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Abstract
We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits
implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit
complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show
the strongest lower bounds we could desire.

This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a
heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on
general devices. One can view our work as positive news (it suffices to prove weak lower bounds
to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove
strong ones). We leave it to the reader to determine their own level of optimism.
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1 Introduction

Arithmetic circuits are a natural computational model for computing polynomials, which has
been extensively studied in complexity theory. Most of the research is focused on proving
lower bounds. Namely, showing that certain “hard” polynomials (such as the permanent,
which is complete for an arithmetic version of NP [17]) require large arithmetic circuits.
Despite much research, strong lower bounds are only known for restricted families of circuits,
such as circuits of fixed depth, multi-linear circuits, or monotone circuits. For general
airthmetic circuits, the best lower bound known is still the classical result of Baur-Strassen [5]
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who showed that to compute Xn
1 + . . .+Xn

n one needs an arithmetic circuit of size Ω(n logn).
We refer to the recent survey [16] and the references within for details about these many
works.

An interesting restriction of the arithmetic model, which is the focus on this paper, is
that of non-commutative polynomials and correspondingly non-commutative circuits. A
non-commutative polynomial over a field F in variables X1, . . . , Xn, is a linear combination
of monomials, except that here monomials are defined as words over the variables. Otherwise
put, variables do not commute, so the order of variables in a monomial is important. Despite
this severe restriction, the non-commutative setting maintains complexity-theoretic structure:
the permanent is complete for non-commutative arithmetic NP [10] (VNP), and natural
polynomials are complete for non-commutative arithmetic P [3] (VP). The hope is that it
will be easier to prove strong lower bounds against non-commutative circuits, as various
cancellations that occur in standard (commutative) arithmetic circuits crucially depend on
the commutativity of the variables. For example, the n× n determinant can be computed by
a O(n3) arithmetic circuit, but to the best of our knowledge, there is no non-commutative
arithmetic circuit for determinant of size no(n). Moreover if determinant can be computed
by polynomial size non-commutative circuits then V P = V NP [4] 5.

If one restricts attention further to non-commutative formulas, then our understanding is
dramatically better. A fundamental result in this area is a theorem of Nisan [14], who proved
exponential lower bounds on non-commutative formulas. For example, his technique applied
to the n× n permanent (or also the n× n determinant) shows that any non-commutative
formula computing either of them requires size Ω(2n). On the other hand, no lower bounds
for non-commutative circuits are known which are better than these known for standard
commutative circuits. This dichotomy leads to the main problem motivating this paper,
posed by [11]:

Why do we have exponential lower bounds for non-commutative formulas, but only
marginally super-linear lower bounds for non-commutative circuits?

The main message of the this paper is that weak lower bounds for non-commutative circuits
can be “amplified” to arbitrarily large polynomial, or even exponential, lower bounds for
non-commutative circuits. One can view this as positive news (it suffices to prove weak lower
bounds to get strong ones) or negative news (it is as hard to prove weak lower bounds as it
is to prove strong ones). We leave it to the reader to make their own choice. Below, we state
the formal versions of our main results.

We recall the standard notation that ω is the best known exponent for matrix multiplica-
tion, where the best known upper bounds on it are ω ≤ 2.374 due to [13]. Our first theorem
is that polynomial lower bounds better than Ω(nω/2) for any non-commutative polynomial
in n variables of polynomial degree can be lifted to arbitrary polynomial lower bounds.

I Theorem 1. Let ε > 0. Assume that there exists an explicit non-commutative polynomial
in n variables of degree poly(n), such that any non-commutative circuit computing it requires
size Ω(nω/2+ε).

Then, for any c > 1, there exists another explicit polynomial in m variables of degree
poly(m), such that any non-commutative circuit computing it requires size Ω(mc).

Some authors [11] had suggested that for non-commutative polynomials number of
variables might be not the best parameter. In contrast with the commutative setting, one

5 Formally, one needs to define a non-commutative determinant, by inducing some natural order on the
variables in monomials of the standard commutative permanent.
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can focus on polynomials with a constant number of variables, using the degree as a measure.
The difference comes from the fact that there are 2d different non-commutative monomials
on 2 variables of degree d versus d+ 1 for the commutative case. For this regime, the best
known lower bounds are of the form Ω(log(d)) where d is the degree. Theorem 1 states that
if we have good enough lower bound to start with, we can give a family of polynomials of
complexity Ω(d). We will, however, use number of variables as our measure, as we will be
dealing with constant degree polynomials.

Our second theorem shows that proving lower bounds better than Ω(nω/2) for any
constant degree non-commutative polynomial in n variables can be lifted to exponential lower
bounds. This may help to explain why no super-linear lower bound for a constant-degree
non-commutative polynomial is currently known. The polynomial that we start with in this
case must be explicit, a notion of uniformity described in section 2.

I Theorem 2. Let ε > 0. Assume that there exists an explicit non-commutative polynomial
in n variables of constant degree, such that any non-commutative circuit computing it requires
size Ω(nω/2+ε).

Then, for some c > 0, there exists another explicit polynomial in m variables of degree
poly(m), such that any non-commutative circuit computing it requires size exp(mc).

