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—— Abstract
We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold
functions. Random constructions achieve the optimal seed length of O(logn+log 1), however
the best known explicit construction of [8] uses a seed length of O(logn - €8). In this work we
give an ezplicit construction that uses a seed length of O(log n—i—(%)"(l)). Note that this improves
the seed length substantially and that the dependence on the error € is additive and only grows
subpolynomially as opposed to the previously known multiplicative polynomial dependence.

Our generator uses dimensionality reduction on a Nisan- Wigderson based pseudorandom
generator given by Lu, Kabanets [18].
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1 Introduction

1.1 Background and importance

We say that a function f : R” — {+1, —1} is a (degree-d) polynomial threshold function(PTF')
if it is of the form f(x)=sgn(p(z)) for p some (degree-d) polynomial in n variables. Polynomial
threshold functions make up a natural class of Boolean functions and have applications
to a number of fields of computer science such as circuit complexity [2], communication
complexity [17] and learning theory [14].

In this paper, we study the question of pseudorandom generators (PRGs) for polynomial
threshold functions of Bernoulli inputs(and in particular for d=2). In other words, we wish
to find explicit functions F': {+1}* — {£1}" so that for any degree-2 polynomial threshold
function f, we have

[f(F@)] - E [f(X)] <e

E
zrog {£1}0 X~{x1}n

We say that such an F' is a pseudorandom generator of seed length s that fools degree-2
polynomial threshold functions with respect to the Bernoulli distribution to within €. In
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Table 1 Pseudorandom Generators

Paper Bernoulli/Gaussian | d | Seedlength s

Diakonikolas, Gopalan, etal [5] Bernoulli 1 | logn-O(e %log?(1/¢))
Meka, Zuckerman [15] Bernoulli 1 | O(logn +log?(1/¢))
Gopalan, Kane, Meka [7] Bernoulli 1 | O(log(n/e) - [loglog(n/e)]?)
Diakonikolas, Kane, Nelson [8] Gaussian 1 | logn-0O(e?)

Kane [12] Gaussian 1 | O(logn + log®/?(1/e€))
Diakonikolas, Kane, Nelson [8] Both 2 | logn-0O(e®)t

Kane [12] Gaussian 2 | logn - exp[O(log(1/€)*/?)]
Kane [13] Gaussian 2 | O(log®(1/e) - logn - loglog(n/e€))
Kane, Sankeerth This paper Bernoulli 2 | O(logn + eV'es < loglog %)
Kane [9] Both d | logn-Oq4 (e_Qo(d)

Meka, Zuckerman [15] Bernoulli d | logn -20(®e=8d=3

Kane [11] Bernoulli d | logn-Og(e 1)
Kabanets, Lu [18] Bernoulli d | e9(Vdlognloglog(n/e))

Kane [10] Gaussian d | logn - 20@e=41

Kane [11] Gaussian d | logn-Oq(e?")

Kane [12] Gaussian d | logn-Oca(e™°)

this paper, we develop a generator with s = O(logn + eV log ¢ loglog %). The main idea is
to apply a Johnson-Lindenstrauss like dimensionality reduction on the Nisan-Wigderson
based pseudorandom generator by Lu, Kabanets [18]. A random construction shows the
existence of a PRG that uses a seed length of s = O(logn + log %), however there are no
known constructions that achieve this. The best known constructions for Boolean degree
2 PTFs use a seed length of s = logn - poly(%), the current work improves this especially
the error dependence to s = O(log n+subpoly(%)).The Meka-Zuckerman PRG for LTFs in
[15] uses a similar type of dimensionality reduction idea to reduce the seed length from
O(log*(2)) to O(logn + log® 1).

1.2 Prior Work

An existential argument shows that there are optimal pseudo random generators of seed length
O(dlogn+log %) There has been a lot of research towards giving explicit constructions that
approach this seed length. The following are the past results of pseudorandom generators
constructed for PTFs of degree d.

1.3 Our results and merits of the paper

The main goal for degree 2 PRG constructions has been to achieve the optimal seed length
of O(logn + log(1)) via explicit constructions. Random constructions do achieve this
optimal seed length, however the best known explicit construction of [8] uses a seed length
of O(logn - €®). In this paper we give an explicit construction that uses a seed length
of O(logn+(1)°™M). Note that this improves the seed length substantially and that the
dependence on the error € is additive and only grows subpolynomially as opposed to the

"The original analysis only got logn - O(e~?) until [11] led to an improved analysis using the same
ideas.
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previously known multiplicative polynomial dependence. In particular we give a construction
for a seed length of O(logn + eV1°8 @ log log%). The major improvement of this work is in
separating out the n-dependence from the e-dependence. It would be very interesting to
improve this further to the optimal logarithmic dependence on e.

The main theorem of this paper is:

» Theorem 1. Given ¢ > 0,n € N, we construct a function F : {£1}* — {£1}" such that
for any degree 2 polynomial p : {£1}" — R, the probability that p(x) > 0 at a uniformly
random point in {£1}" is approzimately (within €) equal to the probability that p(F[z]) > 0
at a uniformly random point in {£1}*. That is,

|IN{E1}W’sgn(p(x)) - ZN{];EH}SSgn(p(F[Z])” Se

Here s is called the seed length of F and it is given by s = O(logn + eV log%loglog%)-

We construct F' by doing a dimensionality reduction like argument on a Nisan-Wigderson
based pseudorandom generator for Boolean PTFs constructed by Kabanets, Lu in [18]. Their
construction uses a seed length of O(eV!°8m1o8log <),

Our generator is best thought of as a dimension reduction gadget. It reduces the problem
of finding a PRG in n dimensions to that of finding a PRG in poly(1/¢) dimensions (with an
additive loss of O(logn) in seed length). This means that if you combine it with a generator

that has seed length s(n, €), we get a new generator with seed length O(logn)+ s(poly(1/e), €).

This is particularly useful if the other generator is the Kabanets-Lu generator, since that
generator has a great ¢ dependence at the expense of having a poor dependence on n. One
could also use the trivial generator (i.e. the uniform distribution over the entire hypercube
for which s(n,€) = n), and get a generator with seed length O(logn) + poly(1/e).

In particular we don’t require the Kabanets-Lu generator, but since what we do only
reduces the dimension of the problem, we do need some other generator. When we use the
trivial PRG instead after using our technique, we can get O(logn) + poly(1/€). We believe
that even this is new.

1.4 Proof overview with an outline of key technical ideas used

We construct our PRG F by composing a Johnson-Lindenstrauss matrix L! with the following
PRG H constructed by Kabanets, Lu in [18], that is F = L o H. They construct H by
constructing a hard function that can’t be computed by PTFs and using the Nisan-Wigderson
hardness vs randomness template.

