • = • •

• Rπ • •

Figure 3 Generating non-affine classical gate from CC-Rπ and CSIGN.

were not for the minus sign in the Rπ gate, we would be done. The construction is given
in Figure 2. Observe that if either of the two control qubits is zero, then any CNOT gate
controlled by that qubit can be ignored. The remaining gates will clearly cancel to the
identity. Furthermore, if the two control qubits are in the state |11〉, then on the last
qubit, we apply the operation XR−1

π/4XRπ/4XR
−1
π/4XRπ/4. Since XR

−1
π/4X = Rπ/4,

XR−1
π/4XRπ/4XR

−1
π/4XRπ/4 = R4

π/4 = Rπ.

Notice that this construction uses CNOT gates, but observe that a CNOT is a CSIGN
gate conjugated by the Hadamard gate:

(I ⊗H) CSIGN(I ⊗H) = CNOT .

2. Construct a non-affine classical reversible gate from CSIGN and CC-Rπ gates.
By classical, we simply mean that the gate maps each computational basis state to
another computational basis state (i.e., states of the form |x〉 for x ∈ {0, 1}n). If this
transformation is non-affine, then it suffices to generate Toffoli (perhaps with some
additional ancilla qubits) by Aaronson et al. [4]. The construction is shown in Figure 3.

3. Use the non-affine gate to generate Toffoli. We give an explicit construction in
Figure 4. Notice that the fourth qubit is an ancillary qubit starting in the |0〉 state.18 J

D Gadget Details

As discussed above in Section 3 and Section 4, our results on orthogonal matrices depend
on a collection of gadgets. In the real orthogonal setting (Section 3), each gadget is a real
orthogonal matrix with algebraic entries, and all entries have clear, compact expressions in
terms of radicals. However, in Section 4, we wish to reuse the same gadgets over finite fields,
and radicals are no longer the best representation.

Instead, we will show that our (real) gadget matrices have entries in Q(α), the algebraic
field extension of the rational numbers by α, where α =

√
2 +
√

2 +
√

3 +
√

6 ≈ 4.182173283

18 Indeed, this ancillary qubit is necessary because the non-affine gate in Figure 3 is an even permutation
and the Toffoli gate is an odd permutation on three bits.
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• • •

• • • • • • • •
=

•

• • •

• • •

Figure 4 Generating Toffoli gate from non-affine gate in Figure 3.

is the largest real root of irreducible polynomial

f(x) = x16 − 40x14 + 572x12 − 3736x10 + 11782x8 − 17816x6 + 11324x4 − 1832x2 + 1.

More specifically, we will write every entry as a polynomial in α, with rational coefficients
and degree less than 16.

This is a cumbersome representation for hand calculation, but there are some advantages.
First, it eliminates any ambiguity about, for instance, which square root of 2 to use in a
finite field. Second, we can check the various conditions our gadgets need to satisfy in the
field Q(α), and then argue that the verification generalizes to Fp(α), with a few caveats. So,
without further ado, we present polynomials for a set of reals which generate all the entries
of our gadgets.

D.1 Gadget entries
Since ± 1√

2 are the only entries in D, our decoder gadget, we show how to express those
entries as polynomials in α.

1√
2

= 1
11776

(
α14 − 53α12 + 1077α10 − 10561α8 + 51555α6 − 115791α4 + 95207α2 − 8379

)
,

For our encoder gadget E, we also must also express 1√
3 as an element in Q(α). Note that

1√
6 can be obtained as 1√

2 ·
1√
3 .

1√
3

= 1
11776

(
α14 − 53α12 + 1077α10 − 10561α8 + 51555α6 − 115791α4 + 95207α2 − 8379

)
.