Here is one way to interpret our results, which we find intriguing: proving any super-linear
lower bound Ω(n1+ε) against non-commutative circuits would imply one of two things: (i) an
arbitrarily large polynomial lower bound (or even better) against non-commutative circuits;
or (ii) a proof that ω > 2, namely, a super-linear lower bound for (standard, commutative)
matrix multiplication.

1.1 Technique
Our main technical result is a lifting theorem, which allows us to amplify lower bounds
against non-commutative circuits, by reducing the number of variables without hurting the
lower bound too much.

Let f be a non-commutative polynomial over variables X1, . . . , Xn. Fix a constant integer
r ≥ 1 and assume that n = mr. Define new variables Yi,j where i = 0, . . . , (r − 1) and
j = 0, . . . , (m− 1). We will encode each Xi as a monomial Y0,a0Y1,a1 . . . Y(r−1),ar−1 , where
a0 . . . ar−1 is the encoding of i in base-m. Let E(f) denote the polynomial obtained by doing
this replacement to each variable in f . Note that E(f) is a polynomial over the rm variables
{Yi,j} of degree deg(E(f)) = r deg(f).

Our main technical lemma (lemma 4) shows that any non-commutative circuit C which
computes E(f) can be transformed to another non-commutative circuit C ′ which computes f .
We think of this as “decoding” the circuit for the encoding E(f) to a circuit for f . Moreover,
the size of C ′ is not much larger than C. The optimal parameters are achieved by taking
r = 3, using fast matrix multiplication; they give that size(C ′) ≤ size(C) · nω/3.

Otherwise put, if f requires arithmetic circuits of size s, then E(f) requires arithmetic
circuits of size s · n−ω/3. However, E(f) has only marginally higher degree and many fewer
variables m = n1/3. Applying this idea iteratively, we make progress as long as s � nω/2.
This implies both of our main theorems (Theorem 1 and Theorem 2).

For our generic technique to go through, we need to “massage” non-commutative circuits
for E(f) so that they can be “decoded” into non-commutative circuits for f . Basically,
we want all the gates in the circuit to compute polynomials over {Yi,j} that are encoding
of polynomials over {Xi}. We accomplish that by several rounds of simplification of the
structure of the circuit. This can be seen as an analog to the homogenization process
performed on algebraic circuits, except that in our case, the process is more delicate.

CCC 2018
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1.2 Related Work
This work parallels that of Hrubeš, Wigderson and Yehudayoff [11]. They showed that if any
explicit degree 4 polynomial has a strong enough super-linear lower bound on width, then
this lower bound can be lifted to an exponential circuit lower bound for a non-commutative
polynomial. We refer the reader to the original paper for the formal definition of width. To
compare these results with ours, note that implicit in [11] is the relationship s

n2 ≤ w(P ) ≤
O(ns), where P is any degree 4 polynomial, w is the “width” of this polynomial, and s is
the minimal size of a circuit computing P . Thus, [11] shows that any super-cubic circuit
lower bound for an explicit polynomial of degree 4 implies exponential circuit lower bounds
for some explicit polynomial.

We show that one can start from circuit lower bounds of the form n
ω
2 against any constant

degree polynomial and lift to exponential circuit lower bounds. Moreover, even lower bounds
against higher degree polynomials can be lifted.

As in [11], we give new structural properties of non-commutative circuits computing
restricted polynomials. The restrictions of [11] force polynomials to form monomials by
selecting each variable from some sets of variables that always appear in a fixed order of
some fixed length. Our restrictions allow the sets of variables to have a periodic ordering,
according to Z/r for some r. This allows our structures to easily generalize to higher degrees.

An encoding of variables similar to our lifting was used previously in [2], as a step in
randomized polynomial identity testing for sparse non-commutative circuits. The work of [3]
uses a similar double-indexed “positional” encoding of monomials, to establish a transfer
theorem from “f is complete for a non-commutative algebraic class” to “decoded(f) is
complete for a commutative algebraic class.”

There has been a great deal of recent interest in understanding why it is hard to prove
lower bounds in the arithmetic setting, even though it is more restricted than the Boolean
setting. Analogs of the Natural Proofs barrier of [15] have been proposed in [7] and [8], and
an unconditional barrier for rank-based methods was just shown by [6]. Our result is most
similar to the “chasm” family of results [1, 12, 9]: they show that one “only” needs to prove
depth-3 lower bounds to prove general super-polynomial lower bounds. We show that, in the
non-commutative case, one “only” needs to prove mildly super-linear lower bounds to prove
super-polynomial lower bounds.

Organization

In section 2, we formally define lifting, state the key “circuit decoding” lemma, and show
how the results follow. In section 3, we prove the decoding lemma by giving new structural
results about non-commutative circuits.

2 Preliminaries

Polynomials and Circuits

Let X = {x1, . . . , xn} be a set of variables and let F be a field. We denote by F〈X〉 the set
of non-commutative polynomials over X with coefficients in F. These polynomials sum over
monomials that are words over X, because multiplication of variables does not commute.
We define circuits computing polynomials from F〈X〉 in the natural way: as directed acyclic
graphs with internal nodes (gates) labeled by +,× and leaves labeled by x ∈ X or field
elements. Each +,× gate has two children, and each × gate has distinguished left and right
children. Denote by AC(f) the arithmetic complexity of a non-commutative polynomial f ,
as the minimal number of gates in a non-commutative circuit computing f .
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Explicitness

It is easy to prove that some polynomials require exponential size circuits. So we restrict
ourselves to the set of explicit polynomials. A polynomial f is explicit if and only if
each of its coefficients can be computed in polynomial time in the description length of a
monomial. Thus, the coefficients of an explicit constant degree polynomial can be computed
in polylogarithmic time.