» Theorem 2. Given e > 0,n € N, one can construct a function H : {£1}* — {£1}" such
that for any degree 2 polynomial q : {£1}" — R, the probability that q(x) > 0 at a uniformly
random point in {£1}" is approzimately (within €) equal to the probability that q(H|[z]) > 0
at a uniformly random point in {+1}t. That is,

|w~{E1}nsgn(q(I)) — zN{El}tsg”(Q(H[Z])” <e

where the seed length of H ist = O(eV'°8n1oglos <),

Let’s first understand the seed length needed for our PRG F.

2:3
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Seed length

We use Kabanets PRG H to stretch from an initial seed of length t to dimension m. This is
further stretched by L from m to n (think of m as (1)%(1)). Thus the seed length ¢ needed

to make Kabanets PRG H work is t = O(eV'°8m1og10e(&)) since m = (1)) this would

€

amount to a seed of ¢t = O(eV1°8()1og1o8()) " I, would further use randomness needing an
extra seed of O(log n). Thus F would need a total seed length s = O(log n+eVs(:)loglos(2)),

Analysis

To analyse our PRG we split the error into two steps as follows:
Replace the n pure random bits input by m pure random bits We replace the n pure
random bits x by Ly, where y has only m purely random bits.
Replace the m pure random bits by t pseudorandom bits We further replace the m pure
random bits y by even fewer ¢ purely random bits z. This is done via H, that is y = H|z].

We depict this in the following equation:

: e FlzDi=1, & - E L(H
|x,\,{i1}n89n(p($)) ZN{j:l}tsgn(p( [Z]))‘ |mw{:|:1}nSgn(p($>) Zw{il}tsgn(p ( [Z]))‘
< E sagn x))— E san L
<l Esone@)= (B sgn(pL(y))]
+  E  sgn(pL(y)— E _ sgn(pL(H|[z)))|.
o By L) = E | sgn(pL(H[:])|

Let’s understand these steps:

1.4.1 Stretch t pure bits to m pure bits,
E sgn(pL — E sgn(pL(H|z
| E,son(pL(y) — _E sgn(pL(H[)|
As L is a linear operator, pL would still be a polynomial of degree 2. This error is small
because H fools all degree 2 PTFs including pL. Thus we are using the PRG H to go from a
space of dimension t = O(eV log(¢) log log(%)) to a space of dimension m = Gﬂ% The main
technical idea used by [18] to achieve this is to give a hard function for PTFs and invoke the
Nisan-Wigderson hardness vs randomness template.

1.4.2 Stretch m pure bits to n pure bits,
|E, son(p(@) — E  sqn(pL(y))

We show that this error is small in two steps:
Move from Boolean to Gaussian setting We first move from the Boolean input to the
Gaussian input setting. This can be done very easily for some special polynomials
(regular). For a non regular polynomial we use technical ideas like the regularity lemma
[6].
L is a good PRG for Gaussian inputs When the input is Gaussian we have a lot of
geometric structure. In particular using Central limit theorems(as done in [3]) any
polynomial can be seen as a low dimensional very structured part and a lump mass that
can be approximated by a single Gaussian. We show that L preserves this structure and
thus we don’t incur much error in changing x to Ly.
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Move from Boolean to Gaussian setting

There are two technical ideas used here.

Regular polynomials A polynomial is reqular if no single input variable has a huge
influence over the value of the polynomial. When a polynomial is regular one doesn’t incur
much loss when switching the input from boolean to gaussian as shown by the Invariance
principle [16]. Think of this replacement as a telescope of replacing the variables one at a

time and the error incurred when the ith variable is replaced is captured by its influence.

In fact in this paper we show that L keeps regular polynomials regular. Thus if p is
regular then so is pL. Thus we switch from boolean inputs to gaussian inputs for both p
and pL.

Regularity Lemma If a polynomial is not regular, then you could incur huge loss by
directly switching the inputs from boolean to Gaussian. However there could be very few
variables that have such a huge influence over the polynomial. So if these few variables
are fixed the rest of the polynomial will either have negligible mass or be regular both of
which are amenable to replacement from boolean to gaussian inputs. Thus the technical
idea used here is the Regularity lemma of [6] which shows that every polynomial can
be seen as a decision tree corresponding to the high influence variables that are fixed
wherein the leaves are either regular or almost constant polynomials. We show that our
JL matrix L interacts well with the Regularity Lemma. That is under the hash function
of L we don’t see any collision for the high influence variables whp. Also the low influence
variables that do hash collide with these high influence variables contribute very little
mass to pL.

L is a good PRG for Gaussian inputs

There are two technical ideas used here.

Central Limit Theorem If all the eigenvalues of a polynomial are small relative to its
variance then the polynomial can be well approximated by a single Gaussian as shown
in [3] via a Central Limit Theorem. Since the variance of the polynomial is a constant,
there can be only few large eigenvalues. Thus any polynomial can be seen as a structured
polynomial consisting of the few large eigenvalues and an eigenregular polynomial that
can be replaced by a single Gaussian. Thus the only essential information is in the top
eigenstructure and the lump mass of the rest of the eigenvalues.

Structure preservation by L We show that our JL matrix preserves the structure of
these top few eigenvalues and also maps polynomials with small eigenvalues to polynomials
with small eigenvalues with high probability. Thus L keeps this top eigenstructure+lump
mass structure intact. It also approximately preserves the L? norms and covariance of
polynomials and thus we see that L is a good PRG in the Gaussian setting.
The Meka-Zuckerman PRG for LTFs in [15] uses a similar type of dimensionality reduction
idea to reduce the seed length from O(logQ(%)) to O(logn + log? ).

1.5 Overview of the paper

We present the mathematical preliminaries required in section 2 and show that the PRG
construction works under the assumption that p is regular in section 3. Then we prove a
reduction from the general case to the special case of regular polynomials in Section 4. We
present the conclusions in section 5.

2:5
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Note:

All through the paper we will be bounding errors whp as ﬁ Note that these errors are
less than € if m is Chosen to be a sufficiently a large polynomial of % Think of whp to mean
with probability 1— mg(l)

All through the paper we leave the errors in terms of m, think of adding up all the errors
and union bounding the probabilities and fixing all the parameters in terms of € and then we
choose a sufficiently large m = EQ% to make the sum of all the errors O(e) and the union of
all the error probabilities O(e).

2 Preliminaries

2.1 Basic results on polynomials, concentration, anticoncentration,
invariance and regularity

Concentration

We begin with a standard concentration bound from [4] that says that Gaussian degree-2
polynomials are concentrated around their mean. We would need this multiple times in the
paper to show concentration of Gaussian polynomials.

» Lemma 3. Let p: R™ — R be a degree-2 polynomial. We have

p(@) ~ Elp()]| > tv/Varp]| < e 0.

x~./\/” (0,1)

Anticoncentration

We will need the following standard Carbery-Wright anticoncentration bound from [1],[4] that
proves a bound on the mass a Gaussian degree-2 polynomial could have around any point.
This would be useful in many instances including when we change functions of Gaussians.