Showing that the entries of the Rπ/4 gate are in Q(α) requires the following:√
2 +
√

2 = 1
5888

(
− 123α15 + 4932α13 − 70785α11 + 464494α9

− 1470141α7 + 2209176α5 − 1357287α3 + 193302α
)√

2−
√

2 = 1
5888

(
216α15 − 8711α13 + 126234α11 − 841629α9

+ 2733428α7 − 4270353α5 + 2799098α3 − 466411α
)

Finally, we have the V gate. We already have the 1
3
√

2 in front, and the various multiples
of
√

2 inside, so we just need
√

3±
√

6 and
√

6± 2
√

6. These are related by a factor of
√

2,
so it suffices to give

√
3±
√

6.√
3 +
√

6 = 1
5888

(
123α15 − 4932α13 + 70785α11 − 464494α9

+ 1470141α7 − 2209176α5 + 1357287α3 − 187414α
)√

3−
√

6 = 1
256

(
15α15 − 598α13 + 8505α11 − 55084α9

+ 171665α7 − 256518α5 + 161671α3 − 25624α
)
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The numbers above, combined with 1
2 and 1

3 , generate all the entries of our real orthogonal
gadgets. Note that the denominators in front of the polynomials above (e.g., 11776, 5888,
256, 3, etc.) all divide 35328 = 29 · 3 · 23. In other words, this representation is a bad choice
for fields of characteristic 2, 3, or 23 because, in those cases, division by 35328 is division by
0. Aside from this restriction, the representation is well-defined for any field containing some
root α of the polynomial p.

We should not be surprised that the representation fails for fields of characteristic 2
or 3 because our matrices contain, for instance, the entries 1

3 and 1√
2 . We also know the

permanent of an orthogonal matrix is easy to compute in fields of characteristic 2 or 3, so it
is actually no surprise to find this obstacle to our hardness proof.

On the other hand, we can find no explanation for the requirement p 6= 23; it appears to
be a quirk of the algebraic number α. In fact, a different choice fails for different primes.
Consider β ≈ 5.596386846, the largest real root of

x16 − 56x14 − 32x13 + 1084x12 + 960x11 − 9224x10 − 8928x9 + 37702x8+
33920x7 − 73736x6 − 53216x5 + 63932x4 + 23488x3 − 21560x2 + 3808x− 191.

This appendix is long enough without doing all the same steps for β, so let us claim without
proof that Q(β) = Q(α). Furthermore, when we represent the matrix entries as polynomials
in β (we omit the details), the denominators prohibit the use of this representation for fields
of characteristic 2, 3, 191, and 3313, but not 23. Hence, for all primes p other than 2 or 3,
there is some representation that works for that prime.

D.2 Galois Extension
We need Q(α) to be a Galois extension to apply Chebotarev’s theorem, which we use to
prove Theorem 12. Another helpful consequence is that if α is in some field, then all the
roots of f are also in the field since they can be expressed as polynomials in α.

The most direct way to prove Q(α) is a Galois extension is to write all 16 roots of f in
terms of α. Since f is an even polynomial, half of the roots are just the negatives of the
other half, so we restrict our attention to the 8 positive roots.

Root Polynomial
0.0234 1

5888

(
−129α15 + 5043α13 − 69381α11 + 425303α9 − 1214867α7 + 1629561α5 − 919335α3 + 122941α

)
0.4866 1

2944

(
123α15 − 4932α13 + 70785α11 − 464494α9 + 1470141α7 − 2209176α5 + 1357287α3 − 190358α

)
1.1057 1

2944

(
−234α15 + 9343α13 − 133200α11 + 865713α9 − 2709218α7 + 4054545α5 − 2537860α3 + 391327α

)
1.5073 1

5888

(
561α15 − 22465α13 + 321849α11 − 2108561α9 + 6681723α7 − 10170267α5 + 6517531α3 − 1055763α

)
1.5690 1

5888

(
−93α15 + 3779α13 − 55449α11 + 377135α9 − 1263287α7 + 2061177α5 − 1441811α3 + 278997α

)
2.5897 1

2944

(
111α15 − 4411α13 + 62415α11 − 401219α9 + 1239077α7 − 1845369α5 + 1180573α3 − 198025α

)
3.0997 1

5888

(
339α15 − 13643α13 + 197019α11 − 1306123α9 + 4203569α7 − 6479529α5 + 4156385α3 − 653825α