3 Lifting Polynomials

We define polynomial lifting and give basic properties. Unless otherwise stated, all our
polynomials and circuits are non-commutative. We consider both singly-indexed variables
X = {xi} and doubly-indexed variables Y = {yi,j}. To ease work over Y , define sets Yi
as {yi,j}j∈N, the sets of all y variables with first index i. We use the notation F〈X〉 =
F〈x1, . . . , xn〉 to denote non-commutative polynomials over the X variables, and analogously
for polynomials over the Y variables.

Lifting takes a polynomial over the X variables to a polynomial over the Y variables.
Starting with f ∈ F〈x1, . . . , xn〉, we replace each xi by a product of y variables that encodes
i in base n1/r, rounding up to ensure that n1/r is an integer. To simplify notations, we will
always assume that n = mr for some integer m, so no rounding will be necessary. Since
the y variables do not commute, the resulting polynomial can easily be mapped back to f
by reading “sub-words” of monomials base n1/r to recover which xi a string of y variables
represents. To formalize this below, we use digit(t, i, j) to refer to the jth digit of the base-t
representation of i.

I Definition 3 (Lifting). Let f ∈ F〈X〉. Define Lr(f) ∈ F〈Y 〉 by applying the following map
to each variable of f :

xi →
(r−1)∏
j=0

yj,`j where `j = digit(n1/r, i, j)

This means that Lr(f) will be over rn1/r variables (y0,1, . . . , yr−1,n1/r). If the degree
of f is d, then the degree of Lr(f) is dr. So lifting shrinks the number of variables while
increasing the degree.

Lifting preserves explicitness. Suppose we want to compute a coefficient of Lr(f). Let’s
assume there is an algorithm that takes a description of a monomial of f and outputs the
coefficient on it in time t. Then one can use the same algorithm to compute coefficients of
Lr(f), as the description of a monomial and it’s lifted version is exactly the same.

Our main technical lemma, proved in Section 4, efficiently converts a circuit for the lifted
polynomial L3(f) into a circuit for f . Setting r = 3 is easiest to present, and gives the best
qualitative bounds that we know how to achieve with this technique. So we continue with
this choice of r below.

I Lemma 4 (Circuit Decoding). If there exists an arithmetic circuit of size s computing
L3(f), then there exists a circuit of size O(nω/3s) computing f .

The lifting operation can be iterated. Take a polynomial Lr(f) ∈ F〈Y 〉 and re-number the
Y variables lexicographically to obtain new singly-indexed X variables, and lift the resulting
polynomial again. The result of repeating this process k times on a polynomial f is denoted
Lkr (f). Using the circuit-decoding Lemma 4 we have the following lower-bound amplification
for iterated lifting.

CCC 2018
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I Lemma 5 (Iterated Lifting Amplifies Hardness). Let k ≤ γ log(n) be a positive integer, where
γ > 0 is a sufficiently small positive constant. Suppose f is a polynomial on N = 33/2(31/2n)3k

variables of degree d. Then Lk3(f) is a polynomial on 9n variables of degree 3kd and the
following holds:

AC(Lk3(f)) ≥ AC(f)
Nω/2

If we have a small circuit for Lk3(f) then by applying Lemma 4 iteratively k times we will
end up with a small circuit for f . We require N to be in a particular form to avoid dealing
with rounding. The calculations appear below.

Proof of Lemma 5. Let Nk denote the number of variables of Lk3(f), where one can verify
that N0 = N and Ni+1 = 3N

1
3
i . Our choice for N guarantees that Ni is an integer for all

i = 0, . . . , k. Using Lemma 4 we get

AC(Li+1
3 (f)) ≥ αAC(Li)

N
ω/3
i

,

where α > 0 is some absolute constant. Folding the recursion gives

AC(Lk3(f)) ≥ αkAC(f)
k−1∏
i=0

N
−ω/3
i

We will need to use an explicit expression for Ni = 33/2(3−3/2N)
1

3i .

AC(Lk3(f)) ≥ αkAC(f)(
k−1∏
i=0

33/2(3−3/2N)
1

3i )−ω/3

= αkAC(f)(3 3
4 (2k−3+31−k)N

3
2 (1−3−k))−ω/3

So:

AC(Lk3(f)) ≥ AC(f)
Nω/2

( α
3k
ω N

3k−1
2

3 3
4 (−3+31−k+2k)

)ω/3
If we recall that k ≤ γ log(n) and choose γ small enough we can ensure that:

α−
3k
ω 3 3

4 (−3+31−k+2k) < N
3
2 3−k

As left hand side is 2θ(k) and right hand side is nθ(1). This immediately implies:

AC(Lk3(f)) ≥ AC(f)
Nω/2 J

3.1 Amplifying Lower Bounds via Lifting
Theorem 1 (amplification to any fixed polynomial hardness) is straightforward, by taking k
to be some large constant in Lemma 5 above:

Proof of Theorem 1. Let P = {Pn} be a family of explicit polynomials, where Pn is a
polynomial on n variables, such that ∃α, ε > 0 such that ∀n : Pn is not computable by
arithmetic circuits of size αnω2 +ε. We will define family of polynomials Q = {Qn} to be
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lifted version of P , where again Qn is a polynomial on n variables. Formally, Q9n = Lk3(PN ),
where N = N(n) = 33/2(3 1

2n)3k . It is easy to verify that N is always an integer. For general
n define Qn = Q9bn/9c by adding dummy variables. By Lemma 5:

AC(Qn) ≥ AC(PN )
N

ω
2
≥ αN ε ≥ α33/2ε(31/2n)ε3

k

= nΩ(3k)

For any c > 0 we can take k to be sufficiently large constant and have AC(Qn) > nc.
Furthermore, note that deg(Q9n) = 3k deg(PN ). So if deg(PN ) = O(Na) is polynomial in
N , then deg(Qn) = O(3kna3k). In particular, for any fixed k, deg(Qn) = poly(n) as claimed.
Also Q is explicit as it is a lifted version of P . J

Proof of Theorem 2. The proof is identical to the proof of Theorem 1, except that we
take k = γ logn. Note that as we assume here that Pn all have a constant degree, then
Qn will have degree poly(n) as claimed. As P is an explicit polynomial, Q is also explicit
polynomial. J

4 Structuring Circuits

In this section we obtain a normal form for non-commutative circuits computing certain
restricted types of polynomials. The idea is similar to homogenization: we classify monomials
into “types” and efficiently re-write the circuit in terms of operations on those types. The
proofs share a common structure: we define an operator that splits polynomials into well-
typed monomials. We then pass this operator through the circuit C layer-by-layer, starting
from the output gate. Each time we advance the operator-layer through C, we maintain:
(i) The polynomial computed by C does not change;
(ii) All gates above the operator-layer compute restricted polynomials;
(iii) Not too much additional hardware is introduced;
(iv) At leaf nodes, operators can be eliminated from C.

This process is like a glacial movement during the ice age. An operator slides over the
circuit and then disappears, drastically changing the landscape behind it.

4.1 Monomial & Circuit Types
For non-commutative polynomials, monomials are just words over the variables. So all of
our monomial types will be constraints on the ordering of variables, referring to the “place”
part of a Y variable.

I Definition 6 (Structured Monomials in Y ). For fixed r ∈ N, we define the following subsets
of all monomials over double-indexed variables Y.
r-pinned, M̃r

i,j : monomials m that start with y ∈ Yi, end with y′ ∈ Yj , and obey Z/r
ordering. That is, after each y ∈ Yk appearing in m the next variable is always some
y′ ∈ Y(k+1) mod r.

r-aligned, M̃r : any m ∈ M̃r
0,(r−1).

We do not bound the lengths of pinned or aligned monomials. The counter k indexing
sets of variables Yk may circle around Z/r many times in going from i to j. We classify
circuits and polynomials in the obvious way based on these sets of monomials.

I Definition 7 (Structured Polynomials in Y ). A polynomial p ∈ F〈Y 〉 is r-pinned if ∃i, j
such that every monomial of p is in M̃r

i,j , or r-aligned if every monomial of p is in M̃r.

When r is clear from the context, we shorthand M̃i,j = M̃r
i,j and M̃ = M̃r.

CCC 2018
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I Definition 8 (Structured Circuits in Y ). A circuit C is r-pinned if every gate of C computes
an r-pinned polynomial. Note that each gate could have different start and end indices i, j.
C is r-aligned if every gate of C computes an r-aligned polynomial. An r-aligned circuit
has r-aligned monomials as inputs, not single variables.

Recall that our goal in this section is to build a circuit for f from a circuit for Lr(f). If
we have an r-aligned circuit of size s for Lr(f), this is straightforward. The bottom layer of
an r-aligned circuit is a set of monomials, not variables. Since these monomials are r-aligned,
each one uniquely represents a sequence of natural numbers in base n1/r. Simply replace
each encoded number i with xi and take their product. After this substitution, we have a
circuit that computes f of size O(s).

If some general circuit C computes an aligned polynomial f , we can obtain an aligned
circuit C ′ for f of only slightly larger size. This construction proceeds in two stages: from
general circuits to pinned circuits (lemma 9), then from pinned circuits to aligned circuits
(lemmas 10 and 11).

The circuit decoding for lifted polynomials of Lemma 4 is then immediate, because L(f)
is always an aligned polynomial. We give two constructions: the first is elementary but
inefficient, the second uses fast matrix multiplication to optimize storage of “type information”
about polynomials. The first stage, from general to pinned circuits, is common to both
proofs.

4.2 Operators on Polynomials
To efficiently store polynomials, we will sometimes need to “trim off” extraneous variables
from the ends of each monomial. So we give two new operators on polynomials, ÷L and
÷R, that “divide what they can and discard the remainder.” These operators act on the
left and right of f , respectively. Formally, ÷L and ÷R are defined in terms of two possible
decompositions of a polynomial f :

Right division: Let f = Q× σ+R where Q× σ sums over monomials of f ending with
σ. Define: f ÷R σ = Q.
Left division: Let f = τ ×Q′+R where τ ×Q′ sums over monomials of f starting with
τ . Define: τ ÷L f = Q′.