» Lemma 4. Let p: R™ — R be a degree-2 polynomial that is not identically 0. Then for all
€ >0 and all 8 € R, we have

Ip(a) — 6] < ev/Var]| < O(vo).

INN" (0,1)

The following lemma from [4] is very useful as it helps us bound the distributional distance
between two Gaussian polynomials by just bounding the L? norm. The proof follows from
an application of Lemmas 3,4.

» Lemma 5. Let a(x),b(z) be degree-2 polynomials over R™. For x ~ N™(0,1),
if Ela(x)—b(x)] = 0, Var[a] =1 and Var[a—b] < (8/2)%, then

B (@) = B sgn(b(z))| < O().

Invariance Principle

The Invariance principle bounds the change in E[sgn(p(x))] when the input is changed from
Boolean to Gaussian. We use the following lemma based on [16].
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» Lemma 6. For any degree 2 multilinear polynomial p =% azjzx;+ Y, bz +C, we
1,j€[n] l€[n]
have the following bound:

o Bysome@) = (B som@) < O\ s

ilnff(p)r

where the ith influence of p is defined as Inf;(p) = IE|%|2 =23 a; +b;
' j€ln]

Think of ith influence as the variance of p along the ith coordinate.
Observe that Var[p] < Y Infi(p) < 2Var[p]. Now we define the notion of regularity for
i=1

polynomials which essentiaﬁy means that there is no single variable whose influence is very
large as compared to the rest of the variables.

» Definition 7. We say that the polynomial p is T-regular if max Inf;(p) < 7Var[p].

i€[n]

Thus for a 7-regular polynomial p we can bound the replacement error above as O(T%)
because

S Infip)  fmacInfi(p)] 3 Infi)
VarplZ = Varl)? =2

Note that when we apply this, we pick 7 = ¢,

Regularity Lemma
We will use the following Regularity Lemma from [6]:

» Lemma 8. Every multilinear degree 2 polynomial p : {£1}™ — R can be written as a

o(1)
decision tree of depth D = % . O(log #) such that with probability (1—0) over a random
leaf the resulting polynomial p, ts either

(i) 7 regular, OR

(ii) Var(pa) < 0llpl3-
Note that when we apply this Regularity lemma we will choose 8 = ﬁ, 7 =¢9M 50 that

D = (logm)©M). After all the parameters are fixed we finally pick m = 69% large enough
so that all the errors get bounded by O(e).

2.2 Eigenvalues of polynomials, Central Limit Theorem.

Eigenvalues

Let p: R™ — R be a multilinear polynomial of degree 2. Thus there exist a real symmetric
matrix A, a vector B! and a constant C such that

p(z) = 2" Az + Bz + C.

The eigenvalues of p are defined to be the eigenvalues Aq,..., A, of the real symmetric
n

matrix A. Since p is a multilinear polynomial we have > A; = 0.
i=1

2:7
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We have the following expression for variance of the polynomial from [3]:

n

Varp] = Z(bf +2a3;) + Z a?j'

i=1 1<i<j<n

The eigenvalues capture a lot of information about the polynomial. For instance if all the
eigenvalues are small then the polynomial behaves like a single Gaussian. Let’s define this
notion of regular polynomials.

» Definition 9. If all the eigenvalues of a polynomial p are small relative to it’s variance,
that is |Amaz(p)] < €y/Var[p|, then it is called an e-regular polynomial.

Central Limit theorem

We would need the following Central Limit Theorem from [3](Lemma 31 in their paper).
It essentially says that if all the eigenvalues of a degree 2 polynomial p are small then the
polynomial can be well approximated with a single Gaussian which has the same mean and
variance. That is,

» Lemma 10. Let p : R™ — R be a degree-2 polynomial over independent standard Gaussians.
If Amaz(p)| < ey/Varpl, then p is O(e)-close to the Gaussian N (E[p], Var[p]) in total
variation distance(hence also in Kolmogorov distance).

2.3 Definition of L and basic facts.

We define L as follows: L is determined by a hash function & : [n] — [m] and a sign function
o :[n] = {£1} as follows:

L(y)i = o(i)Yn(s)-

Note that for each ¢ € [n], h is uniformly random on [m] and o is =1 uniformly at random.
h,o are chosen from 8-wise independent families. Thus L can be represented by a n x m
matrix where the ith row of L is ¢; = o(i)ep(;) where e; is the jth standard basis vector of
R™. Tt is depicted in the following figure:

Figure 1 Construction of L
Note that the rows of L satisfy the following properties:
Er[(ciy¢j)'] = Erl{ei, ¢)°] = by

Exl(ci, ;)] = {11, it i=j

o, else.
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Note that this is a standard Johnson-Lindenstrauss matrix. In the following Lemma we
show that they preserve L? norms and inner products of vectors to give a feel for the kind of
computations we need. In fact L preserves a lot more structure as we shall see in the next
section.

» Lemma 11. For any n,e > 0, there exists an m = poly(%) and an explicit family of Linear
transformations L' (with seed length O(logn) from {£1}™ — {£1}") so that for any two unit
vectors vy, vy € R™ we have

|(L'vy, L'vg)—(v1,v2)| < € wp 1—2¢ over L.

Proof. We know that Liv; = Z vic;, Ltvg = Z vjc;.

Thus we have

n n
(Llvy, Llvg)y = (O wiei, Y vdes) = > vivd{eic;)
=1 J=1 i,j€[n]
(L'oy, Lwg)—(vr,va) = Y vjvd(ei, ¢;)
i#j€[n]
(<LtU17LtU2>_<U17U2>)2 = Z Uzllvizvélib Cll’cj1><cizvcj2>'

11751
i2F£j2

Note that when averaged wrt Ey,, the only terms that survive are those that are paired either
as (21 = 7:27j1 :]2) or (Zl :jg,ig = ]1)
The rest of the terms average to 0 because of the sign o, that is E,[o(i1)o(i2)o(j1)o(j2)]
only survives if the indices are paired and we already have the constraints i; # ji,i2 # Jo.
Thus we have

E;,((L'vy, Livs)—(v1, v3))2

> W) (W) Erfei,e)® + ) vivsviEL (ei ¢))?

i?'fj i#£]
=— Z 2+ vjvso]v]]
1#]
< i<|v1|§|v2\§ o w)) < -
m m
Thus using Chebyshev’s inequality we have
1 2
|<Lt’[)1,Lt’()2>—<U1,U2>| S m wp (1 — W) over L.
Now we choose m = E% to have
|(L'vy, L'vo)—(v1, v2)| < € wp 1—2¢ over L.
This completes the proof. |

To see that norms are preserved too just choose v = vy above.

Note

All through the paper we will be computing such expected moments and bounding them by
ﬁ and then use Markov|Chebyshev’s inequality (We can’t use big moments because L
has limited independence). Think of these errors as small because after all the parameters
are fixed we pick m = EQ%, to be a sufficiently large polynomial of % to bound all the terms
by O(e). We showed the constants explicitly in the above Lemma but we would not be
computing them exactly later on and just denote them with O(1).

