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Abstract
One of the main challenges in property testing is to characterize those properties that are testable
with a constant number of queries. For unordered structures such as graphs and hypergraphs
this task has been mostly settled. However, for ordered structures such as strings, images, and
ordered graphs, the characterization problem seems very difficult in general.

In this paper, we identify a wide class of properties of ordered structures – the earthmover
resilient (ER) properties – and show that the “good behavior” of such properties allows us to
obtain general testability results that are similar to (and more general than) those of unordered
graphs. A property P is ER if, roughly speaking, slight changes in the order of the elements in
an object satisfying P cannot make this object far from P. The class of ER properties includes,
e.g., all unordered graph properties, many natural visual properties of images, such as convexity,
and all hereditary properties of ordered graphs and images.

A special case of our results implies, building on a recent result of Alon and the authors, that
the distance of a given image or ordered graph from any hereditary property can be estimated
(with good probability) up to a constant additive error, using a constant number of queries.
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1 Introduction

Property testing is mainly concerned with understanding the amount of information one
needs to extract from an unknown input function f to approximately determine whether
the function satisfies a property P or is far from satisfying it. In this paper, the types of
functions we consider are strings f : [n] → Σ; images or matrices f : [m] × [n] → Σ; and
edge-colored graphs f :

([n]
2
)
→ Σ, where the set of possible colors for each edge is Σ. In all

cases Σ is a finite alphabet. Note that the usual notion of a graph corresponds to the special
case where |Σ| = 2.

The systematic study of property testing was initiated by Rubinfeld and Sudan [33], and
Goldreich, Goldwasser and Ron [24] were the first to study property testing of combinatorial
structures. An ε-test for a property P of functions f : X → Σ is an algorithm that, given
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18:2 Earthmover Resilience and Testing in Ordered Structures

query access to an unknown input function f , distinguishes with good probability (say, with
probability 2/3) between the case that f satisfies P and the case that f is ε-far from P ; the
latter meaning that one needs to change the values of at least an ε-fraction of the entries
of f to make it satisfy P. In an n-vertex graph, for example, changing an ε-fraction of the
representation means adding or removing ε

(
n
2
)
edges. (The representation model we consider

here for graphs is the adjacency matrix. This is known as the dense model.)
In many cases, such as that of visual properties of images (where the input is often noisy

to some extent), it is more natural to consider a robust variant of tests, that is tolerant to
noise in the input. Such tests were first considered by Parnas, Ron and Rubinfeld [31]. A
test is (ε, δ)-tolerant for some 0 ≤ δ(ε) < ε if it distinguishes, with good probability, between
inputs that are ε-far from satisfying P and those that are δ(ε)-close to (i.e., not δ(ε)-far
from) satisfying P.

One of the main goals in property testing is to characterize properties in terms of the
number of queries required by an optimal test for them. If a property P has, for any ε > 0,
an ε-test that makes a constant number of queries, depending only on ε and not on the size
of the input, then P is said to be testable. P is tolerantly testable if for any ε > 0 it has a
constant-query (ε, δ)-test for some 0 < δ(ε) < ε. Finally, P is estimable if it has a constant
query (ε, δ)-test for any choice of 0 < δ(ε) < ε. In other words, P is estimable if the distance
of an input to satisfying P can be estimated up to a constant error, with good probability,
using a constant number of queries.

The meta-question that we consider in this paper is the following.

What makes a certain property P testable, tolerantly testable, or estimable?

1.1 Previous works: Characterizations of graphs and hypergraphs
For graphs, it was shown by Fischer and Newman [22] that the above three notions are
equivalent, i.e., any testable graph property is estimable (and thus trivially also tolerantly
testable). A combinatorial characterization of the testable graph properties was obtained
by Alon, Fischer, Newman and Shapira [4] and analytic characterizations were obtained
independently by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi [14] and Lovász
and Szegedy [30] through the study of graph limits. The combinatorial characterization
relates testability with regular reducibility, meaning, roughly speaking, that a graph property
P is testable (or estimable) if and only if satisfying P is equivalent to approximately having
one of finitely many prescribed types of Szemerédi regular partitions [35]. A formal definition
of regular reducibility is given in Section 2.

Very recently, a similar characterization for hypergraphs was obtained by Joos, Kim,
Kühn and Osthus [29], who proved that as in the graph case, testability, estimability and
regular reducibility are equivalent for any hypergraph property.

A (partial) characterization of the graph properties P that have a constant-query test
whose error is one-sided (i.e., tests that always accept inputs satisfying P) was obtained by
Alon and Shapira [5]. They showed that the only properties testable using an important
and natural type of one-sided tests, that are oblivious to the input size, are essentially the
hereditary properties.

The above characterizations for graphs rely on a conversion of tests into canonical tests,
due to Goldreich and Trevisan [26]. A canonical test T always behaves as follows: First it
picks a set U of vertices non-adaptively and uniformly at random in the input graph G, and
queries all pairs of these vertices, to get the induced subgraph G[U ]. Then T decides whether
to accept or reject the input deterministically, based only on the identity of G[U ] and the
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size of G. The number of queries needed by the canonical test is only polynomial in the
number of queries required by the original test, implying that any testable property is also
canonically testable.

To summarize, all of the following conditions are equivalent for graphs: Testability,
tolerant testability, canonical testability, estimability, and regular reducibility.

1.2 From unordered to ordered structures
Common to all of the above characterization results is the fact that they apply to unlabeled
graphs and hypergraphs, which are unordered structures: Graph (and hypergraph) properties
are symmetric in the sense that they are invariant under any relabeling (or equivalently,
reordering) of the vertices. That is, if a labeled graph G satisfies an unordered graph property
P , then any graph resulting from G by changing the labels of the vertices is isomorphic to G
(as an unordered graph), and so it satisfies P as well.

A natural question that one may ask is whether similar characterizations hold for the
more general setting of ordered structures over a finite alphabet, such as images and vertex-
ordered graphs in the two-dimensional case, and strings in the one-dimensional case. While
an unordered property is defined as a family of (satisfying) instances that is closed under
relabeling, in the ordered setting, any family of instances is considered a valid property. The
ordered setting is indeed much more general than the unordered one, as best exemplified
by string properties: On one hand, unordered string properties are essentially properties of
distributions over the alphabet Σ. On the other hand, any property of any finite discrete
structure can be encoded as an ordered string property!

In general, the answer to the above question is negative. It is easy to construct simple
string properties that are testable and even estimable, but are neither canonically testable
nor regular reducible.1 As an example, consider the binary string property P111 of “not
containing three consecutive ones”. The following is an ε-test for P111 (estimation is done
similarly): Pick a random consecutive substring S of the input, of length O(1/ε), and accept
if and only if S satisfies P111. On the other hand, global notions like canonical testability
and regular reducibility cannot capture the local nature of P.

Moreover, it was shown by Fischer and Fortnow [20], building on ideas from probabilistic-
ally checkable proofs of proximity (PCPP), that there exist testable string properties that
are not tolerantly testable, as opposed to the situation in unordered graphs [22].

However, it may still be possible that a positive answer holds for the above question if we
restrict our view to a class of “well behaved” properties.

Does there exist a class of properties that is wide enough to capture many interesting
properties, yet well behaved enough to allow simple characterizations for testability?

So far, we have seen that in general, properties in which the exact location of entries is
important to some extent, like P111 and the property from [20], do not admit characterizations
of testability that are similar to those of unordered graphs. But what about properties that

1 To this end, canonical tests in ordered structures are similar to their unordered counterparts, but they
act in an order-preserving manner. For example, a q-query test for a property P of strings f : [n] → Σ
is canonical if, given an unknown string f : [n] → Σ, the test picks q entries x1 < . . . < xq ∈ [n], queries
them to get the values y1 = f(x1), . . . , yq = f(xq), and decides whether to accept or reject the input
only based on the tuple (y1, . . . , yq). Canonical tests in ordered graphs or images are defined similarly,
but instead of querying a random substring, we query a random induced ordered subgraph or a random
submatrix, respectively.
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are ultimately global? Can one find, say, an ordered graph property that is canonically
testable but not estimable, for example? Stated differently,

Do the characterizations of testability in unordered graphs have analogues for canonical
testability in ordered graphs and images?

1.3 Our contributions
In this paper, we provide a partial positive answer to the first question, and a more complete
positive answer to the second question. For the second question, we show that canonical
testability in ordered graphs and images implies estimability and is equivalent to (an ordered
version of) regular reducibility, similarly to the case in unordered graphs. Addressing the
first question, we identify a wide class of well-behaved properties of ordered structures, called
the earthmover resilient (ER) properties, providing characterizations of tolerant testability
and estimability for these properties.

Earthmover resilient properties

Roughly speaking, a property P of a certain type of functions is earthmover resilient if slight
changes in the order of the “base elements”2 of a function f satisfying P cannot turn f into
a function that is far from satisfying P . The class of ER properties captures several types of
interesting properties:
1. Trivially, all properties of unordered graphs and hypergraphs.
2. Global visual properties of images. In particular, this includes any property P of black-

white images satisfying the following: Any image I satisfying P has a sparse black-white
boundary. This includes, as special cases, properties like convexity and being a half plane,
which were previously investigated in [10, 11, 15, 16, 32]. See Subsection 2.1 for the
precise definitions and statement and Appendix A for the proof.

3. All hereditary properties of ordered graphs and images, as implied by a recent result of
Alon and the authors [2]. While all hereditary unordered graph properties obviously fit
under this category, it also includes interesting order-based properties, such as the widely
investigated property of monotonicity (see [17, 18] for results on strings and images over
a finite alphabet), k-monotonicity [15], forbidden poset type problems [21], and more
generally forbidden submatrix type problems [1, 2, 3, 23].

The new results

ER properties behave well enough to allow us to fully characterize the tolerantly testable
properties among them in images and ordered graphs. In strings, it turns out that earthmover
resilience is equivalent to canonical testability.

Our first result relates between earthmover resilience, tolerant testability and canonical
testability in images and edge colored ordered graphs.

I Theorem 1 (See also Theorem 11). The following conditions are equivalent for any property
P of edge colored ordered graphs or images.
1. P is earthmover resilient and tolerantly testable.
2. P is canonically testable.

2 The base elements in an ordered graph are the vertices, and in images these are the rows and the
columns; in strings the base elements are the entries themselves.
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Theorem 11, which is the more detailed version of Theorem 1, also states that efficient
non-adaptive tolerant (ε, δ)-tests – in which the query complexity is polynomial in δ(ε) – can
be converted, under certain conditions, into efficient canonical tests, and vice versa.

Let us note that Theorem 1 can be extended to high-dimensional ordered structures, such
as tensors (e.g. 3D images) or edge colored ordered hypergraphs. As our focus in this paper
is on one- and two-dimensional structures, the full proof of the extended statement is not
given here, but it is a straightforward generalization of the 2D proof.

In (one-dimensional) strings, it turns out that the tolerant testability condition of
Theorem 1 is not needed. That is, ER and canonical testability are equivalent for string
properties.

I Theorem 2. A string property P is canonically testable if and only if it is earthmover
resilient.

As in Theorem 1, the transformation between canonical testability and earthmover resilience
is efficient: If a string property has a tolerant (ε, δ(ε))-test for any ε > 0, and δ is polynomial
in ε, then the number of queries of the corresponding canonical test is also polynomial in ε.
The converse is also true: A canonical ε-test for P with number of queries that is polynomial
in ε is in fact a tolerant (ε, δ)-test for P where δ(ε) is polynomial in ε.

In the unordered graph case, it was shown that testability is equivalent to estimability [22]
and to regular reducibility [4]; we note that the conversions induce a tower-type blowup in
the number of queries. Here, we establish analogous results for canonical tests in ordered
structures. The notion of (ordered) regular reducibility that we use here is similar in spirit
to the unordered variant, but is slightly more involved. The formal definition is given in
Subsection 2.5.

I Theorem 3. Any canonically testable property of edge colored ordered graphs and images
is (canonically) estimable.

I Theorem 4. A property of edge colored ordered graphs or images is canonically testable if
and only if it is regular reducible.

A tower-type blowup in Theorems 3 and 4

While the conversion between tolerant tests and canonical tests (and vice versa) among
earthmover resilient properties has a reasonable polynomial blowup in the number of queries
under certain conditions, for the relation between canonical testability and estimability
or regular reducibility this is not known to be the case. The proofs of Theorems 3 and 4
go through Szemerédi-regularity type arguments, and this yields at least a tower-type
blowup in the number of queries. Currently, it is not known how to avoid this tower-type
blowup in general, even for unordered graphs. However, interesting recent results of Hoppen,
Kohayakawa, Lang, Lefmann and Stagni [27, 28] state that for hereditary properties of
unordered graphs, the blowup between testability and estimability is at most exponential,
and extending this line of research would serve as an intriguing direction for future research.

The characterization of tolerant testability in ER properties, given below, is a direct
corollary of Theorems 1, 3, and 4.

I Corollary 5. The following conditions are equivalent for any earthmover resilient property
P of edge colored ordered graphs or images.
1. P is tolerantly testable.
2. P is canonically testable.