Because our polynomials are non-commutative, these decompositions are unique. Notice that
in left-division ÷L, the monomial τ is not the object being operated on; it appears on the
left to denote which side of the monomials of f is altered by the operation. Immediately, we
have:

p× q =
∑
a∈Y

(p÷R a)× (a× q) =
∑
a∈Y

(p× a)× (a÷L q)

Finally, we denote byM the set of all possible monomials, and by coeff(f,m) the coefficient
of f on monomial m. When expanding polynomials as sums over monomials, we write the
monomial m as xm or ym, like so:

f(Y ) =
∑
m∈M

coeff(f,m)× ym

4.3 Aligning Circuits
We begin the alignment process by taking a general circuit for a pinned polynomial, and
constructing a pinned circuit. The is similar to homogenization using the more complex set
of monomial types introduced above.
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I Lemma 9 (General to Pinned Circuits). Let C be a general arithmetic circuit of size s
computing an r-pinned polynomial f(Y ). Then there exists an r-pinned arithmetic circuit
C ′ of size r3s computing f .

Proof of Lemma 9. Define ∆i,j to transform f(Y ) into a r-pinned polynomial, by discarding
any coefficients on monomials outside M̃i,j :

∆i,j(p) =
∑

m∈M̃i,j

coeff(p,m)× ym

Let go be the output gate of C. By assumption, go computes an r-pinned polynomial. From
the definition, ∃i, j such that ∆i,j(go) = go. This is our base case. Inductively, let g ∈ C be
such that ∃i, j so ∆i,j(g) = g. We reason by cases on the type of g.

If g = u+ v:

∆i,j(u+ v) = ∆i,j

( ∑
m∈M

(coeff(m,u) + coeff(m, v))ym
)

expand u+ v

=
∑

m∈M̃i,j

(coeff(m,u) + coeff(m, v))ym definition of ∆

=
∑

m∈M̃i,j

coeff(m,u)ym +
∑

m∈M̃i,j

coeff(m, v)ym split the sum

= ∆i,j(u) + ∆i,j(v) definition of ∆

If g = u× v:

∆i,j(u× v) = ∆i,j

( ∑
m`∈M

coeff(m`, u)ym` ×
∑

mr∈M
coeff(mr, v)ymr

)
unroll

= ∆i,j

 ∑
m`∈M
mr∈M

coeff(m`, u)ym` coeff(mr, v)ymr

 distribute

= ∆i,j

 ∑
m`∈M
mr∈M

coeff(m`, u) coeff(mr, v)ym`mr

 commute in F

=
∑

m`,mr∈M
st. m`mr∈M̃i,j

coeff(m`, u) coeff(mr, v)ym`mr definition of ∆

Because m`mr is pinned, we know (1) that m` begins with some y ∈ Yi and mr ends
with some y′ ∈ Yj and (2) that the transition from m` to mr must respect ordering in Z/r.
Formally, we know that ∃t such that m` ∈ Yi . . . Yt and mr ∈ Y(t+1) mod r . . . Yj . So let’s
split the above summation on this index, which is bounded by r because we assumed the
polynomial is r-pinned. To ease legibility below, all indexing arithmetic for monomial sets
M̃ and for the operator ∆ is implicitly carried out in Z/r.

CCC 2018
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g =
∑
t∈Z/r

∑
m`∈M̃i,t

mr∈M̃t+1,j

coeff(m`, u) coeff(mr, v)ym`mr

=
∑
t∈Z/r

 ∑
m`∈M̃i,t

coeff(m`, u)ym`


 ∑
mr∈M̃(t+1),j

coeff(mr, v)ymr

 distribute

=
∑
t∈Z/r

∆i,t(u)×∆t+1,j(v) definition of ∆

The circuit C ′ contains, for every gate g in C, the r2 gates computing ∆i,j(g) for all
i, j ∈ Z/r. Addition gates do not require additional gates; multiplication gates require an
addition a factor of r more gates to compute. So in total if C has s gates then C ′ has at
most r3s gates. J

The pinning lemma proved above enforces an ordering on variables that respects Z/r.
But for circuit decoding, monomials that are aligned and thus represent complete numbers
are required.

We partition pinned monomials into a prefix, body and suffix. The body of a monomial
is the substring between the first variable from Y0 and the last variable from Y(r−1) (it can
be empty). By definition, the length of the body is a multiple of r. This means that the
body uniquely represents a string of natural numbers, which can easily be mapped back to
x-variables.

Then the prefix of a monomial is everything to the left of the body, and the suffix is
everything to the right of the body. We also need to consider monomials of small length,
for which the body is undefined. These parts of a monomial do not yet represent even a
single natural number. But, because the circuit computes an aligned polynomial, we know
that these monomials will eventually becomes part of the body via subsequent multiplication
operations.

4.3.1 Simple Circuit Alignment
The construction below anticipates and brute-forces these possible “completions” of non-body
monomials at each gate of the circuit.