2:9
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2.4 Technical Lemmas involving L

We show that the transformation p — pL doesn’t change the variance by a lot. If p(x) =
x'Ax + B'z + C then pL(y) = y*(L'AL)y + (B*L)y + C. Note that this is just a basic
moment computation and doesn’t involve anything non trivial.

» Lemma 12. If p(z) = z' Az + Btz + C is a multilinear polynomial, pL(y) = y*(L*AL)y +
(B'L)y + C. Then,

3 3
2, SN2 — AL
ErVar[pL] = Zb ( m) |Al% = Var[p] + m|A|F
Proof. We know that

Var[p] = Y (07 +af) + [|All7 = Y 6 + || All%.
i=1

i=1

Let’s compute the same for pL. Note that L'AL = Y a;j¢; ® ¢;.
1,j€[n]
Thus,

|LtAL|2F = Z iy, 51 Fig,jo <Cilvci2><cj1’cj2>
i1,1,12,52€[n]
Y olin)oliz)o(j1)o(j2)ai, g, @iy o I {h(i1)=h(ia), h(j1)=h(j2)}.

1751
i2#j2

Let’s take expectation over . We know that E, [0 (i1)0o(i2)o(j1)0(j2)] # 0iff (i1, 51) = (i2, j2)

or (i1, j1) = (ja, i2)-
Let T1 denote the terms of the first kind, then we have 71 = Y a, ; = |A[%. Let Ty
11,51

denote the terms of the second kind, then we have To = Y a7, ; I{h(i1)=h(j1)} and thus

11,71
BT = 3 a0 = Al
i1,J1
Also
(B'L,B'L) = > bi,biy(ciy,ci) = 0(in)o(in)bi,biy I{(i1) = h(iz)}
i1,i2€[n] 11,12
E,(B'L,B'L) Zb2
We now compute Y (L'AL)?.
l€[m]
S @ani =3 (L o)’ = ¥ mnonSodddd,
le[m] =1 ij€n] 11,%2,J1,J2
= Y o(in)o(iz)o(j1)o(G2)ai, jy @i j {1 )=h(iz)=h(j1)=h(j2)}
11771
i27# ]2

Let’s take expectation over o. We know that E,[o(i1)o(i2)o(j1)o(j2)] # 0 iff (i1,41) =
(i2, j2) or (i1,71) = (ja,92).

E, > (L'AL); =2 af ;, I{h(i1) = h(j1)}

le[m] 11,71
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Thus,

2
Egp Z (L'AL)}; = E\Aﬁv- <
le[m]

In the following Lemma we prove bounds on Vary[Vary,[pL]]. This would help us show
that Vary[pL] = ©(Var[p]) whp.

» Lemma 13.

o(1)
Varp[Vary[pL]] = -
Proof. From Lemma 12 we have

m
ILYAL[R +[B'LE + ) (L'AL);

Vary[pL] =
=1
= Z iy Gy Qig gy <cl1>clz><cjlﬁcjz + Z bT1bT2 CT17CT2 + Z LtAL ll
91,%2,J1,]2 1,72 =1
where
S (LAL)G = > a(in)o(ia)o(j1)o ()i, ji iy o {1 )=h(i2)=h(j1)=h(j2)}
le[m] 11751
i2F]2
Thus we have
Vary[pL] — Er[Vary[pL]] = Z @iy jy Qigsn (Ciy s Cin ) (Chy 5 Cjn )+ Z by, byy (Cry s Cry )
(31,71) #(42,52) T1#£T2

m
3
2 2
+Z(LtAL)” - E|A|F'

1=1
We skip showing the elaborate yet simple moment calculations but observe that when squared
and averaged over L each term above will have atleast a % term in it. Also the corresponding
coefficients can be bounded using Cauchy Schwarz and noting that |B|3 < 1 and |A]% < 1.

Thus

Ep (Vary[pL] —E.[Var, [pL]])2 - o(w). <

m

Now we put together these two Lemmas to show that Vary[pL] = ©(Var[p]) whp. We
exclude the proof as it is a direct consequence of Chebyshev inequality using Lemma 12 and
Lemma 13.

» Lemma 14.

[Vary[pL] — Var[p]| < O(‘:;T[p}) wp (1 -

73 ) over L.

mli/3

The following lemma would also be useful. Intuitively it means that L would not perturb
an eigenvalue of A by a huge amount whp. In fact this would imply that all the eigenvalues
of A would be in the pseudospectrum of L'AL.

2:11
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» Lemma 15. Let A be an eigenvalue of A and let the unit vector v be the corresponding
etgenvector. Then we have

EL|(L'AL — M) L'0f2 = o(i).
m

Proof. Substituting Av = Av, we have
(LPAL — Alpm) Ltv = L' ALL0 — Lt Av.
Expanding the product L* ALL'v we have,

L*ALLYy = Z a;jci(Cj, Cr)Vk
i,5,k€[n]

L'ALL'v — L'Av =" a; jei(cj, cr)vr

. 7
J#k
Thus
t t t 2 __ o L . . . .
|L ALL'v — L AU‘Q = E iy, 51 Aig, 52 Vky Vks <Cl1 ’ 012><leﬂck1><cj27ck2>‘

1,12
J1#k1
JaF#k2

A term survives E, only if all the indices {i1,%2, j1,jo, k1, k2} are paired appropriately.
However when we take Ej, since we have j; # k1, jo # ko we would see atleast a 1/m in every
term. Now the corresponding coeflicient can be bounded using Cauchy Schwarz and noting
that |v|3 = 1 and |A]% < 1. Thus we have

EL|(L'AL — M) Liv|3 = @. <
m

3 The regular case

A polynomial is regular if a single variable can’t influence its value by a lot. This comes
into play when we try to employ the Invariance principle. Invariance principle shows that
when the underlying variables are changed from Boolean to Gaussian the probability that
the polynomial is positive will change by an amount proportional to the maximum influence
of a variable over the polynomial. Thus let’s assume regularity in this section so that we
don’t incur much error when we switch between Boolean and Gaussian inputs.

Proof under the assumption that polynomial is regular

In this section we assume that the degree 2 polynomial p(z) is 7-regular and show that

\xN{IEil}nsgn(p(x)) - yN{IEHmsgn(pL(y))\ is small whp over L.

We do this in three steps:

Replacement from Boolean to Gaussian for p(x) We change the underlying input variables
from Boolean to Gaussian. Since we assume the polynomial is regular, we do not incur
much error when we do this via Invariance principle.