CCC 2018
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3. P is estimable.
4. P is regular reducible.

Alon and the authors [2] recently showed that any hereditary property of edge-colored
ordered graphs and images is canonically testable, by proving an order-preserving removal
lemma for all such properties. From Theorem 3 and [2] we derive the following very general
result.

I Corollary 6. Any hereditary property of edge-colored ordered graphs or images is (canonic-
ally) estimable.

In particular, this re-proves the estimability of previously investigated properties such as
monotonicity [17, 18] and more generally k-monotonicity [15], and proves the estimability of
forbidden-submatrix and forbidden-poset type properties [1, 2, 3, 21, 23].
I Remark. The characterization of the one-sided error obliviously testable properties by
Alon and Shapira [5], mentioned in Subsection 1.1, carries on to canonical tests in ordered
graphs and images. That is, a property P of such structures has a one-sided error oblivious
canonical test if and only if it is (essentially) hereditary. The fact that hereditary properties
are obliviously canonically testable with one-sided error is proved in [2]; the proof of the other
direction is very similar to its analogue in unordered graphs [5], and is therefore omitted.

1.4 Related work
Canonical versus sample-based testing in strings

The notion of a sample-based test, already defined in the seminal work of Goldreich, Gold-
wasser and Ron [24], refers to tests that cannot choose which queries to make. A q-query
test for P is sample-based if it receives pairs of the form (x1, f(x1)), . . . , (xq, f(xq)) where
f is the unknown input function and x1, . . . , xq are picked uniformly at random from the
domain of X (compare this to the definition of canonical tests from Subsection 1.2). A recent
work of Blais and Yoshida [13] characterizes the properties P that have a constant query
sample-based test.

In strings, sample-based testability might seem equivalent to canonical testability at
first glance, but this is actually not the case, as sample-based tests have more power than
canonical ones (canonical testability implies sample-based testability, but the converse is
not true). Consider, e.g., the property of equality to the string 010101 . . ., which is trivially
sample-based testable, yet not canonically testable. Thus, sample-based testability does
not imply canonical testability, so the results of Blais and Yoshida [13] are not directly
comparable to Theorem 2 above.

Previously investigated properties of ordered structures

On top of the hereditary properties mentioned earlier, several different types of properties of
ordered structures have been investigated in the property testing literature. Without trying
to be comprehensive, here is a short summary of some of these types of properties.

Geometric & visual properties. Image properties that exhibit natural visual conditions,
such as connectivity, convexity and being a half plane, were considered e.g. in [11, 10, 16, 32].
Typically in these cases, images with two colors – black and white – are considered, where
the “shape” consists of all black pixels, and the “background” consists of all white pixels.
For example, convexity simply means that the black shape is convex. As we shall see, some
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of these properties that are global in nature, such as convexity and being a half plane, are
ER, while connectivity – a property that is sensitive to local modifications – is not ER.

Algebraic properties. String properties related to low-degree polynomials, PCPs and locally
testable error correcting codes have been thoroughly investigated, starting with the seminal
papers of Rubinfeld and Sudan [33] and Goldreich and Sudan [25]. As shown in [20], there
exist properties of this type that are testable but not tolerantly testable. In this sense,
algebraic properties behave very differently from unordered graph properties. This should not
come as a surprise: In a PCP or a code, the exact location of each bit is majorly influential
on its “role”. This kind of properties is therefore not ER in general.

Local properties. These are image properties P where one can completely determine
whether a given image I satisfies P based only on the statistics of the k × k consecutive
sub-images of I, for a fixed constant k. Recently, Ben-Eliezer, Korman and Reichman [9]
observed that for almost all (large enough) patterns Q, the local property of not containing a
consecutive copy of Q in the image is tolerantly testable. Note that monotonicity can also be
represented as a local property, taking k = 2 (but `-monotonicity cannot be represented this
way). Local properties are not ER in general, and obtaining characterizations of testability
for them remains an intriguing open problem.

2 Preliminaries

This Section contains all required definitions, including those that are related to earthmover
resilience (Subsection 2.1), a discussion on earthmover resilient properties (Subsection 2.2),
property testing notation (Subsection 2.3), and finally, the definition of ordered regular
reducibility (Subsection 2.5). Along the way, we state the full version of Theorem 1 (Subsec-
tion 2.4).

We start with some standard definitions. A property P of functions f : X → Σ is simply
viewed as a collection of such functions, where f is said to satisfy P if f ∈ P. The absolute
Hamming distance between two functions f, f ′ : X → Y is DH(f, f ′) = |{x ∈ X : f(x) 6=
f ′(x)}|, and the relative distance is dH(f, f ′) = DH(f, f ′)/|X|; note that 0 ≤ dH(f, f ′) ≤ 1
always holds. f and f ′ are ε-far if dH(f, f ′) > ε, and ε-close otherwise. The distance of f
to a property P is minf ′∈P dH(f, f ′). f is ε-far from P if the distance between f and P is
larger than ε, and ε-close to P otherwise.

Representing images using ordered graphs

An image f : [n]× [n]→ Σ can be represented by an edge colored ordered graph g :
([2n]

2
)
→

Σ∪{⊥}, where ⊥/∈ Σ can be thought of as a special “no edge” symbol. g is defined as follows.
g(x, y) =⊥ for any pair x 6= y satisfying 1 ≤ x, y ≤ n (“pair of rows”) or n+ 1 ≤ x, y ≤ 2y
(“pair of columns”); and g(x, n + y) = f(x, y) for any x, y ∈ [n]. From now onwards, we
almost exclusively use this representation of images as ordered graphs, usually giving our
definitions and proofs only for strings and ordered graphs. It is not hard to verify that all
results established for ordered graphs can be translated to images through this representation.

2.1 Earthmover resilience
We now formalize our notion of being “well behaved”. As both strings and ordered graphs
are essentially functions of the form f :

([n]
k

)
→ Σ (for k = 1 and k = 2, respectively), we

simplify the presentation by giving here the general definition for functions of this type.

CCC 2018
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I Definition 7 (Earthmover distance). Fix k > 0 and let f :
([n]
k

)
→ Σ. A basic move between

consecutive elements x, x + 1 ∈ [n] in f is the operation of swapping x and x + 1 in f .
Formally, let σx : [n]→ [n] be the permutation satisfying σx(x) = x+ 1, σx(x+ 1) = x, and
σx(i) = i for any i 6= x, x+ 1. For any X ∈

([n]
k

)
, define σkx(X) = {σx(i) : i ∈ X}. The result

of a basic move between x and x+ 1 in f is the composition f ′ = f ◦ σkx.
The absolute earthmover distance De(f, f ′) between two functions f, f ′ :

([n]
k

)
→ Σ is the

minimum number of basic move operations needed to produce f ′ from f . The distance is
defined to be +∞ if f ′ cannot be obtained from f using any number of basic moves. The
normalized earthmover distance between f and f ′ is de(f, f ′) = De(f, f ′)/

(
n
2
)
, and we say

that they are ε-earthmover-far if de(f, f ′) > ε, and ε-earthmover-close otherwise.

Our definition of earthmover distance matches the standard definition [34] for k = 1,
and we extend it conservatively to higher k, so that the basic earthmoving step involves
switching between neighboring vertices (or neighboring rows or columns, in the case of
images). For images, this definition is non-standard; In [34], for example, the basic move
in images corresponds to switching between neighboring entries (compared to switching
neighboring rows and columns, as in our case). Our definition is much more restrictive than
that of [34] in general: There exist two images f and f ′ such that the absolute distance
between them is ∞ under our definition, and 1 under the definition of [34].

I Definition 8 (Earthmover resilience). Fix a function δ : (0, 1) → (0, 1). A property P is
δ-earthmover resilient if for any ε > 0, function f satisfying P, and function f ′ which is
δ(ε)-earthmover-close to f , it holds that f ′ is ε-close to P (in the usual Hamming distance).
P is earthmover resilient if it is δ-earthmover resilient for some choice of δ.

Intuitively, a property is earthmover resilient if it is insensitive to local changes in the order
of the base elements.

Hereditary properties are earthmover resilient

It was shown in [2] that any hereditary property satisfies a removal lemma: If an ordered
graph (or image) G is ε-far from an hereditary property P, then G contains δnh ordered
copies of some h-vertex subgraph H not satisfying P, for suitable choices of δ = δP(ε) > 0
and h = hP(ε) > 0. Since one basic move can destroy no more than nh−2 such H-copies
(those that include both swapped vertices), one has to make at least δn2 basic moves to
make G satisfy P. Thus, ε-farness implies δP(ε)-earthmover-farness from P.

2.2 Earthmover resilience in visual properties
Convexity and being a half plane are earthmover resilient. This is a special case of a much
wider phenomenon concerning properties of black-white images in which the number of pixels
lying in the boundary between the black shape and the white background is small. Here, an
m× n white/black image is represented by a 0/1-matrix M of the same dimensions, where
the (i, j)-pixel of the image is black if and only if M(i, j) = 1. The definition below is given
for square images, but can be easily generalized to m× n images with m = Θ(n).

I Definition 9 (Sparse boundary). The boundary B = B(I) of an n× n black-white image I
is the set of all pixels in I that are black and have a white neighbor.3 B is c-sparse for a

3 Here, two pixels are neighbors if they share one coordinate and differ by one in the other coordinate.
An alternative definition (that will yield the same results in our case) is that two pixels are neighbors if
they differ by at most one in each of the coordinates, and are not equal.
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constant c > 0 if |B| ≤ cn. A property P has a c-sparse boundary if the boundaries of all
images satisfying P are c-sparse.

For example, for any property P of n× n images such that the black area in any image
satisfying P is the union of at most t convex shapes (that do not have to be disjoint), P
has a 4t-sparse boundary. This follows from the fact that the boundary of each of the black
shapes is of size at most 4n. For t = 1, this captures both convexity and being a half plane
as special cases. The following result states that c-sparse properties are earthmover resilient.

I Theorem 10. Fix c ≥ 1. Then any property with a c-sparse boundary is δ-earthmover-
resilient, where δ(ε) ≤ αε2/c2 for some absolute constant α > 0 and any ε > 0.

The result still holds if c is taken as a function of ε. The (non-trivial) proof serves as a
good example showing how to prove earthmover resilience of properties, and is given in
Appendix A.

Naturally, not all properties of interest are earthmover resilient. For example, the local
property P of “not containing two consecutive horizontal black pixels” in a black/white
image is not earthmover resilient: Consider the chessboard n× n image, which satisfies P,
but by partitioning the board into n/4 quadruples of consecutive columns and switching
between the second and the third column in each quadruple, we get an image that is O(1/n)-
earthmover-close to P yet 1/4-far from it in Hamming distance. A similar but slightly more
complicated example shows that connectivity is not earthmover resilient as well.

2.3 Definitions: Testing and estimation
A q-query algorithm T is said to be an ε-test for P with confidence c > 1/2, if it acts as
follows. Given an unknown input function f : X → Σ (where X and Σ are known), T picks
q elements x1, . . . , xq ∈ X of its choice, and queries the values f(x1), . . . , f(xq).4 Then T
decides whether to accept or reject f , so that

If f satisfies P then T accepts f with probability at least c.
If f is ε-far from P, then T rejects it with probability at least c.

Now let δ : (0, 1) → (0, 1) be a function that satisfies δ(x) < x for any 0 < x < 1. An
(ε, δ)-tolerant test T is defined similarly to an ε-test, with the first condition replaced with
the following strengthening: If f is δ(ε)-close to P, then T accepts it with probability at
least 1− c. Unless stated otherwise, the default choice for the confidence is c = 2/3. P is
testable if it has a constant-query ε-test (whose number of queries depends only on ε) for any
ε > 0. Similarly, P is δ-tolerantly testable, for a valid choice of δ : (0, 1)→ (0, 1), if it has a
constant query (ε, δ)-test for any ε > 0. If P is δ-tolerantly testable for some valid choice of
δ, we say that it is tolerantly testable. Finally, P is estimable if it is δ-tolerantly testable for
any valid choice of δ.

Next, we formally define what it means for a test (or a tolerant test) T to be canonical,
starting with the definition for strings.

A q-query test (or tolerant test) T for a property P of strings f : [n]→ Σ is canonical if it
acts in two steps. First, it picks x1 < . . . < xq uniformly at random, and queries the entries
y1 = f(x1), . . . , yq = f(xq). The second step only receives the ordered tuple Y = (y1, . . . , yk)
and decides (possibly probabilistically) whether to accept or reject only based on the values

4 T as defined here is a non-adaptive test, that chooses which queries to make in advance. Adaptivity
does not matter for our discussion, since we are only interested in constant-query tests, and since an
adaptive test making a constant number q of queries can be turned into a non-adaptive one making 2q

queries, which is still a constant.
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of Y . Note that the second step does not “know” the values of x1, . . . , xq themselves. As
before, P is canonically testable if it has a qP(ε)-query canonical test for any ε > 0, where
qP(ε) depends only on ε.