I Lemma 10 (Pinned to Aligned Circuits, Simply). Let C be an r-pinned arithmetic circuit
of size s computing an r-aligned polynomial f(Y ). Then there exists a r-aligned arithmetic
circuit C ′ of size O(sn3r−2) computing f . If C was a monotone circuit, then C ′ is also
monotone.

Proof. First, we define the undesirable sets of monomials. These monomials are all possible
obstructions to alignment that must be computed in terms of aligned polynomials.

Incomplete : I = {ρ | ρ ∈M of length < r}

Prefix : P =
(
∪r−1
i=1M̃i,(r−1)

)
∩ I

Suffix : S =
(
∪r−2
i=0M̃0,i

)
∩ I
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We use these monomial sets to separate the body of a monomial from the prefix and suffix,
which are not perfectly aligned:

Wσ,τ = {(w,m) | w = σmτ where m ∈ M̃, σ ∈ Prefix, and τ ∈ Suffix}

We want all the polynomials computed by C ′ to be aligned, so we can only have monomials
with empty prefix, suffix, and incomplete monomial sets at each gate. But we need the
coefficients associated with these “flawed” polynomials to compute with. This suggests an
operator Γ that will take only parts of the polynomial with a particular suffix and prefix,
multiplying the coefficient on σmτ by the monomial m only, where m is a body monomial.
We will also need to recover coefficients on incomplete monomials, so we let a unary Γ extract
specific coefficients: Γρ(f) = coeff(ρ, f). We could also use the “division” operators above to
express Γ:

Γσ,τ (f) =
∑

(w,m)∈Wσ,τ

coeff(w, f)× ym

= σ ÷L f ÷R τ

If a polynomial f is aligned, then Γ1,1(f) = f and all other operators are 0. That means
that if go is the output gate of the original circuit C, then Γ1,1(go) = go. Inductively, let C
be the pinned circuit computing an aligned polynomial f and suppose g ∈ C. We are going
to show how to push Γ operators one level deeper into the circuit, reasoning by cases on the
form of f .

Suppose g = u + v. Addition does not change the collection of monomials except by
cancellation, so we have the following easy identities, which follow from the same kind of
monomial partitioning used to prove the pinning Lemma 9 above:

∀a, b : Γa,b(g) = Γa,b(u) + Γa,b(v)
∀c : Γc(g) = Γc(u) + Γc(v)

Now suppose g = u × v. First consider how some incomplete monomial c could have a
nonzero coefficient in g; it would have to be the case that two incomplete monomials of u
and v were multiplied together to form c. Therefore:

∀c, Γc(g) =
∑

{d,e∈I | de=c}

Γd(u)Γe(v).

Similarly, we reason by cases on how the monomials of Γa,b(g) could have been formed by
multiplying the monomials of u and v:

Γa,b(g) =
∑

{c∈S, d∈P : |cd|=r}

Γa,c(u)ycdΓd,b(v) // suffix(u) × prefix(v) becomes aligned

+
∑

{c∈S, d∈I : cd=b}

Γa,c(u)Γd(v) // suffix(u) × incomplete(v) becomes b

+
∑

{c∈I, d∈P : cd=a}

Γc(u)Γd,b(v) // incomplete(u) × prefix(v) becomes a

The above formula completely enumerates how the polynomials u and v could multiply
to produce coefficients on monomials with prefix and suffix a, b in g, in terms of Γ applied to
u and v. Thus we have successfully expressed Γa,b(g) in terms of earlier gates.

CCC 2018
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Using the formulas above we can push the Γ-operators down one level. Clearly, all gates
above the operator level compute aligned polynomials: we are keeping track of undesirable
monomials in the labels on gates. Finally, observe that all the operators applied to a single
variable or constant are constants. This means we can replace every operator applied to the
input of the circuit by a constant. So after pushing the operators down to the leaves we get
an aligned circuit that computes Γ1,1(go) = f .

All that remains is to estimate the size of the resulting circuit. Each addition gate of
the old circuit was substituted with a circuit of size n2r−2. Each multiplication gate of the
old circuit was substituted with a circuit of size n3r−2. So the size of our aligned circuit
computing f is at most O(sn3r−2). J

4.3.2 Efficient Circuit Alignment
We can get smaller aligned circuits using a more sophisticated technique. Notice that the
construction above enumerates all possible “completions” of non-aligned polynomials to
aligned polynomials at each level. We assigned a gate to each such completion, which fails
to exploit the fact that it is not possible to obtain non-aligned polynomials by arithmetic
operations on aligned polynomials. The construction below does take advantage of these
restrictions to do much less brute-force enumeration of intermediate non-aligned polynomials,
by implicitly representing future completions at each gate. We use matrix multiplication to
organize this more efficient combination of polynomial types, which is why ω appears in the
complexity of the resulting circuit.

We restrict our attention from now on to r = 3. It will simplify the proof and it turns
out that it gives almost optimal results.

I Lemma 11 (Pinned to Aligned Circuits, Efficiently). If there exists a 3-pinned arithmetic
circuit C of size s computing a 3-aligned polynomial f(Y ), then there exists a 3-aligned
circuit of size O(snω) computing f(Y ).