PRG error for Gaussian setting Once we are in Gaussian setting we show that L is a
pseudorandom generator for degree 2 polynomials for Gaussian inputs. The basic idea
is that for PTFs in the Gaussian context one only needs to keep track of the top few
eigenvalues and the total L? norm of rest of rest of the eigenvalues. We show that a
Johnson-Lindenstrauss matrix preserves this top eigenvalue structure and the mass in
the rest of the eigenvalues.
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Replacement from Gaussian to Boolean for pL Since p is regular we show that pL is
regular whp too. This let’s us go back from Gaussian to Boolean setting via the Invariance

principle.
This is depicted in the following equation:
&y some@) = B sgnLlw)l <] B son(p(z) = K | son(p@))]
B ysonela) = B sgn(pL)
Ao el®) = B sgn(pLy))]
The first term |w~{]’:Et1}nsgn(p(a:)) - z~NI§(071)Sgn(p(z))| < O(e) using invariance principle

from [16] since we assumed that p(x) is 7-regular where 7 = ¢9(1).

Now we bound the other two terms in the following sections.

3.1 Gaussian PRG |$NNI§(0’1)sgn(p(w)) yNNIE(O’l)sgn(pL(y)ﬂ

In this section we will show that in the Gaussian setting p cannot distinguish between x and
Ly. The main idea is that to understand the average sign of a degree 2 polynomial you just
need to keep track of the top few eigenvalues and the total mass in the rest of the eigenvalues.
This is because either the latter eigenvalues are too small and thus the truncated part overall
contributes very little mass to the total polynomial or these eigenvalues are small but do
contribute a significant fraction of the total mass(we call this part the eigenregular part),
then you could replace all of them by a single Gaussian with the same total mass via the
CLT tools used in [3].

Thus let’s think of the polynomial p as the top few eigenvalues and a lump mass of the
rest of the eigenvalues. The Johnson-Lindenstrauss like matrix L we use preserves the top
eigenvalue structure of the polynomial and also keeps the eigenregular part still eigenregular.
It introduces some negligible dependence between the top eigenvalue part and the eigenregular
part which we remove to begin with to keep them independent.

To begin with assume p(z) = x' Az + Btz + C be a degree 2 multilinear polynomial with
|A|F = 1. Since A is a real symmetric matrix, let it be diagonalised as A = VAV, where V
is an orthonormal matrix who columns are the eigenvectors of A. Let the eigenvalues of A
be |A1| > [A2] > ... > |\n|. Now let k + 1 be the first index with |A\;11| < § where we will

choose § = €™ later on. Since > A? =1, we know that k < & = ()9 < m. Let Vi,
i€[n]

denote the first k eigenvectors of V and A, denote the top k& x k diagonal submatrix of A

containing the top k eigenvalues of A.

» Definition 16. Define A; = ngAkV%k to be the top eigenpart of A and Ay = V>kAZ+1V>tk
to be the lower eigenpart of A, we have A = A1 + As.

Accordingly decompose p(z) = ¢1(z) + 71(x) where
q(z) =2'Ax + BtVSkV;cx +C,
ri(z) = 2t Agz + BtV>kVikx.

Note that ¢1(z) and ri(z) are independent of each other because the columns of V<, are
orthogonal to the columns of V. In the following lemma we replace r1(z) by just a single
Gaussian that has the same mass and thus ignoring the total structure of 1 (). Let z be an
one dimensional Gaussian independent of z.

CCC 2018
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» Lemma 17. Given € > 0 let 6 be a sufficiently large power of €,6=e°M). If p(x) can
be written as a sum of two independent polynomials, that is p(z) = q1(x) + r1(x) where
[Amaz(r1)] < 6, then

E - E ( % )‘ O(e).
LB @) = B son(a) + Tarlz)| < 060
2~N(0,1)

Proof. We consider two cases:
Case I - Say 7 has very small variance, that is Var[rl( )] < 2. Then we can use
Lemma 5 to see that the replacement of r1(x) by /Var[r1]z will only incur an error of
at most O(e) . By an appropriate choice of § = ¢?(!) that we make later on this error
will be O(e).
Case II - Say /Var[ri(z)] > ¢, then note that every eigenvalue A of ri(z) satisfies
|A| < ey/Var[ri]. Such a polynomial all of whose eigenvalues are small compared to
its variance are called eigenregular polynomials and we could use Lemma 10 to replace

x) by y/Var[ri]z and incur an error of at most O(e). Note that we are using the

independence of g1 (x) and r1(x) in a convolution argument used to insert ¢; after applying
the CLT.

Thus in either case the lemma holds after an appropriate choice of § = €©(1). <

To keep the presentation simple henceforth we assume that L'V still has orthonormal
columns, that is VikLLthk = Irxr. The exact computation proceeds by first using the
Gram Schmidt process to orthonormalize {Lvy,... L'v;}. However this would not be very
different from the exact analysis because L approximately preserves inner products and
norms whp and we can union bound because k is a small constant depending on €. In
particular we have the following lemma.

» Lemma 18.
2 k2
-o(3).
m
Proof. This is a straightforward computation. Replacing Iy« k:Vé & V<k,
we have VékLLtVSk—Ikxk = Vék(LLt—Ian)ng. This gives,

‘V<k (LL'—TI, 1, V<k‘ Z (Z vy ’Ub czl,C¢2>)2

a,bek] 1702

Z Z VP UE U iy Ciy ) (Cigy Ciy )

EL’V<kLL VerTioxi|,

a,belk] i1#i2
13704
This gives
2 k2
E. v;k(LLLInX")VSk’ < O(m) <

Let y ~ N"™(0,1) be a Gaussian independent of z,z. Since Gaussian distribution is
invariant to rotations Vi, z ~ N¥(0,1) and [VE, L]y ~ N*(0,1) are identically distrib-
uted. Thus qi(z) = [2'Vep]Ax[VE 2] + B'Ver[VEx] + C is identically distributed as
[y L'V ] AR [VE, Ly] + B'V<i [V, Ly] + C which is exactly g1 (Ly).

Thus we have,

E  sgn(p(x)) — E  sgn (ql(Ly) + Var[rﬂz)‘ < Of(e).

e~ (0,1) Y~ A (0,1)
z~N(0,1)
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Let’s look at p(Ly). We have
p(Ly) =y'L'ALy + B'Ly + C = y'[L'V]A[V'Lly + B'Ly + C.

Let P denote the projection matriz onto the vector space spanned by Ltvy, ..., L'v;. The

projection matriz can be expressed by the m x m matrix P </ L'Ver(VELLL V) ' VEL L.
Note that P? = P, P* = P. Since VékLLthk = Iixk, this simplifies to P = LthkVékL.

Now as before we break p(Ly) into two pieces p(Ly) = g2(y) + r2(y), wherein
@) =y'L'A Ly + B'LPy + C
ro(y) = y' L' Ay Ly + B'L[I-Ply
The goal is to do similar CLT like analysis but the problem is that ¢o2(y) and ro(y) are

not independent. We refine r2(y) to r3(y) to make it independent of g2 (y) by separating the
part of it that correlates with g2(y). That is, define

r3(y) = y'[[-P|L* Ay L[I—Ply + B'L[I—Ply
s(y) = y* PL* Ay L[I—Ply + y' L' Ay LPy.