In contrast, a test for string properties is sample based if it has the exact same first
step, but the second step receives more information: It also receives the values of x1, . . . , xq.
A sample-based test is more powerful than a canonical test in general. For example, the
property of “being equal to the string 010101 . . .” is trivially sample-based ε-testable with
O(1/ε) queries, but is not canonically testable with a constant number of queries (that
depends only on ε).

For ordered graphs f :
([n]

2
)
→ Σ, a test (or a tolerant test) T is canonical if, again, it

acts in two steps. In the first step, T picks q vertices v1 < . . . < vq uniformly at random,
and queries all

(
q
2
)
values yij = f(vi, vj). The second step receives the ordered tuple

Y = (y11, y12, . . . , y1q, . . . , yq−1,q), and decides (possibly probabilistically) whether to accept
or reject only based on the value of Y .

We take a short detour to explain why asking T to make a deterministic decision in
the second step of the canonical test, rather than a probabilistic one, will not make an
essential difference for our purposes. It was proved by Goldreich and Trevisan [26] that any
probabilistic canonical test (for which the decision to accept or reject in the second step is
not necessarily deterministic) can be converted into a deterministic one, with a blowup that
is at most polynomial in the number of queries. The proof was given for unordered graph
properties, but it can be translated to ordered structures like strings, ordered graphs and
images in a straightforward manner. Thus, the requirement that the canonical test makes a
deterministic decision is not restrictive.

2.4 The full statement of Theorem 1
We are finally ready to present the more precise version of Theorem 1. This version depicts
an efficient transformation from earthmover resilience and tolerant testability to canonical
testability, and vice versa.

I Theorem 11. Let P be a property of edge-colored ordered graphs or images, and let
δ : (0, 1)→ (0, 1) and η : (0, 1)→ (0, 1) such that η(ε) < ε for any ε > 0.
1. If P is δ-earthmover resilient and η-tolerantly testable, where the number of queries of a

corresponding (ε, η)-tolerant non-adaptive test is denoted by q(ε), then P is canonically
testable. Moreover, if q, η−1 and δ−1 are polynomial in ε−1, then the number of queries
of the canonical ε-test is also polynomial in ε−1.

2. If P is canonically testable, where the number of queries of the canonical (non adaptive)
ε-test is denoted by q′(ε), then P is both δ′-earthmover resilient and δ′-tolerantly testable
where δ′ : (0, 1)→ (0, 1) depends only on q′ and ε. Moreover, if q′ is polynomial in ε−1,
then δ′ is polynomial in ε.

The proof is given along Sections 4, 5, and 6.

2.5 Regular reducibility
The last notion to be formally defined is that of ordered regular reducibility. This notion is a
natural analogue of the unordered variant, and is rather complicated to describe and define.
Since the intuition behind this definition is quite similar to that of the unordered case, we
refer the reader to a more thorough discussion on regular reducibility (and the relation to
Szemerédi’s regularity lemma) in [4]. Here, we only provide the set of definitions required for
our purposes.
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I Definition 12 (Regularity, regular partition). Let f :
([n]

2
)
→ Σ be an edge-colored ordered

graph. For any σ ∈ Σ, the σ-density of a disjoint pair A,B ⊆ [n] is dσ(A,B) = |f−1(σ)∩(A×
B)|/|A||B|. A pair (A,B) is γ-regular if for any two subsets A′ ⊆ A and B′ ⊆ B satisfying
|A′| ≥ γ|A| and |B′| ≥ γ|B|, and any σ ∈ Σ, it holds that |dσ(A′, B′)− dσ(A,B)| ≤ γ. An
equipartition of [n] into k parts V1, . . . , Vk is γ-regular if all but at most γ

(
k
2
)
of the pairs

(Vi, Vj) are γ-regular.

I Definition 13 (Interval partitions). The k-interval equipartition of [n] is the unique partition
of [n] into sets X1, . . . , Xk, such that x < x′ for any x ∈ Xi, x

′ ∈ Xi′ , i < i′ and |Xi′ | ≤
|Xi| ≤ |Xi′ |+ 1 for any i < i′. An interval partition of an ordered graph or a string is defined
similarly.

I Definition 14 (Ordered regularity instance). An ordered regularity instance R for Σ-colored
ordered graphs is given by an error parameter γ, integers r, k, a set of K =

(
r
2
)
k2|Σ| densities

0 ≤ ηi
′j′

ij (σ) ≤ 1 indexed by i < i′ ∈ [r], j, j′ ∈ [k] and σ ∈ Σ, and a set R̄ of tuples (i, j, i′, j′)
of size at most γK. An ordered graph f :

([n]
2
)
→ Σ satisfies the regularity instance if there is

an equitable refinement {Vij : i ∈ [r], j ∈ [k]} of the r-interval equipartition V1, . . . , Vr where
Vij ⊆ Vi for any i and j, such that for all (i, j, i′, j′) /∈ R̄ the pair Vij , Vi′j′ is γ-regular and
satisfies dσ(Vij , Vi′j′) = ηi

′j′

ij (σ) for any σ ∈ Σ. The complexity of the regularity instance is
max{1/γ,K}.

With some abuse of notation, when writing dσ(Vij , Vi′j′) = ηi
′j′

ij (σ) we mean that the number
of σ-colored edges between Vij and Vi′j′ is bηi

′j′

ij (σ)|Vij ||Vi′j′ |c or dηi
′j′

ij (σ)|Vij ||Vi′j′ |e. This
way we avoid divisibility issues, without affecting any of our arguments.

The definition of an ordered regularity instance differs slightly from the analogous
definition for unordered graphs in [4]: Here we insist that the regular partition will be a
refinement of an interval equipartition, disregarding pairs of parts inside the same interval.
We also allow a color set of size bigger than two. The definition of regular reducibility
is analogous to the unordered case, though obviously the regularity instances used in the
definition are of the ordered type.

I Definition 15 (Regular reducible). An edge-colored ordered graph property P is regular-
reducible if for any δ > 0 there exists t = tP(δ) such that for any n there is a family R of at
most t regularity instances, each of complexity at most t, such that the following holds for
every ε > 0 and ordered graph f :

([n]
2
)
→ Σ:

If f satisfies P then for some R ∈ R, f is δ-close to satisfying R.
If f is ε-far from satisfying P, then for any R ∈ R, f is (ε− δ)-far from satisfying R.

3 Proof outline

In this section, we shortly describe the main ingredients of our proofs.

Earthmover distance and mixingness

Suppose that G,G′ :
([n]

2
)
→ Σ are two ordered graphs with a finite earthmover distance

between them (all results mentioned here also apply for strings). In this case, G and G′

are isomorphic as unordered graphs, meaning that the collection of vertex permutations
π : [n] → [n] that “turn” G into G′ is not empty. We define the (absolute) mixingness
between G and G′ as the minimal number of pairs x < y ∈ [n] such that π(x) > π(y), over
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all possible choice of π from the collection. We show, via a simple inductive proof, that the
mixingness between G and G′ is exactly equal to the earthmover distance between them.

With the tool of mixingness in hand, it is not hard to prove that canonical testability
implies earthmover resilience and tolerant testability. The basic idea is that, if two graphs G
and G′ are sufficiently close in terms of mixingness, then the distributions of their q-vertex
subgraphs are very similar, and so a q-query canonical test cannot distinguish between them
with good probability. See Section 4 for more details.

Earthmover resilience to piecewise-canonical testability

A test T is piecewise-canonical if it acts in the following manner on the t-interval partition
of the unknown input graph (or string). First, T chooses how many vertices (entries,
respectively) to take from each interval, where the number of vertices may differ between
different intervals. Then T picks the vertices (entries) from the intervals in a uniformly
random manner. Finally, T queries precisely all pairs of picked vertices (or all entries, in the
string case), and decides whether to accept or reject based on the ordered tuple of the values
returned by the queries.

For strings of length n over Σ, if P is earthmover resilient then it is also piecewise-
canonically testable. The main idea of the proof is the following. If one takes a string S
and partitions it into sufficiently many equitable interval parts S1, . . . , St, then “shuffling”
entries inside each of the interval parts Si will not change the distance of S to P significantly.
With this idea in hand, it is not hard to observe that knowing the histograms Hi of all
parts Si (with respect to letters in Σ) is enough to estimate the distance of S to P up to a
small additive constant error. These histograms cannot be computed exactly with a constant
number of queries, but it is well known that each Hi can be estimated up to a small constant
error with a constant number of queries, which is enough for our purposes.

For properties P of ordered graphs (or images), earthmover resilience by itself is not
enough to imply piecewise-canonical testability, but earthmover resilience and tolerant
testability are already enough. The idea is somewhat similar to the one we used for strings.
We may assume that P has a tolerant test T whose set of queried pairs is always an induced
subgraph of G. Like before, we partition our input graph G into sufficiently many interval
parts V1, . . . , Vt. Now the piecewise canonical test T ∗ simulates a run of the original tolerant
test T (without making the actual queries that T decided on). Denote the vertices that
T decides to pick in Vi by vi1, . . . , viqi . T

∗ picks exactly qi vertices uniformly at random in
each part Vi, and queries all edges between all chosen vertices. Now T ∗ randomly “assigns”
the labels vi1, . . . , viqi to the vertices that it queried from Vi, and returns the same answer
that T would have returned for this set of queries. It can be shown that T ∗ is a test whose
probability to return the same answer as T is high, as desired. For the full details, see
Section 5.

Piecewise-canonical testability to canonical testability

We describe the transformation for ordered graph properties; for strings this is very similar.
Let T be piecewise-canonical test for P that partitions the input into t intervals U1, . . . , Ut.
Consider the following canonical test T ′: T ′ picks qt vertices v1 < . . . < vqt uniformly
at random, for large enough q. Then T ′ partitions the vertices into t intervals A1 =
{v1, . . . , vq}, . . . , At = {v(t−1)q+1, vtq}. Now T ′ simulates a run of T . If T chose to take qi
vertices from Ui, then T ′ picks exactly qi vertices from Ai. Finally, T ′ queries all edges
between all vertices it picked, and returns the same answer as T (where the simulation of T
assumes here that the vertices that were actually picked from Ai come from Ui).
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A rather straightforward but somewhat technical proof (that we do not describe at this
point, see Section 6) shows that the probability that T ′ returns the answer that T would
have returned on the same input is high, establishing the validity of T ′. For the full details,
see Section 6.

Canonical testability, estimability and regular reducibility

The proofs of Theorems 3 and 4 are technically involved. Fortunately, the proofs follow the
same spirit as those of the unordered case, considered in [4, 22], and in this paper we only
describe how to adapt the unordered proofs to our case.

Sections 7 and 8 contain the proofs of Theorems 3 and 4, respectively. It is shown in
these sections that for our ordered case, in some sense it is enough to make the proofs work
for k-partite graphs, for a fixed k. The intuition is that for our purposes, it is enough to
view an ordered graph G as a k-partite graph (for a large enough constant k), where the
parts are the intervals of a k-interval partition of G.

At this point, it is too difficult to explain the proof idea in high level without delving
deeply into the technical details. Therefore, all details are deferred to Sections 7 and 8.

4 Earthmover-resilience and mixing

I Definition 16. Let µ and η be two distributions over a finite family H of combinatorial
structures. The variation distance between µ and η is |µ− η| = 1

2
∑
H∈H |Prµ(H)−Prη(H)|.

The following folklore fact regarding the variation distance will be useful later.

I Lemma 17. Let µ and η be two distributions over a finite family H. Then |µ − η| =
maxF⊆H |Prµ(F)− Prη(F)| =

∑
H∈H: Prµ(H)>Prη(H)(Prµ(H)− Prη(H)).

I Definition 18. An unordered isomorphism between two ordered graphs G,H :
([n]

2
)
→ Σ

is a permutation σ : [n]→ [n] such that G(ij) = H(σ(i)σ(j)) for any i < j ∈ [n].
Given a permutation σ of [n], the mixing set of σ isMS(σ) = {i < j : σ(i) > σ(j)} ⊆

([n]
2
)
,

its mixingness is Dm(σ) = |MS(σ)| and its normalized mixingness is dm(σ) = |MS(σ)|/
(
n
2
)
.

Given graphs G and H, their normalized mixingness dm(G,H) is defined as the minimal
normalized mixingness of an unordered isomorphism from G to H (and +∞ if G and H are
not isomorphic as unordered graphs).

Our next goal is to show that the earthmover distance between two ordered graphs is
equal to the mixingness between them. Given a permutation σ : [n]→ [n], a basic move for
σ transforms it to a permutation σ′ of the same length, such that for some i, σ(i) = σ′(i+ 1)
and σ′(i) = σ(i + 1), and σ(j) = σ′(j) for any j 6= i, i + 1. Let b(σ) denote the minimal
number of basic moves required to turn σ into the identity permutation id satisfying id(i) = i

for any i.

I Lemma 19. Dm(σ) = b(σ) for any permutation σ : [n]→ [n].