The high level idea of the proof of Lemma 11 is as follows. Let fM denote a matrix of
size n× n that has f as it’s [1, 1] entry and 0 elsewhere. One can measure the arithmetic
circuit complexity of fM in a model where matrices are on the wires of the circuit instead of
scalars. We use this observation to prove the above lemma in two steps:
1. Convert the circuit for f into a circuit for fM over the ring of matrices. (Lemma 13)
2. Convert the circuit for fM back into a circuit for f by replacing each gate with circuits

for matrix addition and matrix multiplication. The resulting circuit is aligned, and
has hardware proportional to the original number of gates times the cost of matrix
multiplication.

The key step is converting a circuit for f into a circuit for fM . As before, we introduce a
mapping Φ to transform the original circuit layer-by-layer. This time, however, it is not an
operator on polynomials: it maps polynomials to matrices. By propagating this Φ through
C, we obtain a circuit for fM . Lemma 12 below states the properties of Φ. We give the full
proof of correctness for our efficient construction of aligned circuits (Lemma 11) at the end
of this section, because it is straightforward once we have Φ.

I Lemma 12 (Polynomial to Matrix). There exists a map Φ that takes a polynomial on 3n
variables to an n× n matrix with polynomial entries satisfying the following conditions:
(i) For all 3-pinned polynomials g all entries of Φ(g) are aligned polynomials.
(ii) If g is a 3-aligned polynomial, then Φ(g)[1, 1] = g and all other entries of Φ(g) are zero.
(iii) If g is a variable or a constant, then the degree of each entry of Φ(g) is at most 3.
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(iv) For all 3-pinned polynomials g, u, v, and arithmetic +,× over the ring of matrices:

g = u+ v ⇒ Φ(g) = Φ(u) + Φ(v)
g = u× v ⇒ Φ(g) = Φ(u)× Φ(v)

One new trick that we are going to use is that we will sometimes not store the suffix
or prefix of the monomial if it is too long. Instead we will store what it can become after
we complete it to an aligned monomial. For example, consider the following polynomial:
y0,iy2,j + y1,i′y2,j′ . Instead of memorizing it this way, one can remember that it will become
y0,iy2,jy3,k + y1,i′y2,j′y3,k after we multiply it by y3,k. By contrast, the simple alignment
procedure stores these completions on both sides of the multiplication, duplicating information
and wasting gates.

Proof of Lemma 12. We need only define the operator Φ for 3-pinned polynomials. Every
3-pinned polynomial g(Y ) is one of 9 types (a, b) ∈ {0, 1, 2} × {0, 1, 2}, based on which
Y -variables start and end all the monomials of f . Denote by Fa,b〈Y 〉 the set of 3-pinned
polynomials of type (a, b). Each entry [i, j] of the matrix Φ(g) will be an arithmetic expression
in terms of g that depends on the “pinning type” of g and the indices [i, j]. Below, we define
functions λ and ρ which select how to transform g from the left and the right, respectively,
in terms of pinning type of g and index of Φ(g). We use below the notation δ(i) = 1 if i = 1
and δ(i) = 0 otherwise.

For g ∈ Fa,b〈Y 〉 define Φ(g)[i, j] = λ(a, i) g ρ(b, j) where:

λ(a, i) =


δ(i)× if a = 0,
y0,i× if a = 1,
y2,i÷L if a = 2

and ρ(b, j) =


×δ(j) if b = 2,
×y2,j if b = 1,
÷Ry0,j if b = 0

We expand the definition of Φ concretely below. This matrix is the outer product of the
λ and ρ operation selection functions “around” g.

Φ(g)[i, j]← entry (a, b) of

 δ(i)× g ÷R y0,j δ(i)× g × y2,j δ(i)× g × δ(j)
y0,i × g ÷R y0,j y0,i × g × y2,j y0,i × g × δ(j)
y2,i ÷L g ÷R y0,j y2,i ÷L g × y2,j y2,i ÷L g × δ(j)


Inspecting the expansion above, properties (i), (ii), and (iii) claimed for Φ are clear. It
remains to show property (iv): that Φ maps arithmetic over 3-pinned polynomials to
arithmetic over the ring of matrices. Reasoning from the definitions of Φ and the division
operators we have the following:

∀c, d ∈ {0, 1, 2} such that d = (c+ 1) mod 3 : p× q =
∑
i∈[n]

p ρ(c, i) × λ(d, i) q

If g, u, v are 3-pinned polynomials then, by additivity of the matrix ring, g = u+ v ⇒ Φ(f) =
Φ(u) + Φ(v). We also need g = u× v ⇒ Φ(f) = Φ(u)× Φ(v) which we prove directly. Let
a, b, c ∈ Z/3 be such that u ∈ Fa,b〈Y 〉 and v ∈ Fb+1,c〈Y 〉. These numbers must exist, since u
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and v multiply to give the 3-pinned polynomial g ∈ Fa,c〈Y 〉. So

(Φ(u)× Φ(v))[i, j] =
∑
k

Φ(u)[i, k]Φ(v)[k, j]

= λ(a, i)
(∑

k

u ρ(b, k) λ(b+ 1, k) v
)
ρ(c, j)

= λ(a, i) u× v ρ(c, j)
= λ(a, i) g ρ(c, j) = Φ(g)[i, j]

The key observation for the derivation above is that ρ(b, k)λ(b+ 1, k) “cancels out” for any
b ∈ Z/3. This is what saves hardware compared to the simple construction: there is no
“garbage” in the middle of the representation to enumerate over. J

We can now push Φ “down” through a pinned circuit to obtain an aligned circuit. We
first need the following lemma, to convert a circuit for f into a circuit for fM over the ring
of matrices.