Observe that r3(y) is independent of g2(y). We have p(Ly) = g2(y) + r3(y) + s(y). First let’s
get rid of s(y) by showing that Var[s] is small whp over L and invoking Lemma 5.

» Lemma 19. Var|[s] = O(ﬁ) wp (1—%) over L.

Proof. Tt suffices to show that |L' A3 LP|r is small. Since P is a projection matrix we have,
|L'AyLP|% = Tr[L' Ay, LPL Ay L] = |L* Ay LL' Vi |3..
Since A = Ay + As, we have
L'AyL = L'AL—L'A L = L' AL—L'Ve Ay VE, L.
Thus

Texk
L'AsLL'Vey = (L'AL) L'y~ L' L LL!
2 Sk—( ) ng LVSkAkVSkLL ng.
= (L'AL)L'Vep— L'V Ay,

Thus we have

k
L' A LL'Vek|f =Y |(LPAL) Loy =N Lhoy 3.
=1

Now we could use Lemma 15 to bound this. So we have,

k
Ep|L Ay LIy |% = O(E).

Now the Lemma follows by Markov’s inequality and noting that Var[s] = O(|L' Ay LP|%).

<
Now we could apply Lemma 5 to remove s. That is,
| E sgn(g@)4rsy)— E  sgn(pL( ))|<0(L) w (1—%) over L
oo e Wtrsw) = B sgn(pL)] < O( oy ) w 7

Now that ¢2(y) and r3(y) are independent, to go ahead with the CLT like analysis we
first show that the largest eigenvalue of r3(y) is at most /4.

2:15
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» Lemma 20. \,..[r3(y)] < V6 whp

Proof. We want to show that the eigenvalues of [[—P](L!AsL)[I—P] are small. Its eigenval-
ues are interlaced into the eigenvalues of L' A5 L because [[—P)] is a projection matrix. Thus
it suffices to bound the eigenvalues of L'AyL, where Ay = V5, A} +1V Note that A5 is a
symmetric matrix with spectrum 0%, \g 11, Agt2, ..., An. To bound the eigenvalues of Lt Ay L
we bound Tr(L'AsL)* = |(L' A3 L)?|%. We have

(L'ALL 5= Y Avjy Az, Az o Az (s s ) {Cias €is) (Chas €s) (S 52

J1-js€(n]
o)
EL[(L' ALY [f = Y AsjyjuAojnjiAzgijo Azjoss + =
J1,42:34,36 €[n]
1 1
—7r(ag)+ 20 <52 OO
m m

This shows that the maximum absolute eigenvalue of 3(y) is at most O(v/8) whp. This let’s
us either remove it as a low variance term or apply the CLT machinery on r3(y). <

Now that ¢ and r3 are independent polynomials and since Lemma 20 gives Apaz[r3(y)] <
V8 we could use a slight variant of Lemma 17 to bound the following error:

E V - E O(e).
5xyp”““”+ arlslz) = B son(@)+rsw)] < 0(e)
z~N (0,1

We now bound the remaining term that finishes the telescoping for the Gaussian PRG part.

» Lemma 21.

E ( L % ) - E ( i% )‘ < O(e)wh
E om0 VYT - m o) +VVarllz) | < 0wy
z~N(0,1) z2~N(0,1)

Proof. Since y and z are independent it suffices to show that Vary[¢:(Ly)—g¢2(y)] and
|Var[ri]—Var|rs]| are both small and invoke Lemma 5 to prove this Lemma.
We have

@2(y)—aq1(Ly) = B[LL' =1V, Vi, Ly

2
Var [fh(y)—ﬂh(Ly)} = ‘B[LLt—I]VSkVEkL‘Z

Since L'V, has orthonormal columns, this simplifies further to

zk:[ > Cnv%)bjlvzjzr

=1 ji1#j2€[n]

Var i) -0 (Ly)] = |BLL-1)Ves |

Thus ]ELVaT[%(y)—ql(Ly)} = O<k‘£‘2)'

To see that Var[r1] = Var[rs], note that Var[rs] =~ Var[rs] because Var[s(y)] is small as
shown above. Now to show that Var[ri] = Var[rs] we need to show the following:

|As|p ~ |L' Ao L|p. This follows from Lemma 12.
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| BV, V2, o~ | B L[I—P]|5. To show this note that BV, VE, 3= > (B',v)?. Since
t=k+1
L'V« has orthonormal columns, we have
k
|B'L[I-P||3 = |B'L|3 = Y (B'L,L'v)>.
1=1

Now this follows by noting that L! approximately preserves the norms and inner products

of vectors and that since k is a constant we can union bound. <
To summarize we telescoped the Gaussian PRG error as:
E - E L(y))| <
o one@) = B saneL®)] <
g =l + V)|
$NNR(O,1)59n(P($)) o 012" o (Ly) + v Var[r]z
z~N(0,1)
T B
+ ‘yNNm(OJ)Sgn a1(Ly) + arlri]z y~/\/m(o,1)sgn a2(y) + ar|rs)z
Z~N(0.1) 2 N (0,1)
+ |y~/\/m(0,1)sgn a2(y) + arlrs)z y~Nm(o,1)Sgn(QQ(y)+T3(y))|
z~N(0,1)
+ |y~N,,,L(011)sgn(Q2(y)+r3(y)) yNNm(O’l)sgn(p )|

and showed that each of the terms is small whp over L. This completes the analysis of the
Gaussian PRG error term.

Now we move back from Gaussian to Boolean setting to finish the analysis for regular
polynomials.

3.2 Replacement forpL| E sgn(pL(y))— E sgn(pL(y))|
y~N™(0,1) y~{x1}m

We do this change in two parts:
Linearize pL to pLy;, The application of invariance principle needs the polynomial to be
multilinear but pL need not be multilinear even though p is. Thus we pre-process pL to
convert to the multilinear polynomial pL;,.
Replacement for pLy;, Since p is multilinear, we show that pL;;, is regular whp and then
apply the invariance principle.

Thus we split the replacement term for pL as an error between pL, pL;;, in Gaussian setting

and a replacement error for pLy;,. This is depicted in the following equation.

ooy L) = B son(pLy))] <

y~N"(0,1)
L oa B wLw) = B son(pLin(y))]
+\yNNm(O71)sgn(p in(y)) yN{il}mSgn(p 1in(@))]

3.2.1 Linearize pL to pLy;,

E L - E Lo
o9 PLW) — K sgn(pLin(y))|

Note that p is a multilinear polynomial but pL need not be multilinear. For example L could
map both z;,z; to y; and thus the monomial z;z; to y?. y? would be the constant 1 in the
boolean case but would be a non linear term in the Gaussian case. However the invariance
principle works only for multilinear polynomials. Thus we linearize pL as follows:

2:17
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» Definition 22. pL;;, is the linearized version of pL - Every occurence of a term like y? is
replaced by the constant 1.

Note that pLy;, satisfies the following properties:
(i) pLiin(y) = pL(y) when y is Boolean.