)
4.1821 α

E Approximation

Much like in Aaronson’s paper [2], our hardness reductions for exactly computing the
permanent lead naturally to hardness of approximation results as well. Approximation
results comes in two flavors: additive and multiplicative. For example, Gurvits’ algorithm
[14] approximates the permanent of a matrix A up to ±ε‖A‖n additive error. We will focus
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strictly on multiplicative approximation. That is, the result of the approximation should be
between 1

k per(A) and k per(A) for some k.
We give approximation results only for real orthogonal matrices since it is unclear how

to even define multiplicative approximation in a finite field. All of our results follow from
the fact that we actually prove GapP-hardness (since we compute the gap, ∆C , rather than
just the number of satisfying assignments). None of the results use anything specific to
permanents; they are all GapP folklore, but we state them as permanent results for clarity.

I Theorem 30. Suppose A is an oracle that approximates the permanent of a real orthogonal
matrix to any multiplicative factor. In other words, A is an oracle for the sign (zero, positive,
or negative) of the permanent. Then GapP ⊆ FPA.

Proof. We give an FPA algorithm for computing ∆C for a classical circuit C. Since this
problem is GapP-hard, we get GapP ⊆ FPA.

By earlier results, we can construct a real orthogonal matrix with permanent proportional
to ∆C . Then we can apply the oracle to compute the sign of the permanent, and hence the
sign of ∆C . This is helpful, but we can do better.

Recall that we can add or subtract two GapP functions (see Appendix B), so for any
integer k, we can construct a circuit Ck such that ∆Ck

= ∆C − k. Then we can apply A to
give us the sign of ∆Ck

, or equivalently, compare ∆C to k. In other words, we can use A to
binary search for the value of ∆C , which we know to be an integer in the range −2n and
2n. J

Recall that C=P is the class of decision problems of solvable by a non-deterministic
polynomial-time machine which accepts if it has the same number of accepting paths as
rejecting paths. By Toda’s theorem, PH ⊆ BPPC=P.

I Theorem 31. Suppose A is an oracle that approximates the absolute value of permanent
of a real orthogonal matrix to any multiplicative factor. That is, A tells us whether the
permanent is zero. Then PC=P ⊆ PA.

Proof. The problem of computing whether ∆C = 0 for a classical circuit C is C=P-hard.
But clearly we can construct a real, orthogonal matrix from the circuit with permanent
proportional to ∆C , and then apply A to determine if the permanent is zero, and hence
whether ∆C is zero. Therefore PC=P ⊆ PA. J

Finally, we show that even a very poor approximation to the absolute value of the
permanent still allows us to calculate the exact value of the permanent via a boosting
argument.

I Theorem 32. Suppose A is an oracle that approximates the absolute value of the permanent
of an n×n real orthogonal matrix to within a 2n1−ε factor for some ε > 0. Then GapP ⊆ FPA.

Proof. We give an FPA algorithm for computing ∆C of a classical circuit. Since this problem
is GapP-hard, we get GapP ⊆ FPA.

As in Theorem 30, we can construct a circuit Ck such that ∆Ck
= ∆C − k for any

integer k. By applying oracle A to the real orthogonal matrix corresponding to Ck, we can
get a multiplicative estimate for |∆C − k|. Let us assume for the moment that A gives a
multiplicative approximation to within a factor of 2, and improve this to 2n1−ε later.

Suppose we are given an interval [a, b] guaranteed to contain ∆C . For instance, ∆C

is initially in [−2n, 2n]. Apply A to find an estimate for ∆Ca
= ∆C − a. Suppose the
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approximation we get is x∗. Then we have

a+ 1
2x
∗ ≤ ∆C ≤ a+ 2x∗.

So ∆C is in the interval [a+ 1
2x
∗, a+ 2x∗] ∩ [a, b]. One can show that this interval is longest

when a + 2x∗ = b, where it has length 3
4 (b − a). Since the interval length decreases by a

constant factor each step, we only need O(n) steps to shrink it from [−2n, 2n] to length < 1,
and determine ∆C .