Proof. The inequality Dm(σ) ≤ b(σ) is trivial: Any basic move changes the relative order
between a (single) pair of entries in the permutation, and thus cannot decrease the size of the
mixing set by more than one. Next we show by induction that b(σ) ≤ Dm(σ). Dm(σ) = 0
implies that σ = id and b(σ) = 0 in this case. Now assume that Dm(σ) > 0 and pick some
i < j such that σ(i) > σ(j). Take i′ < j to be the largest for which σ(i′) > σ(j) – such an i′
exists since σ(i) > σ(j). Note that σ(i′+ 1) ≤ σ(j) < σ(i′) due to the maximality of i′. Take
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σ′ to be the result of the basic move between i′ and i′ + 1 in σ. Dm(σ′) = Dm(σ)− 1, and
by the induction assumption we know that b(σ′) = Dm(σ′) = Dm(σ)− 1. But since σ′ is the
result of a basic move on σ, we conclude that b(σ) ≤ b(σ′) + 1 = Dm(σ), as desired. J

The equivalence between the earthmover distance and the mixingness is now immediate.

I Lemma 20. For any two graphs G,H :
([n]

2
)
→ Σ, de(G,H) = dm(G,H).

Proof. Dm(G,H) is the minimum value of Dm(σ) among all unordered isomorphisms σ
from G to H, and De(G,H) is the minimum value of b(σ) among all such isomorphisms. By
Lemma 19, these two values are equal, and thus the corresponding relative measures are also
equal. J

I Lemma 21. Let δ : (0, 1) → (0, 1) and let P be a δ-earthmover-resilient property. If
two graphs G,H :

([n]
2
)
→ Σ satisfy de(G,H) ≤ δ(ε) for some ε > 0, then dH(G,P) ≤

dH(H,P) + ε.

Proof. Suppose that G and H satisfy de(G,H) ≤ δ(ε). By definition, there exists an
unordered isomorphism σ : G→ H such that dm(G,H) = dm(σ). Let G′ :

([n]
2
)
→ Σ be the

graph in P that is closest to G (in Hamming distance). Consider the graph H ′ satisfying
H ′(σ(u)σ(v)) = G′(uv) for any u 6= v ∈ V , then dH(H,H ′) = dH(G,G′). Note that σ is
an unordered isomorphism between G′ and H ′. It follows, building on Lemma 20, that
dm(G′, H ′) ≤ dm(σ) = dm(G,H) = de(G,H) ≤ δ(ε). This implies (by the earthmover
resilience) that H ′ is ε-close to P. The triangle inequality concludes the proof. J

Canonical testability implies earthmover resilience
I Definition 22. Let H and G be Σ-edge-colored ordered graphs on q and n vertices
respectively. The number of (ordered) copies of H in T , i.e., the number of induced
subgraphs of G of size q isomorphic to H, is denoted by h(H,G). The density of H in G
is t(H,G) = h(H,G)/

(
n
q

)
(where t(H,G) = 0 if q > n). The q-statistic of G is the vector

(t(H,G))H∈Hq , where Hq is the family of all Σ-edge-colored ordered graphs with q vertices.

Every property of ordered graphs already testable by a canonical test is δ-earthmover-
resilient for some δ (depending on the number of its query vertices as a function of ε), as
implied by the following lemma.

I Lemma 23. Let ε, δ > 0. For any canonical ε-test querying up to q vertices and any two
graphs G and G′ of either Hamming distance or earthmover distance at most δ, the difference
between the acceptance probabilities of G and of G′ is at most δ

(
q
2
)
.

Proof. We may assume that the test queries exactly q vertices. For Hamming distance, the
statement is well known, and follows easily by taking a union bound over all

(
q
2
)
queried

edges. Assume then that de(G,G′) ≤ δ. Let µ, µ′ be the q-statistics of G, G′ respectively,
where G,G′ :

([n]
2
)
→ Σ are two graphs with earthmover distance at most δ between them.

By Lemma 17 it will be enough to show that |µ− µ′| ≤ δ
(
q
2
)
. Lemma 20 implies that there

is an unordered isomorphism σ : G→ G′ with dm(σ) ≤ δ.
For any set Q of q vertices, let σ(Q) = {σ(v) : v ∈ Q}, and note that Q 7→ σ(Q) is

a bijective mapping from Hq to itself. Observe that the induced subgraph G[Q] can be
non-isomorphic to G′[σ(Q)] (as an ordered graph on q vertices) only if there exist two vertices
u, v ∈ Q satisfying uv ∈MS(σ). By a union bound, the probability of a uniformly random
Q ∈ Hq to have such a pair is at most dm(σ)

(
q
2
)
≤ δ
(
q
2
)
, implying that |µ− µ′| ≤ δ

(
q
2
)
. J
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The next lemma proves the second (and easier) direction of Theorem 11. It uses Lemma 23
to conclude that a canonically testable property is earthmover-resilient and tolerantly testable.

I Lemma 24. Let P be an ordered graph property. Suppose that P has a canonical ε-test T
making q(ε) vertex queries for any ε > 0. Then P is δ-earthmover-resilient and δ-tolerantly
ε-testable with 9q(ε) vertex queries, where δ(ε) = 1/20

(
q(ε)

2
)
for any ε > 0.

Proof. Let ε > 0, and suppose that G and G′ are of earthmover distance at most δ(ε)
between them, where G satisfies P ; to prove the earthmover resilience, we need to show that
G′ is ε-close to satisfying P. Since G ∈ P, it is accepted by T with probability at least 2/3.
By Lemma 23, the acceptance probability of G′ by T is at least 2

3 − δ(ε)
(
q(ε)

2
)
> 1/3. Since

T rejects any graph ε-far from P with probability at least 2/3, we conclude that G′ must be
ε-close to P.

For the second part, regarding tolerant testability, Lemma 23 implies that for any graph
that is δ(ε)-close to satisfying P , the acceptance probability of T is at least 2/3− δ(ε)

(
q(ε)

2
)
>

0.61. By applying T independently 9 times and accepting if and only if the majority of the
runs accepted, we get a test that accepts δ(ε)-close graphs with probability at least 2/3 and
rejects ε-far graphs with probability at least 2/3 as well. This test can be made canonical
with no need for additional queries. J

Let us finish with two comments. First, in the last two lemmas it was implicitly assumed
that the canonical test is a deterministic one, but they also hold for randomized ones: The
fact that |µ−µ′| ≤ δ

(
q
2
)
in Lemma 23 is actually enough to imply the statement of Lemma 23

for any (deterministic or randomized) canonical test, and Lemma 24 follows accordingly.
Second, the results in this section, along with Sections 5 and 6, are not exclusive to

two-dimensional structures, and naturally generalize to k-dimensional structures for any k.
Thus, in ordered hypergraphs and tensors in three dimensions or more, it is still true that
the combination of earthmover resilience and tolerant testability is equivalent to canonical
testability.

5 Piecewise-canonical testability

In this section, we show that ER string properties and ER tolerantly testable ordered graph
properties have a constant-query piecewise canonical test. This is a test that consider a
k-interval partition of the input, picking a predetermined number of vertices (or entries, in
the string case) uniformly at random from each interval (this number may differ between
different intervals), and finally, queries all edges between the picked vertices from all intervals.
We always assume that our tolerant tests are non-adaptive and based on q query vertices
(we assume they query the entire induced subgraph even if they do not use all of it). Note
that unlike the case of unordered graphs, the move from an adaptive test to a non-adaptive
one can cause an exponential blowup in the query complexity (we may need to “unroll” the
entire decision tree).

I Definition 25. A (probabilistic) piecewise-canonical test with k parts and q query vertices
for a property P of functions f :

([n]
`

)
→ Σ works as follows. First, the test non-adaptively

selects (possibly non-deterministically) numbers q1, . . . , qk that sum up to q, and then it
considers a k-interval partition I1, I2, . . . , Ik of the input function f , selecting a uniformly
random set of qj vertices from Ij for every 1 ≤ j ≤ k. The test finally accepts or rejects f
based only on the selected numbers q1, . . . , qk and the unique function f ′ :

([q]
`

)
→ Σ that is

isomorphic (in the ordered sense) to the restriction of f on the selected vertices.
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A property P is piecewise-testable if for for every ε there exist k(ε) and q(ε) for which P
has a piecewise canonical ε-test with k(ε) parts and q(ε) query vertices.

I Remark. In Section 2 it was noted that a probabilistic canonical test for a property can
be transformed into a deterministic one, with the same confidence, as was shown in [26].
This is true for any choice of confidence c (not only the “default” confidence c = 2/3). Since
one can always amplify a (probabilistic or deterministic) test to get a test of the same type
with confidence arbitrarily close to 1, we conclude that if a property P has a probabilistic
canonical test with a certain confidence c > 1/2, then for any ζ > 0, P has a deterministic
canonical test with confidence at least 1− ζ.

All of the above is also true for piecewise-canonical tests; the proof for canonical tests
carries over naturally to this case, so we omit it. Here, the simulating deterministic test has
the same number of parts as the original test.

5.1 Strings: Earthmover resilience to piecewise-canonical testability
In this subsection, we prove that ER properties of strings are piecewise canonically testable.
In Section 6, we show that the latter condition implies canonical testability.

For a string S : [n] → Σ let dσ(S) = |S−1(σ)|/n denote the density of σ in S. Let
T (S) = (dσ(S))σ∈Σ denote the distribution vector of letters in S. The following well known
fact is important for the proof.

I Fact 26. The distribution vector of a string over Σ can be approximated up to variation
distance ζ, with probability at least 1− τ , using O(|Σ|2 log(τ−1)ζ−2) queries.

Fix a function δ : (0, 1)→ (0, 1), a δ-earthmover resilient property P of strings over Σ,
and ε > 0. Take t = d1/2δ(ε/2)e. For any string S over Σ, let S1, . . . , St be the t-interval
partition of S and let the t-interval distribution Γt(S) = (T (S1), . . . , T (St)) denote the
t-tuple of the distribution vectors of S1, . . . , St. For S as above and another string S′

over Σ with t-interval partition S′1, . . . , S
′
t, the t-aggregated distance between S and S′ is

dA(S, S′) =
∑t
i=1 |T (Si)−T (S′i)| · |Si|/|S|; recall that |T (Si)−T (S′i)| is the variation distance

between T (Si) and T (S′i). As usual, we define dA(S,P) = minS′∈P dA(S, S′). The next easy
lemma relates between the Hamming distance and the t-aggregated distance of S to P.

I Lemma 27. For any string S over Σ we have 0 ≤ dH(S,P)− dA(S,P) ≤ ε/2.

Proof. Let S′ be the string that is closest to P among those that can be generated from S only
using basic moves inside the intervals S1, . . . , St. In particular, it is trivial that dH(S′,P) ≤
dH(S,P) and we know by Lemma 20 that de(S, S′) ≤ 2/t ≤ δ(ε/2). By Lemma 21, we get
that dH(S,P) − dH(S′,P) ≤ ε/2. On the other hand, dH(S′,P) = dA(S′,P) = dA(S,P)
follows by the definitions of the distance functions and the minimality of S′. J

Finally we present the piecewise canonical test for P. More accurately, we describe a
piecewise-canonical algorithm A that, given an unknown string S over Σ of an unknown
length n, approximates the t-aggregated distance of S to P up to an additive error of ε/6,
with probability at least 2/3. The test simply runs A and accepts if and only if its output
value is at most ε/4. The algorithm A acts as follows. First, it runs the algorithm of Fact 26
in each interval of the t-interval partition of S, with parameters ζ = ε/6 and τ = 1/3t. For
any 1 ≤ i ≤ t, let T ∗i denote the distribution returned by this algorithm for interval i. Then,
Algorithm A returns r = minS′∈P

∑t
i=1 |T ∗i − TS′i | · |Si|/|S|.

With probability 2/3, we get that |T (Si)− T ∗i | ≤ ε/6 for any i. Suppose from now on
that the latter happens. It follows from the triangle inequality for the variation distance that
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dA(S,P) ≤ dA(S, S′) ≤ r+ε/6, where r is the minimum defined above and S′ ∈ P is the string
achieving this minimum. Conversely, there exists S′′ ∈ P such that dA(S, S′′) = dA(S,P).
But the minimality of S′ implies that

∑t
i=1 |T ∗i − TS′′i | · |Si|/|S| ≥ r, and again, from the

triangle inequality we get that dA(S, S′′) ≥ r − ε/6. To summarize,

r − ε/6 ≤ dA(S, S′′) = dA(S, P ) ≤ dA(S, S′) ≤ r + ε/6

which means that r is, with probability at least 2/3, an (ε/6)-additive approximation of
dA(S,P). Thus, if S satisfies P (meaning that dA(S,P) = 0) then with probability 2/3 the
algorithm A returns r ≤ ε/6 and the test accepts. On the other hand, if S is ε-far from P
then dA(S,P) ≥ ε/2 by the above lemma, and A returns r ≥ ε/2− ε/6 = ε/3 (making the
test reject) with probability at least 2/3, as desired.

5.2 Ordered graphs: ER and tolerant tests to piecewise-canonical tests
The next lemma shows that a tolerant test for an ER property P of ordered graphs can be
translated, in an efficient manner, into a piecewise-canonical test for P.