() o PEW) = PLin(y)] = 0.

We bound this linearization error using lemma 23 and lemma 5. Lemma 5 shows that
the distributional distance between pL, pLy;y, is small if [pL—pLj;p|2 is small and Lemma 23
shows that this is the case.

» Lemma 23. The non-linear part of pL has small variance with high probability over L,

B o L Pl < T2 ap (1 O over .

Proof. From the basic definitions of p, L, pL;;,, we have,

D= Zaijxixj + Z brxy + C.

pL = Z a;j0(1)o (§)Yn)Yn) + Z bro (k)Y + C.
k
pL — pLiin = Z [y} —1] Z aijo(i)o(j).
te[m] 1,5:
h(i)=h(j)=t
We calculate the variance of pL—pLy;, by noting that E [y2 — 1) = 2,
yen N1 (0,1)
B o PLO) = PLunw) =2 3 ) asjano(i)o (o (k)o(l).

te[m] iyg.kl:
h(i)=h(j)=h(k)=h(l)=t

We then calculate the expected variance over the sign . This makes a term 0 unless it is
paired as {i,j} = {k,{}.

E, E L Liin(y)]> = 2 2.
yNN"”(O,l)[p (y) p ! Z Z a”

i,
h(i)*h(J):t

Now we calculate the expected value of this over the hash function h.

2 2
E,E, E L Liin(y)]? = 2 n==lAlE <=V .
nBo o PLO) —pLi ZZ —[|Al[F < —Varp]

The lemma now follows by the Markov inequality applied to NE(O 1)[pL(y) —pLin(y))>. «
y~N™(0,

Now we invoke Lemma 5 to finish the bound on the linearization error.

— . < — 7 - .
|y~NE(O,1)Sgn(pL(y)) waE(O,l)Sgn(pLhn(y)” /12 wp ( \/ﬁ ) over L
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3.2.2 Replacement for pL,;,

E  sgn(pLin — E  sgn(pLin
|y~Nm(o,1) gn(pLiin(y)) oty m®9 (pLiin(y))|

Using Invariance principles from [16], Lemma 6 we have,

Z Inf?(lezn) %
E Lin(y)) — E Liin(y)] €O |
|yNNm(O71)Sgn(p l (y)) yw{il}msgn(p l (y))‘ = (VCLT[pLM"DQ 1
where
Inf.(pLyn) =2 Z [Zauazaj —&—[Zbla }
se[m]\r Lh(i)=r h(l)=
h(j)=s

A simple but elaborate computation would show that

EL(iInff(lem) _ En:-r”ff(p))Q _ O(Vam[p]) _ 0(1)’
r=1 P

m m

Thus using Chebyshev’s inequality we have,

Zlnf (pLiin) <Zlnf Varl[ 7 wp (1— O(l)) over L.

1
m3 m3

Since p is T-regular, we have
> Infi(p) < max I f(p an filp) < 2rVar?[p).
j=1

Note that Var[pLiim] = ©(Var[p]) wp (1——257) over L by Lemma 12.
Thus we can bound the replacement error for pLy;, as follows:

1 \s 1
) _ . < _
B2 Lin() = B sgn(pLin(y)] < O(2r+ m) wp (1577 ) over L.
Note that we will be choosing 7 = €M) and m = eﬂ% which would also ensure that this
error is < O(e).

4 Reduction to the regular case

If the polynomial p is not regular we fix few variables that have large influence to get to
a polynomial that is either regular or constant. We note that under L the high influence
variables would most likely have landed in separate bins and thus remain independent. The
other variables that land in the same bin as one of these high influence variables do not
contribute much to the size of the polynomial.

Proof that theorem holds for regular polynomials implies it holds for all polynomials

The idea of this reduction is a careful analysis of Lemma 8. This is the standard Regularity
Lemma from [6].

We look at p as a decision tree using Lemma 8. If o denotes a path to the leaf in the
decision tree then let p, denote the restriction polynomial along the path. Let S(«) denote
the set of variables that are set along the path a.

2:19
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Note

Pa is only a function n—|S(a)| coordinates that are not set along the decision tree path a.
For the ease of notation we look at it still as a function of n coordinates, wherein it just
ignores the coordinates that are already fixed along a.

Averaging over all the decision tree paths we have,

IN{I:EH}"sgn(p(x)) =E, [% {ﬂ]%n]\s oy S91Upa(@))]-
Thus let’s split the change from x to Ly, | E sgn(p(xz))— E  sgn(pL(y))| into
x~ {1} y~{E£1}m™
two parts:

Change x to Ly only at decision tree leaves Here we average the values along the decision
paths based on the values set by o and only make the change x to Ly at the leaves. Note
that analyzing this would be easier since the disagreement is only at the leaves and we
know that the leaves are either regular or constant.

Changing Ly at leaves to Ly overall Here we bound the error we incur by going from o
setting the values along the decision path followed by Ly setting the values at the leaves
to Ly setting the values overall. To analyse this we will be introducing a new distribution
Ly’ that only disagrees with Ly on very few variables.

This split is depicted in the following equation,

E sgn(p(x)) — E  sgn(pL <
&) = B son(pL))] <
E E “E. E L
| a[zw{il}[n]\s(a)Sgn(pa(l'))] a[yw{:l:l}ms‘gn(pa( y))]‘
+Eo¢ E SgN\Pq L — E san(pnlL
Bl B sonpally)]— B son(pLy))]

4.1 Leaf change

Bal_ B w0 @a(@)] ~ Bl _E_ san(pa(Ly)]

Using Jensen’s inequality, also known here as the triangle inequality we have

Eal E _sgn(pa(z)] —Eal E  sgn(pa(Ly))]] <

xN{il}SC yN{:I:l}’”
E E (;g - E (; .
Oé‘ ~ l}Sc n(pa(x)) ~{£1} gn(pa(Ly))|

By the regularity lemma we know that with probability atleast (1—8) (where 6 = \/%) the

leaf p,, is either 7-regular (where 7 = ¢©(1)) or p,, is almost constant (that is Var[p,] < ﬁ)
Now
Regular If p, is 7- regular, we could just bound the error by e using our results from the

previous section.
Constant If p,, is almost constant, then wlog it is of the form 1+q where Var[q] = —=

m’

thus sgn(pa(x)) = sgn(pa(Ly)) with probability 1—\/—%.

In either case we have

E E ~E, E L
| a[mr\«{ﬂ:l}[n]\s(a)Sgn(pa(x))] CY[y~{il}’”sgn(pa( 2
1
< (1-60)e+ 20 wp (1 - 7m0(1)> over L
1 1 . 1
:6+W wp (1—W> over L since 0 = \/7%
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4.2 Changing Ly overall

Eo E o(Ly)] — E L
[Eol B ..597Pa(Ly))] — B sgn(pL(y))|

To bound this term we introduce a new intermediate distribution Ly’. As long as L doesn’t

hash collide two high influence decision path a variables, Ly and Ly’ are identically distributed.