Finally, suppose we are given an oracle which gives an approximation to within a
multiplicative factor 2n1−ε . Theorem 26 in Appendix B lets us construct a circuit Cm (not
to be confused with Ck) such that ∆Cm = (∆C)m. The circuit is essentially m copies of C,
so we can only afford to do this for k polynomial in the size of C, otherwise our algorithm is
too slow.

The point of Cm is that a factor β approximation to ∆Cm gives a factor β1/m approxi-
mation of ∆C by taking mth roots. This is excellent for reducing a constant approximation
factor, but when β grows with n, we must account for the fact that the size of Cm grows
with n as well. In particular, the size of Cm scales with m, and the dimension of the matrix
in our construction scales linearly with m as well.

So, for our algorithm to succeed, we need β(nm)1/m ≤ 2 or

β(nm) ≤ 2m

for m a polynomial in n. Suppose we can afford m = nc copies of C. Then we succeed when
β(n1+c) ≤ 2nc , or

β(n) ≤ 2n
1− 1

c+1
.

Within the scope of polynomial time algorithms, we can make 1
c+1 less than any ε, and

thereby handle any 2n1−ε approximation factor. J

The core ideas in both Theorem 30 and 32 were already noticed by Aaronson [2], but we
give slightly better error bounds for the latter theorem.

F Orthogonal Matrices mod 97 are #P-hard via NS1-approach

It is natural to ask whether Theorem 12 can be extended to more primes, or all primes. In
other words, is there some prime p 6= 2, 3 such that it is easy to compute the permanent
modulo p, even though computing the permanent over Fp4 is hard? In this appendix, we
present a different construction for CSIGN gates (in fact, the construction originally used by
KLM) which works in F97, where the V gate does not. We conclude that there is at least
one more prime, namely p = 97, where the permanent is hard.

The original KLM construction builds an CSIGN gate from what they call an NS1 gate,
instead of directly using a V gate. Logically, the NS1 gate acts on one mode and does
nothing to 0 or 1 photon, but flips the sign for 2 photons. The construction of CSIGN from
NS1 is shown in Figure 5. If |1, 1〉 is the input state, the Hadamard gate turns it into a
linear combination of |2, 0〉 and |0, 2〉, which then change phase by the NS1 gate, and get
recombined into −|1, 1〉 by the Hadamard gate. Otherwise, there are not enough photons for
the NS1 gates to do anything, and the Hadamard gates cancel, so the gate does nothing (as
a CSIGN should).
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(i, 0)
CSIGN H

NS1

H

(j, 0)
=

NS1

Figure 5 Generating CSIGN from H and NS1 [17].

It turns out it is impossible to construct an NS1 gate without at least two postselected
modes, so the KLM NS1 is a three mode gate where the last two modes start and end (via
postselection) in state |0, 1〉. Unfortunately, the KLM NS1 gate postselects on a mode having
zero photons, which is undesirable for our application. Therefore, we construct our own NS1
gate shown below. It postselects on the last two modes being |1, 1〉 and has entirely real
entries.

The gate is

NS1 = 1
6

 6− 18γ −
√

6
√

9γ −
√

6− 3γ − 2 −
√

6
√

9γ +
√

6− 3γ − 2
−
√

6
√

9γ −
√

6− 3γ − 2 9γ +
√

24− 45γ −3
√

2− 4γ
−
√

6
√

9γ +
√

6− 3γ − 2 −3
√

2− 4γ 9γ −
√

24− 45γ


where γ , 1

18
(√

33 + 3
)
≈ 0.4858090359.

One can verify the following identities hold.

〈0, 1, 1|φ(NS1)|0, 1, 1〉 = γ,

〈1, 1, 1|φ(NS1)|1, 1, 1〉 = γ,

〈2, 1, 1|φ(NS1)|2, 1, 1〉 = −γ.

That is, with amplitude γ the postselection succeeds, and the three mode gate behaves like
an NS1 gate on the first mode.

The field extension containing this gate is of higher degree than Q(α), so we have not
computed it explicitly. If we proved the equivalent of Theorem 12 in that extension, we
would expect the density to be worse. However, this construction of an CSIGN works for at
least one prime where V does not, namely p = 97.
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