I Lemma 28. Let q : (0, 1)→ N, η : (0, 1)→ (0, 1), and δ : (0, 1)→ (0, 1), and suppose that
P is a δ-earthmover-resilient η-tolerantly testable property of ordered graphs, where for any
ε > 0, the corresponding (ε, η(ε))-tolerant test queries q(ε) vertices. Then for any ε > 0 there
exist q′ and k such that P has a piecewise-canonical ε-test with k parts and q′ query vertices.
Moreover, if q, η, δ are polynomial in ε, then so are q′ and k.

Proof. Let T be a (non-adaptive) (ε/2, η)-tolerant test for P querying the induced subgraph
on q′ = q(ε/2) vertices. Let G :

([n]
2
)
→ Σ denote the unknown input graph. Since T is

non-adaptive, we may view it as a two-step algorithm acting as follows. In the first step, T
chooses a q′-tuple x1 < . . . < xq′ ∈ [n] (which will eventually be the vertices T will query)
according to some distribution pT . The second step receives the tuples (x1, . . . , xq′) and
(G(xixj))i<j∈[q′] and decides (probabilistically) whether to accept or reject based only on
these tuples.

Take k = d2/δ(η(ε/2))e and consider the k-interval partition I1, . . . , Ik of the input graph
G. Our piecewise-canonical test T ′, also making q′ vertex queries, is designed as follows.
First it picks a tuple X of q′ elements x1 < . . . < xq′ ∈ [n] according to the distribution pT .
For each i = 1, . . . , k, let qi = |X ∩ Ii| and let Si = {1 +

∑i−1
j=1 qj , . . . ,

∑i
j=1 qj}. T ′ queries

exactly qi vertices from Ii uniformly at random. Now, T ′ picks a permutation π : [q′]→ [q′]
in the following manner: For each 1 ≤ i ≤ k, π restricted to Si is a uniformly random
permutation on [Si]. Finally, T ′ runs the second step of the original test T , with tuples
(x1, . . . , xq′) and (G(xπ(i)xπ(j)))i<j∈[q′].

Clearly, T ′ makes in total q′ queries in k intervals, where the vertex queries within each
interval are chosen uniformly at random. It only remains to show that T ′ is a valid ε-test.
Observe that applying T ′ on the input graph G is equivalent to the following process, in the
sense that their output distribution (given any fixed G) is identical.
1. “Shuffle” the vertices inside each interval Ii of G in a uniformly random manner, to get a

new ordered graph G′.
2. Run the original test T on G′, and return its answer.
The relative mixingness between G and any such G′ is at most k

(dn/ke
2
)
/
(
n
2
)
< 2/k ≤ δ(η(ε/2))

where the first inequality holds for large enough n. By Lemmas 20 and 21 and the δ-earthmover
resilience of P, we get that |dH(G′,P) − dH(G,P)| ≤ η(ε/2) < ε/2. Thus, if G satisfies
P, then any G′ possibly generated in the first step of the above process is η(ε/2)-close to
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P. Since T is (ε/2, η)-tolerant, the second step of the process accepts with probability at
least 2/3 for any fixed choice of G′. Thus, the process (or equivalently, T ′) accepts G with
probability at least 2/3 in this case. Conversely, if G is ε-far from P then G′ generated in
the first step is ε/2-far from P, and, similarly, the process (or equivalently, T ′) rejects with
probability at least 2/3. J

6 Piecewise-canonical testability to canonical testability

This section is dedicated to the proof that piecewise-canonically testable properties are
canonically testable. While the proofs are presented here for ordered graphs, they can easily
be translated to the case of strings. Therefore, the results in this section, combined with the
previous two sections, complete the proof of Theorems 11 and 2.

I Definition 29. Given {q1, . . . , qk} that sum up to q and t ≥ max1≤j≤k qj , the t-simulated
piecewise distribution over subsets of of [n] of size q is the result of the following process.
Uniform sampling Select a set of tk indices from [n], uniformly at random. Let {i1, . . . , itk}

denote the set with its members sorted in ascending order.
Simulation inside each block For every 1 ≤ j ≤ k, select a subset of {i(j−1)t+1, . . . , ijt} of

size qi, uniformly at random.

I Lemma 30. For every δ, k and q, there exist t(δ, k, q) and N(δ, k, q) polynomial in δ, k, q,
so that if n > N(δ, k, q) then the t-simulated piecewise distribution with respect to q1, . . . , qk is
δ-close (in the variation distance) to an actual piecewise distribution with respect to q1, . . . , qk,
i.e., a process of the following type. Consider a k-interval partition I1, . . . , Ik of the input
graph, and for every 1 ≤ j ≤ k, pick a uniformly random subset of Ij of size qj.

In the proof of Lemma 30 we do not try to optimize the dependence of t and N on δ, k, q,
but just show that it is a reasonable polynomial dependence.

Proof. Fix q1, . . . , qk and write Qi =
∑i
j=1 qj for any 1 ≤ i ≤ k. Also take q = Qk. For any

1 ≤ l1 < . . . < lq ≤ n denote by Prpiece(El1,...,lq) the probability that the indices selected
by a piecewise canonical distribution with parameters q1, . . . , qk are l1, . . . , lq. Similarly, for
q1, . . . , qk as above and a fixed t ≥ max1≤j≤k qj , we denote by Prsim(El1,...,lq ) the probability
that the indices selected by a simulated piecewise canonical distribution with parameters
q1, . . . , qk and t are l1, . . . , lq. It is enough to show, for a suitable choice of t and for n large
enough, that

∑
l1<...<lq

|Prpiece(El1,...,lq )−Prsim(El1,...,lq )| < δ. To prove this, we show that
there exist suitable events A and B satisfying the following conditions.

Prpiece(A) ≤ δ and Prsim(B) ≤ δ.
Prpiece(El1,...,lq |¬A) = Prsim(El1,...,lq |¬B) for any possible choice of l1 < . . . < lq, where
¬A and ¬B are the complementary events of A and B, respectively.

In the rest of the proof we define and analyze the events A and B.

Order statistics. Take t = 600k4q2δ−3 and N = tk. Let 1 ≤ i1 < . . . < iN ≤ n be the
elements of an N -tuple from

([n]
N

)
, picked uniformly at random. It is well known (see, e.g.,

Chapter 3 in [6]) that the expected value of ir – the r-th order statistic of the tuple – is
µr = r(n+ 1)/(N + 1) and satisfies |µr − rn/N | < n/N , and the variance of ir is σ2

r ≤ n2/N .
By Chebyshev’s inequality, for any 1 ≤ r ≤ N it holds that Pr(|ir − µr| > αn) < 1/Nα2.

Pick α = 3
√
k/δN < δ/8k2q. For any 1 ≤ j ≤ k − 1, we take r−j as the largest integer

r for which µr < (Qj/k − α − 1/N)n and r+
j as the smallest integer r′ for which µr′ >
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(Qj/k + α + 1/N)n; note that tQj − r−j < 2αN and µr−
j
> (Qj/k − 2α)n, and on the

other hand, r+
j − tQj < 2αN and µr+

j
< (Qj/k + 2α)n. Intuitively speaking, r−j , r

+
j were

chosen here with the following requirements in mind. With good probability, r−j needs to be
contained in Ij , r+

j needs to be contained in Ij+1, and both r−j and r+
j should be close to

jn/k (which is roughly equal to the last element of Ij and the first element of Ij+1).
Indeed, let C denote the event that(
Qj
k
− 3α

)
n < ir−

j
<
Qj
k
n < ir+

j
<

(
Qj
k

+ 3α
)
n (1)

holds for any 1 ≤ j ≤ k − 1, and observe that
(
Qj
k + 3α

)
n <

(
Qj+1
k − 3α

)
n for any j.

¬C is contained in the event that, for some j, |ir−
j
− µr−

j
| > αn or |ir+

j
− µr+

j
| > αn. The

probability of the latter event is bounded by 2k/Nα2 = 2δ/9 by a union bound. Therefore
C holds with probability at least 1− 2δ/9.

The “bad” events A and B. Suppose that, after picking i1 < . . . < iN uniformly at
random as above, we pick two (not necessarily disjoint) q-tuples w,w′ of vertices from [n]
simultaneously: w is picked according to the piecewise canonical distribution among all
elements of G, whereas w′ is picked according to the t-simulated piecewise distribution,
considering {i1, . . . , iN} as the output of the first step – the uniform sampling step – of the
simulated process. The events A and B are defined as follows. A holds if and only if either C
doesn’t hold or some entry of w is picked from I =

⋃k−1
i=1 Ij , where Ij = {ir−

j
, ir−

j
+1, . . . , ir+

j
}

for any j. B holds if and only if either C doesn’t hold or some entry of w′ is taken from
I ′ =

⋃k−1
j=1 I

′
j , where I ′j = {ir−

j
, ir−

j
+1, . . . , ir+

j
} for any j.

A and B satisfy the requirements. The major observation here is that the distribution of
the piecewise canonical distribution under the assumption that A does not hold is identical to
the distribution of the simulated process under the assumption that B does not hold. That is,
Prpiece(El1,...,lq |¬A) = Prsim(El1,...,lq |¬B) for any possible choice of l1 < . . . < lq, as required
above. To see this, observe that under these assumptions, both distributions pick exactly
qj entries, uniformly at random, from the set {ir+

j
+ 1, . . . , ir−

j+1
− 1} for any 0 ≤ j ≤ k − 1

(where we define r+
0 = 0 and r−k = n + 1). It remains to show that Prpiece(A) ≤ δ and

Prsim(B) ≤ δ.
In the piecewise-canonical distribution, every entry has probability at most q/n to be

picked. Assuming that C holds, we get that |Ij | < 6αn for any j, and so |I| ≤ 6αkn. Therefore,
Prpiece(A|C) ≤ |I|q/n < 6αkq < 3δ/4. Thus, Prpiece(A) ≤ Prpiece(A|C) + Pr(¬C) < δ, as
needed.

In the simulated distribution, the probability that any given element from I ′ is taken
to w′ is at most q/t. Since |I ′j | < 4αN , we get that |I ′| < 4αkN and so Prsim(B) ≤
|I ′|q/t+ Pr(C) < 4αk2q + δ/4 < δ, as desired. J

I Lemma 31. A piecewise-testable property has a canonical test. Moreover, if the number
of parts of the piecewise-canonical ε-test, denoted by k(ε), and its number of vertex queries,
denoted by q(ε), are polynomial in ε, then so is the number of queries of the canonical test.

Proof. Let P be a piecewise-testable property. Following Remark 5, for any ε > 0 there
exists a deterministic piecewise-canonical ε-test T , with confidence 3/4, making exactly q
queries on k parts. To simulate T using a canonical test T ′, we pick δ = 1/12 and take
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t = t(δ, k, q) as provided by Lemma 30 (here we also implicitly assume that n > N(δ, k, q)).
T ′ is taken as the t-simulated piecewise test, that queries the induced subgraph H on kt
vertices picked uniformly at random, and then imitates T : If, for any 1 ≤ i ≤ k, T chooses
qi vertices in part number i, then T ′ chooses q vertices of H using a t-simulated piecewise
distribution, where qi vertices are taken from the i-th simulated block. Then, T ′ makes the
same decision that T would have made on the queried subgraph induced on the chosen q
vertices.

By Lemma 30, the distributions η and η′ over q-tuples of vertices generated by T and
T ′, respectively, are δ-close. Let H be a family of ordered graphs on q vertices such that T
accepts its queried induced subgraph H if and only if H ∈ H. Then, Prη(H ∈ H) ≥ 3/4 if
the input graph G satisfies P , whereas Prη(H ∈ H) < 1/4 if G is ε-far from P . By Lemma 17,
if the input graph G for T ′ satisfies P then the queried induced subgraph H satisfies
Prη′(H ∈ H) ≥ 3/4− δ = 2/3, and if G is ε-far from P, then Prη′(H ∈ H) < 1/4 + δ = 1/3.
Thus, T ′ is a valid test for P. J

Lemmas 28 and 31 together prove the first (and more difficult) direction of Theorem 11.

7 Canonical testability to estimability

This section describes the proof of Theorem 3. The proof takes roughly the same steps as in
the proof of Fischer and Newman [22] for the unordered case. For the proof of [22] to work
in our case, we only need to make a few slight modifications. Therefore, instead of rewriting
the whole proof, we only describe what modifications are made and how they change the
proof.

The proof in [22] builds on a test for partition parameters, established in the seminal
paper of Goldreich, Goldwasser and Ron [24]. The test of [24] also needs to be slightly
modified for our needs. Therefore, the partition test receives the same treatment as the proof
in [22]: We describe the modified statement and how to change the proof accordingly, but do
not get into unnecessary technicalities.

7.1 The unordered proof

First we sketch the proof that canonical testability in unordered graphs implies estimabil-
ity [22].