I Lemma 13 (Pinned Circuit to Matrix Circuit). If there exists a 3-pinned arithmetic circuit
of size s that computes a 3-pinned polynomial f , then there exists a circuit of size O(s) that
computes fM . This circuit uses matrix addition and multiplication as gates, and has matrices
with aligned monomials of degree at most 3 in entries as inputs.

Proof. Suppose that we are given a 3-pinned circuit C for 3-aligned polynomial f . Then, as
Φ(f) = fM we can apply the operator Φ to the output of C and get a circuit for fM . Recall
the properties of Φ guaranteed in Lemma 12. We use property (iv) to push Φ down one level
of C. We will measure the size of this circuit as the number of gates that perform arithmetic
operations, both over polynomials and matrices, which is the same as counting all except
Φ-gates. It is easy to see that when we apply rule (iv) we are not increasing size of the circuit
measured this way.

Eventually we will sink all the Φ-gates to the very bottom. We will have a circuit with
only matrix addition, matrix multiplication and Φ gates, and the last are only applied to the
inputs. By property (iii) we know that Φ applied to the input computes a matrix whose
entries are aligned polynomials of degree at most 3. That means that we can just claim the
outputs of Φ as our new inputs – we are allowed to have matrices with degree 3 aligned
polynomials as inputs in the model of matrix circuits. This removes all the Φ from C, and
the only types of gates left are matrix multiplication and addition. Then our measure of size
is now the same as the number of gates, so we have a new matrix circuit with size exactly
matching that of C. J

Note that it is impossible to obtain non-aligned polynomials by arithmetic operations on
aligned polynomials. Therefore, all matrices computed by the gates in such a circuit would
have aligned polynomials in all entries. We conclude by mapping pinned circuits to aligned
circuits, efficiently.

Proof of Lemma 11. Take a circuit for f , and construct a circuit for fM , using Lemma 13.
Replace each matrix with n2 gates each representing one entry. Replace each matrix addition
and multiplication gate with a circuit on 2n2 inputs that perform the same operations. This
will leave us with a circuit of size O(snω) over aligned monomials of degree at most 3 as
inputs. J
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A Infinitely often vs almost everywhere hardness

In this section we carry out our hardness amplification for polynomials that are sometimes
hard, as opposed to hard everywhere. In the proof of 1 we used the assumption that:

∃α, ε > 0 such that ∀n : Pn is not computable by arithmetic circuits of size αnc+ε

A more natural way to say that some polynomial P requires circuits of size larger then nc
would be:

P 6∈ ASize[nc],

where ASize[f(n)] is set of all sequences of polynomials that can be computed by circuits of
size O(f(n)). The difference between these two definitions is that the first means that the
polynomial is not computable by small circuits everywhere, and the second means that the
polynomial is not computable by small circuits for infinitely many n. While in the proof of
Theorem 1 we used the first definition, we actually only needed that the polynomial is hard
on infinitely many points of the form 3−3/2(3 1

2n)3k for some n and fixed k. This motivates
the notion of infinitely often hardness on a subset, described below:

I Definition 14. ASize[f(n)] is set of all sequences of polynomials that can be computed by
circuits of size O(f(n))

Now we will tweak this definition to describe hardness on subset of integers:

I Definition 15. Let S be a infinite size subset of natural numbers. ASizeS [f(n)] is set of
all sequences of polynomials that can be computed by circuits of size O(f(n)) for all n ∈ S.

I Lemma 16. Let A be a subset of even natural numbers, such that logAn+1
logAn = 1 + o(1),

where An is n-th smallest element of A is ≤ 2nγ for some γ and P is an explicit sequence
of polynomials that is i.o. nc hard for some c. Then for every ε > 0 there is an explicit
sequence of polynomials Q, such that Q is i.o. nc−ε hard on A.

Proof. We construct Q as by setting:

Q2n+1 = Q2n =
n∑
k=1

xn+kPi(x1, x2, . . . , xk)

It is easy to see that Q2n(x1, x2 . . . , xn, 0, 0, . . . , 0, 1, 0, . . . , 0) = Pk(x1, . . . xk) if 1 is set
in the n+ k-th position. This means that:

∀n : AC(Q2n+1) = AC(Q2n) ≥ maxk∈[n]AC(Pk)

Then suppose that AC(Pn) > αnc and let i be the smallest number, such that Ai is
bigger than 2n. Then AC(QAi) > AC(Pn). This implies that AC(QAi) > αnc > αAci−1 >

αA
c

logAi−1
logAi

i > αA
c−o(1)
i . This means that for any ε > 0 there would be infinitely many n ∈ A,

such that AC(Qn) > αnc−ε J

Now we just need to observe that the set A = {x|∃n : x = 3−3/2(3 1
2n)3k} satisfies the

property logAn+1
logAn = 1 + o(1). It is true even if we allow k to be a monotone function of n if

k = O(log(n)), which covers all the range of parameters that we are currently using.

http://dx.doi.org/10.1145/800135.804419
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