7.1.1 Signatures of regular partitions and approximating the q-statistic

A (γ, ε)-signature for an equipartition A = {V1, . . . , Vt} is a sequence of densities ηi,j , such
that the density between Vi and Vj differs from ηi,j by at most γ, for all but at most ε

(
t
2
)
of

the pairs i, j. The (labeled) q-statistic of a graph is the distribution of the labeled graphs on
q vertices in it. Given a signature as above, it is natural to define the perceived q-statistic
of the signature as the distribution on labeled q-vertex graphs generated as follows: First
we choose q indices i1, . . . , iq from [t]. Then for every j < j′ we add an edge between vj
and vj′ with probability ηij ,ij′ , independently. The main observation in this part is that the
perceived q-statistic of a signature with good (small) enough parameters of a regular enough
partition of a graph G is close to the actual q-statistic of G. Thus, to estimate the q-statistic
of a graph we just need to obtain a good signature of a regular partition of this graph. For
more details, see Section 4 in [22].



O. Ben-Eliezer and E. Fischer 18:21

7.1.2 Computing signature of a final partition

Implicit in the proof of the celebrated Szemerédi regularity lemma [35] is the concept of
an index of an equipartition, which is a convex function of partitions that never decreases
under taking refinements of a partition. A partition P is robust if, for any refinement Q of
P that is not too large (in terms of the number of parts) with respect to P , the index of
Q is similar to that of P . The main argument in [35] is that robustness implies regularity.
An even stronger condition, that implies robustness, is finality. A partition P is final if for
any partition Q5 whose number of parts is not much larger than that of P , the index of Q is
also not much larger than that of P . It is easy to prove that robust and final partitions with
arbitrarily good parameters exist. The definitions appear in Section 4 of [22], while the rest
of the discussion here appears in Section 5 there.

Knowing the parameters of a good signature of a robust enough partition is useful for
estimation, as we shall see soon. Before doing so, we explain how to find such a signature
using the partition parameters test of [24]. This test is described in a more formal and
detailed fashion in Subsection 7.3, but for our purposes, it acts as a test for the property of
“having a given signature”. We consider a quantized set of signatures, which contains only a
constant number of possible signatures, so that every graph is close to a graph satisfying one
of the signatures (i.e., an η-net for a suitable parameter η).

By applying the test of [24] to each of the signatures sufficiently many times and
accepting or rejecting each of the signatures according to majority vote, we determine with
good probability which signatures our input graph G is close to having. More precisely, all
signatures that are very close to some actual signature S of G are accepted, and all of those
that are very far from any actual signature S are rejected. Thus, this process only accepts
signatures that are at the very least “quite close” to some actual one.

Finally, an index measure can also be defined for signatures, and the index of a good
signature is close to that of the corresponding partition. Under the assumption that all
signatures that we captured are quite close to an actual one, in particular we will find a good
approximation of a final partition, and will recognize that it is final by not finding signatures
of partitions that are only somewhat bigger and have a much bigger index (meaning that
such partitions do not exist).

7.1.3 Knowing signature of a robust partition implies estimation

Note that for δ > 0 and a family H of q-vertex graphs, having only a good signature S of a
robust enough partition allows us to distinguish for any ε > 0, deterministically, between the
case that G is (ε− δ)-close to a graph G′ that contains a large number of copies of labeled
graphs from H, and the case that all graphs that are ε-close to G contain only a small number
of H-copies. Combining this statement with the one from the previous subsection, stating
that computing the signature of some robust (and in particular, final) partition is possible
with good probability in constant time, it is straightforward to conclude that any testable
graph property is estimable. As the proof of this statement is rather technical and the main
arguments do not change when moving to the ordered case, we do not go into the details of
the proof here. Section 6 in [22] is dedicated to this proof.

5 Here Q is not necessarily a refinement of P
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7.2 Adapting to the ordered setting
Suppose that a property P has a canonical test making q queries. Using the proof for the
undirected case as is will not work here. The reason is that, theoretically, a pair of vertex
sets can be regular as an unordered pair, but interleaved in a way that makes it useless when
we are interested in understanding the ordered q-statistic of a graph. Another issue that
needs to be considered is the fact that we work here with edge-colored graphs, instead of
standard ones. However, the latter is not a real issue: As observed in previous works [2, 7, 8],
regularity-based arguments tend to generalize in a straightforward manner to the multicolored
setting.

To accommodate for the first issue, we need a “regularity scheme” that is slightly different
from the unordered instance. At the base of the scheme lies a k-interval equipartition I for a
suitable k, which is known in advance. The regular, robust or final partitions that we need
along the proof (analogously to the unordered case) are always refinements of the interval
equipartition I, where we do not care about the relation between two parts that lie inside the
same interval. Here, for partitions P and Q, we say that Q is a refinement of P if any part
of Q is completely contained in a part of P . A formal presentation of the scheme is given
in the next few definitions and lemmas. The first definition presents the (q, k)-statistic of a
graph, which in some sense is the k-partite version of the q-statistic, as defined in Section 4.

I Definition 32. Let G,H be Σ-edge-colored ordered graphs on n ≥ q vertices respectively,
and let I = Ik(G) = (I1, . . . , Ik) be the k-interval equipartition of G for k ≥ q. A q-vertex
induced subgraph of G is k-separated if, for every 1 ≤ i ≤ k, no two vertices of the subgraph
lie in Ii. The total number of k-separated subgraphs on q vertices in a graph on n vertices is
denoted by N(k, q, n). The number of k-separated H-copies in G is denoted by hk(H,G).
The k-density of H in G is tk(H,G) = hk(H,G)/N(k, q, n). Finally, the (q, k)-statistic of G
is the vector (tk(H,G))H∈Hq , where Hq is the family of all Σ-edge-colored ordered graphs
with q vertices.

I Observation 33. The variation distance between the q-statistic and the (q, k)-statistic of
a graph is at most q2/2k.

Proof. For a uniformly chosen pair (u, v) of disjoint vertices in a graph G, the probability
that v lies in the same interval as u is at most n/k

n−1 . By a union bound, the probability that
a uniformly random q-tuple Q of disjoint vertices contains two vertices in the same interval
is at most

n

k(n− 1)

(
q

2

)
≤ q

k(q − 1)

(
q

2

)
= q2

2k .

Conditioning on the above not happening, the induced subgraph G[Q] is distributed according
to the (q, k)-statistic. The statement of the lemma thus follows from Lemma 17. J

The next definition presents the k-partite notion analogous to canonical testability.

I Definition 34. A property P of Σ-edge-colored ordered graphs is (ε, q, k)-canonical if
there exists a set A of q-vertex Σ-edge-colored ordered graphs satisfying the following two
conditions.

If an ordered graph G satisfies P, then
∑
H∈A tk(H,G) ≥ 2/3. In this case we say that

G is A-positive.
If G is ε-far from satisfying P, then

∑
H∈A tk(H,G) ≤ 1/3. Here G is A−negative.
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Note that there may be graphs that are neither positive not negative with respect to A in
the above definition. As it turns out, canonical ε-testability implies (ε, q, k)-canonicality for
a suitable q and any k = Ω(q2). In fact, the converse is also true, but is not needed for our
proof.

I Lemma 35. If a property P of edge-colored ordered graphs is canonically testable, then
there exists a function q : (0, 1) → N so that P is (ε, q(ε), k)-canonical for any ε > 0 and
k ≥ 4q(ε)2.

Proof. By Remark 5, if P is canonically testable then for any ε > 0 it has a canonical
ε-test with confidence 11/12, making q = q(ε) queries. This means that there is a family
A of q-vertex graphs, such that

∑
H∈A t(H,G) ≥ 11/12 for graphs G satisfying P and∑

H∈A t(H,G) ≤ 1/12 for graphs that are ε-far from P . By Observation 33,
∑
H∈A |t(H,G)−

tk(H,G)| ≤ 2 q
2

2k ≤ 1/4, and the statement follows. J

The definition of a regular partition needed for our case is given below. Here, the partition
must refine the base interval equipartition, and we do not care how parts inside the same
interval interact between themselves. For a single pair of parts lying in different intervals, the
notion of regularity that we use is the standard multicolored notion, defined in Subsection 2.5.

I Definition 36 (k-refinement, (γ, k)-regular partition, (γ, ε, k)-signature). Let G be an Σ-
edge-colored ordered graph, and let I = (I1, . . . , Ik) be the k-interval equipartition of G. An
equipartition P = (V11, . . . , V1r, . . . , Vk1, . . . , Vkr) is a k-refinement if Vij ⊆ Ii for any i, j. P
is (γ, k)-regular if it is a k-refinement and all but a γ-fraction of the pairs (Vij , Vi′j′) with
i < i′ are γ-regular.

A (γ, ε, k)-signature of P is a sequence S = (ηi
′j′

ij (σ)) for i < i′ ∈ [k], j, j′ ∈ [r],
σ ∈ Σ, such that for all but at an ε-fraction of the pairs (Vij , Vi′j′) with i < i′, we have
|dσ(Vij , Vi′j′) − ηi

′j′

ij (σ)| ≤ γ for any σ ∈ Σ. A (γ, γ, k)-signature is also referred to as a
(γ, k)-signature.

In the above definition, dσ(U, V ) is the density of the color σ among edges between U and V .
The perceived (q, k)-statistic is the natural translation of the notion of the perceived q-statistic
from Definition 7 in [22] to our k-partite setting: It captures the “expected” fractions of each
of the graphs on q vertices among the k-separated q-vertex subgraphs of G. (f, γ, k)-Robust
and (f, γ, k)-final partitions (see Section 4 in [22] for the original unordered definitions) are
also defined with respect to the k-partite structure, where we do not care about the relation
between pairs of parts from the same interval. To accommodate the fact that we consider
multicolored graphs, the index of a pair U, V is

∑
σ∈Σ dσ(U, V )2 (compared to d(U, V )2 in

the case of standard graphs). The index of an equipartition refining an interval partition
is the sum of indices of all pairs not coming from the same interval, divided by the total
number of such pairs.

After providing the definitions required for our ordered setting, the main statements of
the proof, analogous to Lemmas 3.8, 4.4 and 4.5 in [22], are the following.

I Lemma 37 (Ordered analogue of Lemma 3.8 in [22]). For every q and ε there exist γ and k,
so that for every (γ, k)-regular partition P of G into t ≥ k sets, where G has n ≥ N(q, ε, t)
vertices, and for every (γ, k)-signature S of P , the variation distance between the actual
(q, k)-statistic and the perceived (q, k)-statistic with respect to S is at most ε.

I Lemma 38 (Ordered analogue of Lemma 4.4 in [22]). For every k, γ, and f : N→ N there
exist q, T , and an algorithm that makes up to q (piecewise-canonical) queries to any large
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enough graph G, computing with probability at least 2/3 a (γ, k)-signature of an (f, γ, k)-final
partition of G into at most T sets.

Note that the second lemma requires piecewise-canonical vertex queries, making our algorithm
a piecewise-canonical one. But Lemma 31 implies that this algorithm can be converted into
a canonical one, since an algorithm that distinguishes between δ-closeness to a property P
and ε-farness from P, for any ε > δ, is actually an (ε− δ)-test for being δ-close to P.

I Lemma 39 (Ordered analogue of Lemma 4.5 in [22]). For every q and δ there exist γ, k,
and f : N→ N with the following property. For every family H of edge-colored ordered graphs
with q vertices there exists a deterministic algorithm that receives as an input only a (γ, k)-
signature S of an (f, γ, k)-robust partition with t ≥ k sets of a graph G with n ≥ N(q, δ, t)
vertices, and distinguishes given any ε between the case that G is (ε − δ) close to some
H-positive graph, and the case that G is ε-far from every graph that is not H-negative.

Once all definitions for our setting have been given, Lemma 35 brings us to a “starting
point” from which the flow of the proof is essentially the same as in the unordered case,
other then two issues mentioned and handled below. To avoid repeating the same ideas as in
the unordered case, we will not provide the full technical details of the proofs of the three
main lemmas. Deriving the proof of Theorem 3 from Lemmas 38 and 39 is similar to the
unordered case.

One place where the move to a multicolored version requires more care is in proving
the multicolored analogue of Lemma 6.2 in [22]. In the original proof, edges are being
added/removed with a suitable probability, where the decision whether to modify an edge is
independent of the other edges. In the multicolored version, the analogue of adding/removing
edges is recoloring them. One way to do this is the following: for every color c where edges
need to be added, we consider every relevant edge that has a “too dense” color c′ and, with
a suitable probability (that depends on the densities of the colors c, c′ and the relevant
signature), we recolor this edge from c′ to c. By doing this iteratively for all colors that are
in deficit, the multicolored analogue of Lemma 6.2 in [22] follows.

Another issue is that for our ordered setting, we need a “partition parameters” test that
is slightly different than the one proved in [24] and used in [22]. We describe the modified
partition parameters problem in Subsection 7.3.

7.3 The partition parameters test
Let Φ = {ρLBj , ρUBj }kj=1 ∪ {%LBj,j′ , %UBj,j′ }j<j′∈([k]

2 ) be a set of nonnegative parameters so that
ρLBj ≤ ρUBj and %LBj,j′ ≤ %UBj,j′ . An n-vertex graph G = (V,E) satisfies an (unordered)
Φ-instance if there is a partition V = V1 ∪ . . . ∪ Vk ∪ V ′ such that

0 ≤ |V ′| < k and |V | − |V ′| is divisible by k.
For any 1 ≤ j ≤ k, ρLBj bn/kc ≤ |Vj | ≤ ρUBj bn/kc.
For any j < j′ ∈

([k]
2
)
, %LBj,j′bn/kc2 ≤ |E[Vi, Vj ]| ≤ %UBj,j′ bn/kc2.

In [24], it was shown that the property of having an unordered Φ-instance is testable.
For our purposes, the base graph that we need to consider is an edge-colored r-partite

graph, where the parts are of equal size (instead of a complete base graph, as in the unordered
case). Formally, the partition parameters problem that we need to test is the following.

I Definition 40 (Ordered Φ-instance). An ordered Φ-instance whose parameters are the
positive integers r and k and the finite color set Σ consists of the following ingredients:
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For every i < i′ ∈ [r] and j, j′ ∈ [k] and every σ ∈ Σ, there are parameters `i,i
′

j,j′(σ) ≤
hi,i

′

j,j′(σ).
For fixed i, i′, j, j′, it holds that

∑
σ∈Σ `

i,i′

j,j′(σ) ≤ 1 ≤
∑
σ∈Σ h

i,i′

j,j′(σ).
Let G be an n-vertex Σ-edge-colored ordered graph, and denote its r-interval equipar-
tition by I = (I1, . . . , Ir). G is said to satisfy Φ if there exist disjoint sets of vertices
V11, . . . , V1k, . . . , Vr1, . . . , Vrk such that for any i and j, Vij ⊆ Ii and |Vij | = bn/rkc, and
`i,i
′

j,j′(σ) ≤ dσ(Vij) ≤ hi,i
′

j,j′(σ) for any i < i′ ∈ [r], j, j′ ∈ [k] and σ ∈ Σ.

Recall that dσ(A,B) is the density function of the color σ between the sets A and B. Note
that while in the original unordered Φ-instance, one could also specify lower and upper
bounds on the number of vertices in each part, in our case it is not needed; for us it suffices
to consider the special case where the size of each part is a 1/rk-fraction of the total number
of vertices.

I Lemma 41. The edge-colored ordered graph property of satisfying an ordered Φ-instance
is testable.

The proof is very similar to that of the unordered case in [24]. We first explain the main
ideas of the proof in [24], and then describe what modifications are needed for our case.

A sketch of the proof of Goldreich, Goldwasser and Ron [24]

The following observation is a key to the proof: Given a partition P = (P1, . . . , Pk) of
the set of vertices V and a set X which is small relatively to V , define the neighborhood
profile of a vertex v ∈ X with respect to P,X as the (ordered) set of k densities of the
edges from v to each of the parts Pj \ X. The observation is that if all vertices of X
have approximately the same neighborhood profile, and if we redistribute the vertices
of X among the sets P1, . . . , Pk so that each set receives roughly the same amount of
vertices it lost to X, then the amount of edges between every pair of sets Pi, Pj is roughly
maintained.
Generally we will deal with sets X containing vertices with different neighborhood profiles,
and will need a way to cluster them according to their profiles, and then be able to
use the above observation. For this, one needs an oracle that, given a vertex v, will
determine efficiently and with good probability a good approximation of the neighborhood
profile of v. Another related oracle that we need is one that efficiently approximates, for
P1, . . . , Pk and X, the “Pj-fraction” with respect to X, which determines what fraction
of the vertices in X with a given neighborhood profile belong to each Pj ∩X.
Using the oracles, it is shown that if a given graph satisfies a Φ-instance, then the
following process generates, with good probability, an explicit partition P s1 , . . . , P sk that
approximately satisfies Φ. Assume for now that we start with a partition P 0

1 , . . . , P
0
k that

satisfies the Φ-instance exactly. We partition all vertices of the graph into a large enough
constant number of sets X1, . . . , Xs of equal size. Now we do the following for i = 1, . . . , s:
We take the elements of Xi, apply the oracles on them, accordingly approximate how
many elements from Xi with a certain neighborhood profile came from each P i−1

j , and
then “shuffle”: Return the same amount of elements from Xi with this profile to P i−1

j ,
to create the part P ij (the returned elements are chosen arbitrarily among those with
the relevant profile, and in particular, are not necessarily the ones that were taken from
P i−1
j ).

There are two problems with the above statement. First, we do not know in advance
the partition that satisfies the desired Φ-instance, and thus along the way the partition
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P1, . . . , Pk is not known to us. Second, we still do not know how to simulate the oracles.
The solution to both of these problems is a brute force one: For each Xi we pick a large
enough constant size set Ui ⊆ V \Xi, and then enumerate on all possible partitions of
Ui into Ui ∩ P i−1

1 , . . . , Ui ∩ P i−1
k and all (rounded) possible values of the P i−1

j -fraction
for each j = 1, . . . , k and all i. As it turns out, if there is a partition of G satisfying the
Φ-instance, then our brute force search will find a good approximation of t with good
probability.
To turn the partitioning algorithm into a test, the observation is that one does not need
to apply the first oracle on every vertex in each Xi to determine its neighborhood profile.
Instead, we only apply it for a constant-size Si ⊆ Xi chosen at random. As it turns out,
this process is almost as accurate as the partitioning process, and in particular, it is
shown that if G has a Φ-instance then the process will accept, with good probability, a
set of parameters of a Φ′-instance which is close to the Φ-instance. On the other hand, if
G is far from having such a Φ-instance, then the process will reject, with good probability,
all sets of parameters that are close to the Φ-instance. This concludes the proof of [24].

Adapting the proof to our case

The first and minor issue that we have to deal with is the fact that our graphs are
edge-colored, and not standard graphs as in [24]. To handle this, instead of considering
the neighborhood profile of a vertex, we are interested in the colored neighborhood profile
of a vertex v, which keeps, for any relevant part P ij and any color σ, the fraction of
vertices u ∈ P ij for which vu is colored σ. The rest of the proof translates naturally,
implying that with this modification, the proof of [24] also applies to edge-colored graphs.
The second issue is that our desired partition that satisfies the Φ-instance has to be
a refinement of the interval partition I1, . . . , Ir of the input graph, as opposed to the
situation in [24]. This issue is also not hard to handle. A “shuffle” operation in the
unordered case was the process of removing elements from P i−1

j into Xi, and then
returning other elements from Xi to create P ij . In our case we will have to make shuffles
of elements separately within each Ii, since it is not allowed to move elements between
different Ii’s. The rest of the analysis is essentially the same as in the proof of [24].
For the analysis of the last bullet to hold, we need the ability to pick a vertex uniformly
at random from a given predetermined part Vi. This means that our algorithm is a
piecewise canonical one, but not necessarily canonical. However, the transformation from
a piecewise canonical test to a canonical one, that was proved in Section 6, implies the
canonical testability of our version of the partition problem.

8 Canonical testability versus regular reducibility

As in the previous section, first we describe how the equivalence between testability and
regular reducibility is proved in the unordered case [4], and then detail the small changes
required to prove the edge-colored ordered case, namely Theorem 4.

8.1 The unordered case
8.1.1 Enhancing regularity efficiently
In Section 3 of [4], it is shown that if a pair of vertex sets A,B has density close to η and its
regularity measure is very close to γ, then by making a small number of edge modifications
(insertions/deletions), one can turn the pair A,B into a “perfect” one, that has density
exactly η and is γ-regular. The proof has two main steps: In the first step, we take a “convex
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combination” of G[A,B] with a random bipartite graph with density η. This process does
not change significantly the density between A and B, but since a random graph is highly
regular, the combination is slightly more regular then the original G[A,B], and this is all
we need. In the second step, we fix the density between A and B to be exactly η. This
might very slightly hurt the regularity, but if in the first step we make G[A,B] a bit more
regular, i.e., γ′-regular for a suitable γ′ < γ, then it will remain γ-regular even after the loss
of regularity in the second step.

8.1.2 Canonical testability implies regular reducibility
The easier direction of the proof is to show that any canonically testable property is also
regular reducible, as is shown in Section 4 of [4]. Recall that, as discussed in Subsection 7.1.1,
a regular enough partition of a graph G provides a good approximation of the q-statistic of G.
We consider a canonical test T with a small enough proximity parameter, making q vertex
queries. Basically, our set of “accepting” regular instances (see Definition 2.6 in [4]) will be
created as follows: Initially, we take an ε-net of possible parameters of regular partitions:
This is a constant size quantized collection of the possible parameters of regular partitions,
that “represents” all possible choices of parameters (in the sense that any possible choice
of parameters has a representative in the constant size collection that is very close to it).
Among the representatives from the ε-net, we choose as accepting only those choices of
parameters that predict acceptance of the above canonical test with probability at least 1/2.
Now, if a graph G satisfies our property P, then it is accepted with probability 2/3 by the
canonical test, and thus a regular enough partition of G will be similar to some accepting
regularity instance, making G very close to satisfying this instance. Conversely, if G is ε-far
from P , then it must also be far from any graph G′ satisfying the accepting instance – since,
by our choice of the accepting regular instances as those that indicate acceptance of the
canonical test, any such G′ is accepted by the canonical test with probability that is larger
than 1/3, meaning that G′ cannot be far from satisfying P (and thus G cannot be too close
to G′, otherwise it would be ε-close to P, a contradiction)

8.1.3 Sampling preserves regular partitions
In Section 5 of [4] it is shown that if we sample a constant size set S of vertices in a graph G,
then with good probability the induced subgraph G[S] will have γ-regular partitions with the
same structure and approximately the same parameters (up to small differences) as those of
G. The proof builds on a weaker argument of the same type, proved in [19], which states that
for a regular enough partition P of G, and a large enough sample S, with good probability
S has a partition with roughly the same densities as these of P , and with regularity that is
slightly worse than that of P .

8.1.4 Regular reducibility implies testability
Due to the fact that canonical testability implies estimability, as we have seen in Section 7,
it is enough to show that satisfying a specific regularity instance is testable. To do so, we
take a large enough sample S of vertices and determine all possible parameters of regular
partitions of S. By Subsection 8.1.3, these are essentially also all possible parameters of
regular partitions of G, up to a small error. By Subsection 8.1.1, this small error is not a
problem, implying that we are able to determine (with good probability) whether G satisfies
the regularity instance by checking if it is close to one of the regular partitions suggested
by S.
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8.2 Adapting the proof to the ordered case
First, we need to translate the results from Section 3 in [4] to the multicolored setting. The
main lemma that we need here is the following.

I Lemma 42 (Ordered analogue of Lemma 3.1 in [4]). There exists a function f : N×(0, 1)→ N
such that for any 0 < δ ≤ γ ≤ 1 and finite alphabet Σ the following holds: Suppose that
(A,B) is a (γ + δ)-regular pair of sets of vertices with density between η − δ and η + δ in a
Σ-edge-colored graph, where |A| = |B| = m ≥ m0(η, δ, |Σ|). Then, it is possible to make at
most δf(|Σ|, γ)m2 edge color modifications in G, turning (A,B) into a γ-regular pair with
density precisely η.

The proof of Lemma 42 is largely similar to that of Lemma 3.1 in [4]. The only places that
require special attention in the translation of the proof are those with “coin flip” arguments,
such as the one in the proof of Lemma 3.3 in [4]. Adapting this type of arguments to the
multicolored case is done as described in Subsection 7.2. In the proof of Lemma 3.3, for
example, the second coin flip needs to have |Σ| possible outcomes instead of two (where the
probability to get a σ should correspond to the desired density ησ).

The corollary of Lemma 42 that is used in our proof is the following. Note that the
notation in the following statement is largely borrowed from Definition 14.

I Lemma 43 (Ordered analogue of Corollary 3.8 from [4]). There exists a function τ : N×
(0, 1) → (0, 1) for which the following holds. Let R be an ordered regularity instance
as in Definition 14, with the parameter k in R being large enough (as a function of
the other parameters). Suppose that for some ε > 0, a Σ-edge-colored ordered graph G

has an equipartition (V11, . . . , V1k, . . . , Vr1, . . . , Vrk) which is an r-refinement, and satisfies
|dσ(Vij , Vi′j′ , σ) − ηi

′j′

ij (σ)| ≤ ετ(|Σ|, γ) for all i < i′ ∈ [r], j, j′ ∈ [k], and σ ∈ Σ, and
whenever (i, j, i′, j′) /∈ R̄, the pair Vij , Vi′j′ is (γ + ετ(|Σ|, γ))-regular. Then G is ε-close to
satisfying R.

Canonical testability to ordered regular reducibility
The next step is to show that any canonically testable ordered graph property is (ordered) reg-
ular reducible. Recall that, by Section 7, canonical testability implies (ε, q(ε), k)-canonicality
for k large enough (with respect to q(ε)), so it is enough to show the following.

I Lemma 44 (Ordered analogue of Lemma 4.1 in [4]). If a property P is (ε, q(ε), k)-canonical
for any ε and any k large enough with respect to q(ε), then it is ordered regular reducible.

For the results of Section 4 in [4], we define the ordered multicolored analogues of Definitions
4.3 and 4.7 in [4] as follows. Note the following “notational glitch”: σ in our definition
refers to an edge color, whereas in Definition 4.3 of [4] it plays a totally different role, as a
permutation.

IDefinition 45. LetH = (U,EH) be a Σ-edge-colored ordered graph on h vertices u1 < . . . <

uh, and let W = (U,Ew) be an (edge) weighted Σ-edge-colored ordered graph on h-vertices,
where the weight of edge (ui, uj) is ηij . Define IC(H,W ) =

∏
σ∈Σ

∏
uiuj∈E−1

H
(σ) ηij .

Let R be an ordered regularity instance (recall Definition 14). Define IC(H,R) =∑
W∈W IC(H,W ), where W ranges over all q-vertex weighted Σ-edge-colored weighted

graph of the following type. Pick q pairs (i1, j1), . . . , (iq, jk) with i1 < . . . < iq ∈ [r] and
j1, . . . , jq ∈ [k], and take W to be the graph in which the weight of color σ between vertices
ua < ub is ηib,jbia,ja

(σ).
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With these definitions, it is straightforward to translate the results of Section 4 in [4] to our
setting. Note that an analogue for Definition 4.5 in that section is not needed in our case,
since there are no non-trivial automorphisms in an ordered graph. In the proof of Lemma
4.1 in [4], let A be the family of edge-colored ordered graphs on q = q(ε) vertices, promised
to us through Definition 34 by the fact that our given property P is (ε, q, k)-canonical, for k
that is sufficiently large. As in the unordered case, we take a (constant size) set I of ordered
regular instances, such that any possible regular instance has parameters that are very close
to one of the instance in I. Our chosen R in Definition 15 will be as in the unordered case:
R = {R ∈ I :

∑
H∈A IC(R,H) ≥ 1/2}. The rest of the proof goes as in the unordered case.

Ordered regular reducibility to (piecewise) canonical testability

It follows from the definition of regular reducibility, similarly to the unordered case, that it
is enough to show that the property P of satisfying a given regularity instance is canonically
testable (the easy proof of the analogous unordered statement appears in Section 6 of [4],
and translates directly to our case). In fact, by Lemma 31, it is enough to show that P
is piecewise canonically testable. Indeed, the core of the proof of this statement in the
unordered case is in the fact that for γ, a large enough (as a function of γ) sample of a graph
has, with good probability, essentially the same γ-regular equipartitions as the containing
graph, up to a small error.

The definition of similar regular partitions in the ordered case (analogous to Definition
5.1 from [4]) is the same as in the unordered case, but it refers to (γ, k)-regular partitions,
instead of the unordered γ-regular ones. The analogue of Lemma 5.2 in the ordered case is
exactly the same, except that we require the sample Q to have exactly q vertices in each
interval of the k-interval equipartition (note that this is doable using piecewise-canonical
algorithms). The proofs from this section (including the proof of the weaker result from [19]),
as well as the proof of Theorem 1 from Section 6, translate readily to the ordered case.

9 Discussion and open problems

The earthmover resilient properties showcase, among other phenomena, an interesting
connection between visual properties of images and the regularity-based machinery that
was previously used to investigate unordered graphs. We believe that further research on
the characterization problem for ordered structures would be interesting. It might also be
interesting to investigate such problems using distance functions that are not Hamming
distance, as was done, e.g., in [12]. Finally we present two open questions.

9.1 Characterization of testable earthmover-resilient properties

In this work we provide a characterization of earthmover resilient tolerantly testable properties.
Although using such tests might make more sense than using intolerant tests in the presence of
noise in the input (a situation that is common in areas like image processing, that are related
to image property testing), it would also be very interesting to provide a characterization of
the testable earthmover resilient properties. In particular, does there exist an earthmover
resilient property that is testable but not tolerantly testable? The only known example
of a (non earthmover resilient) property that is testable but not tolerantly testable is the
PCPP-based property of [20], and it will certainly be interesting to find more examples of
properties that have this type of behavior.
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9.2 Alternative classes of properties
The class of earthmover resilient properties captures properties that are global in nature,
and it will be interesting to identify and analyze some other wide classes of properties. A
natural candidate is the class of all local properties [9]. We also believe that it might be
possible to find other interesting classes of visual properties.
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The following lemma suggests that it is enough to prove a similar statement for an image
J of our choice that is close enough (in Hamming distance) to I.

I Lemma 46. Fix α, β > 0 and let I,J : [n] × [n] → Σ. Suppose that dH(J ,J ′) ≤ α for
any J ′ : [n]× [n]→ Σ that satisfies de(J ,J ′) ≤ β. Then dH(I, I ′) ≤ α+ 2dH(I,J ) for any
I ′ : [n]× [n]→ Σ satisfying de(I, I ′) ≤ β.

Proof. Write γ = dH(I,J ). Consider any I ′ satisfying de(I, I ′) ≤ β and let σ be a minimal
unordered isomorphism of n × n images6 that maps I to I ′. By the minimality of σ, the
image J ′ = σ(J ) satisfies de(J ,J ′) ≤ β and so dH(J ,J ′) ≤ α. On the other hand, we
know that dH(I ′,J ′) = dH(σ(I), σ(J )) = dH(I,J ) = γ where the least equality follows
from the fact that Hamming distance between two images is preserved when applying the
same unordered isomorphism on both of them. The triangle inequality for the Hamming
distance implies that

dH(I, I ′) ≤ dH(I,J ) + dH(J ,J ′) + dH(J ′, I ′) ≤ β + 2γ

as desired. J

Indeed, Lemma 46 implies that in order to prove Theorem 10, it is enough to show that there
exists some n× n black-white image J with dH(I,J ) = O(c

√
δn2), such that for any image

J ′ that is the result of making at most δn2 basic moves on J , we have dH(J ,J ′) = O(c
√
δn2).

In order to explain which J to take (as a function of I), and proceed with the rest of the
proof, we need several topological definitions. A pixel P = (i, j) in I is represented by
its location (i, j), and its color (black/white) is denoted I[P ]. The distance between two
pixels (i, j), (i′, j′) ∈ [n]× [n] is defined as |(i, j)− (i′, j′)| = |i− i′|+ |j − j′|; these pixels are
neighbors if the distance between them is 1. A shape S in I is a connected component (with
respect to the neighborhood relation) of pixels with the same color. We call P 0 = (1, 1) the
outer pixel of an image, and the shape S0 that contains it is called the outer shape. Note that,
by our assumption, the outer shape of S contains all pixels in ({1, n} × [n]) ∪ ([n]× {1, n}).

A path between pixels P and P ′ is a tuple of (not necessarily disjoint) pixels P1 =
P, P2, . . . , Pt = P ′ in I, such that Ps and Ps+1 are neighbors for any 1 ≤ s ≤ t − 1. The
outer boundary B(S) of a shape S 6= S0 is the set of all pixels P in S satisfying the following:
there exists a path from P 0 = (1, 1) to P that does not intersect S \ {P}. Finally, a pixel P
is encircled by a shape S if any path from (1, 1) to P intersects S (this includes all pixels
P ∈ S). If all pixels P encircled by S satisfy P ∈ S, we say that S is full.

Our first lemma states that if two neighboring pixels have different colors, than one of
them lies in the outer boundary of its shape.

I Lemma 47. Let P1, P2 be two neighboring pixels, where P1 is black and lies in shape S1
and P2 is white and lies in S2. Then either P1 ∈ B(S1) or P2 ∈ B(S2) (or both).

Proof. If there exists a path from (1, 1) to a pixel P ′1 in S1, that does not intersect S2, then
P2 ∈ B(S2). To see this, recall that S1 is connected (by definition of a shape) and thus there
exists a path from P ′1 to P1 that remains inside S1. Concatenating the above two paths and
adding P2 at the end implies that P2 ∈ B(S2).

Otherwise, all paths from (1, 1) to any pixel in S1 intersect S2. In particular, this implies
that there exists a path from (1, 1) to some P ′2 ∈ S2 that does not intersect S1. Symmetrically
to the previous paragraph, we get that P1 ∈ B(S1). J

6 The formal definition is given for ordered graphs in Definition 18, but can translated naturally to images
using our standard representation of an image as an ordered graph.
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define B(I) as the union of all outer boundaries B(S) where S ranges over all shapes in I
other than S0. The next lemma follows immediately from Lemma 47 and the fact that I is
c-sparse.

I Lemma 48. |B(I)| ≤ 4cn, where S ranges over all shapes in I other than S0.

The next lemma implies that shapes with a small boundary cannot encircle a large number
of pixels. This will play a crucial role in the design of J .

I Lemma 49. The total number of pixels encircled by a shape S 6= S0 is at most |B(S)|2.

Proof. We may assume that S is full. Let r(S) denote the number of pairs of neighboring
pixels (P, P ′) where P ∈ S and P ′ /∈ S. Then r(S) ≤ 4|B(S)|. Among all possible full shapes
S with a given value of r(S), an (axis-aligned) rectangle contains the biggest number of
pixels. This follows by iterating the following simple type of arguments as long as possible:
If (i, j) and (i+ 1, j + 1) are pixels of S while (i, j + 1) /∈ S, then adding (i, j + 1) to S yields
a shape S′ with more pixels than in S, that satisfies r(S′) ≤ r(S).

Now note that the number of pixels in a rectangle S is bounded by r(S)2/16 ≤ |B(S)|2.
The bound is achieved if S is a square with side length r(S)/4. J

We pick J using the following iterative process. Start with J = I, and as long as
possible do the following: Take a shape S 6= S0 in J with |B(S)| ≤

√
δn, and recolor all

pixels encircled by S by the opposite color to that of S; repeat. Each such iteration deletes
all pixels of B(S) from B(J ) (and does not add any new pixels to B(J )), modifying at
most |B(S)|2 pixels in J , so by Lemmas 48 and 49, in the end of the process we have
dH(I,J ) = (4cn/

√
δn) ·O(δn2) = O(c

√
δn2) as desired.

Consider any composition σ of at most δn2 basic moves on J . The new location of any
pixel P after the basic moves is denoted by σ(P ). To conclude the proof, we need to show
that the number of pixels P for which J [P ] 6= J [σ(P )] is O(c

√
δn2).

Define the boundary distance of a pixel P in J as the minimal distance of P to a pixel
from B(J ). Our next lemma states that σ can only change the color of a small number of
pixels with large boundary distance.

I Lemma 50. No more than O(
√
δn2) pixels P in J have boundary distance at least

√
δn

and satisfy J [P ] 6= J [σ(P )].

Proof. By Lemma 47, a pixel P with boundary distance d that satisfies J [P ] 6= J [σ(P )]
must either be contained in a row that was moved at least d/2 times or a column that was
moved at least d/2 times by the basic moves of σ; here we pick d =

√
δn. With δn2 basic

moves, at most O(
√
δn) rows and columns can be moved

√
δn/2 or more steps away from

their original location. The total number of pixels in these rows and columns is O(
√
δn2), as

desired. J

It remains to show that no more than O(c
√
δn2) pixels in J have boundary distance less

than
√
δn. The following lemma serves as a first step towards this goal.

I Lemma 51. Let S 6= S0 be a shape in J . Then there exists a path Γ(S) (possibly with
repetitions of pixels) of length O(|B(S)|), that covers all pixels of B(S).

Proof. Consider an n× n grid in R2 where the pixel (i, j) is represented by the unit square
whose four endpoints are {i−1, i}×{j−1, j}. Since any shape S is connected (by definition)
under the neighborhood relation, in this representation S is the interior of a closed curve
consisting of at most 4|B(S)| axis-parallel length-1 segments. Following the segments of this
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curve in a clockwise fashion and recording all pixels in S that we see on our right (including
pixels that we only visit their corner) constructs a path (possibly with repetitions) that
contains only the pixels of B(S) and some of their neighbors; recall that each pixel in J has
at most four neighbors. Moreover, each pixel appears at most O(1) times in this path, and
so the total length of the path is O(|B(S)|). J

Finally, the next lemma allows us to conclude the proof.

I Lemma 52. Let S 6= S0. The number of pixels in J of distance at most d to B(S) is
O(d|B(S)|+ d2).

Proof. Take the path Γ(S) obtained in Lemma 51. For each pixel P ∈ Γ(S) let Bd(P ) =
{P ′ ∈ [n]× [n] : |P ′−P | ≤ d} denote the d-ball around P in I. Note that the set of all pixels
of distance at most d to B(S) is contained in ∪P∈Γ(S)Bd(P ). Trivially, Bd(P ) contains at
most d2 pixels for any P . Moreover, if P1 and P2 are neighbors, then |Bd(P1) \Bd(P2)| ≤ d.
The statement now follows since Γ(S), a path, is connected under the neighborhood relation,
and is of length O(|B(S)|). J

Recall that |B(J )| ≤ |B(I)| ≤ 4cn by Lemma 48. Since all shapes S 6= S0 in J satisfy
|B(S)| >

√
δn, the number of such shapes must be at most 4c/

√
δ. Lemma 52 implies

that the total number of pixels of boundary distance at most d =
√
δn in J is at most

O(dcn+d2c/
√
δ) = O(c

√
δn2). Along with Lemma 50, this completes the proof of Theorem 10.
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