In fact they agree on all variables except on those variables that hash collide with the decision
path variables. On these variables Ly’ just assigns the decision path variable’s value to every
other variable that lands in its bin.

» Definition 24. We define Ly’ as follows:

x; i€ S(a)
(Ly")i = < (Ly)s i€ LS(a)¢
Th=1(h(i)) xS LS(CM) \ S(a)

where LS = {i € [n] : h(i) € h(S)} and for j € [m],h=1(j) is the smallest i € [n] such that

h(i) = j. This essentially fixes all the bits that hash collide with the decision path variables.

Now we split the error in changing Ly on leaves to Ly overall further into two steps.
Changing Ly on leaves to Ly’ Here we observe that Ly and Ly’ agree everywhere except
the variables that hash collide with the decision path variables. The depth of the tree is
small D = logm, thus each variable collides with a decision path variable with very small
probability lm%. Thus this difference amounts to a negligible fraction of the variance of
the polynomial.

Changing from Ly’ to Ly overall Here we only need to bound the probability that two
decision path variables along o dont hash collide. As long as thing doesn’t happen Ly
and Ly’ are identically distributed.

This is depicted in the following equation:

Eof E  sgn(pa(Ly))— E  sgn(pL <
| [yw{il}m gn(pa(Ly))] iy 9 (pL(y))|
Ea ]E SgN(Pa L 7Eo¢ E SgN\ P L !
| [yN{il}m gn(pa(Ly))] [Mil}m gn(pa(Ly))]]
+Eo[ E  sgn(pa(Ly’))]— E sgn(pL
Bl B s0nally)]= E . sgn(pl(y))

4.2.1 Changing from Ly’ to Ly overall

E E sgn Ly ))]— E sgn(pL

[Eal E..597Pa(Ly)]= E sgn(pL(y))|
Here we only need to bound the probability that there is no hash collision on S(«). This
is because if h does not have a hash collision on S(«), then Ly and Ly’ are identically
distributed. That is,

Eql [ sgn(Pa (Lyl))] - Eyh,[sm)] [

yr{£1}mINA(S (@) Sgn(PL(y))]‘

E
Y {1 MRS ()]
< 2Pr (|[S(@)]] # IS(a)]).

Note that the above equation is for a fized hash map h. The probability is over the choice of
random paths « of the decision tree but for this fixed h. It is the probability that a random
decision tree path sees a collision wrt this fixed hash map h.

We show that for most hash maps (whp over L) this term is very small.
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» Lemma 25.

[P (sl £ 5(@])] < 2.

Proof. Interchange the expectations and fix a depth D decision tree path and observe that

D
the probability that a random & has a collision along this path is at most (—;) |

Hence by Markov’s inequality we have,

Pr (|h[5(a)]| ” \S(a)|> < \1/7% wp (1 - (3/%)) over L.

Note that D here is poly(logm).

4.2.2 Changing Ly on leaves to Ly’

E E sgn L —E E sgn Ly’

Bal_E, s9n(pa(Ly))] — Eal, B sgn(pa(Ly))]
Note that Ly and Ly’ agree everywhere except the variables that hash collide with the
decision path variables. Thus the part of the polynomial that disagrees wrt Ly and Ly’
only contributes little mass to the total polynomial. However in order to use this fact to
bound this term we would need to move back to Gaussian setting so that we could use
Anticoncentration like ideas.

Jensen’s inequality, also known here as the triangle inequality gives

Eol E  sgnpa(Lly)] —Eo[ E  sgn(pa(Ly))]

y~{£1}m y~{£1}m
<Ea{ E sgn(p.(Ly)) — E  sgn(pa(Ly))||.
< |y~{ 1y gn(pa(Ly)) ymfE1) gn(pa(Ly'))|

Now we move back to Gaussian setting by doing a replacement on both p,(Ly), po (Ly').

Eall [E.597@a(ly) = E . son n(pa(Ly))]
Eall B sona(ly) = B son(pa(Ly))]
Eo[| \E . son(aly) = B son(pa(Ly)]|
+Ea[|y o1 sgn(pa(Ly)) {El}msgn(pa(Ly’))I}

Replacement Errors:

Note that with probability (1—6)(where 8 = \/%) the decision tree path « is such that p,(-)

is either regular or almost constant. We use similar analysis as done in the previous section
to bound both the replacement error terms as follows:
o)

1
— < - I eV
]Ea[\yw{liEl},,lsgn(pa(Ly)) yNN@(O,l)SQ”(“(Ly))'} < 0(e+mo(1)) wp (1 \/E) over L

and

, , 1 o(1)
_ < - 7
Eall B o9m@all)= B sona(Ly)l] <O(c+505) wp (1="75) over I



D. Kane and S. Rao

Change Ly on leaves to Ly’ in Gaussian setting

We just need to bound Eo || E oLy)— E o (L))
e just need to boun |yNNm(071)sgn(p (Ly)) yNNm(o,1)s‘qn(p (Ly")l

We show that NE(O 1)[pa (Ly) —pa(Ly')]? is small in Lemma 26 and then invoke Lemma
y~N"™(0,

5tobound | E o(Ly)— E o (L))
o boun, |y~Nm(o,1)39”(p (Ly)) yNNm(Ovl)sgn(p (Ly")l

We expect NE( )[pa (Ly) — pa(Ly")]? to be small because p,(Ly), po(Ly') agree on
y~N™(0,1

all terms except those that contain a variable that hash collides with the decision tree path.
_ (1087")0(1))

o , we expect the overall mass in this

Since this is a low probability event (%
difference p,(Ly) — po(Ly') to be very small.

» Lemma 26.

NI o)
— < — .
o o P I) =PI < (1722 over L

Proof. Let W = LS(a) \ S(«). Expanding out the terms we have

Pa(Ly) =pa(Ly) =2 D> ;%5 (0(2)Yn(i) —Th 1 (nia)]
J1ES,j2€W

+ ) bileynay—zn-1(may)]
lew

+2 Y o)y 02V —Th-1im )]
J1€ELSe, joeW

+ Z 5142 10 (1) (32)Yn (i) Yn(iz) = Th=1 () TR [h(2))]-
J1,J2EW

Note that jo needs to be in W in all of the terms above. This is a very low probability
event. In fact Pry,(j2 € W) = £ where D = |S(a)| is the depth of the decision tree and is
chosen to be (logm)°™).

DVar{pa] (logm)©M
E E aL—aLIQZOiin.
£, B P TY) — palLy) ( - ) ( i )
Thus
log m)©™) o(1)

E a(L _O‘L/2<(7 1——= L. <

y~/\f7n(0,1)[p (Ly) = pa(Ly’)] Jm wp( \/ﬁ) over
Now we invoke Lemma 5 to finish bounding this term,
logm)o(l) 1/6

Sl B ety < (2

|y~Nm<o,1)Sgn(p (Ly)) yNNm(o,l)Sgn(P (Ly")| T )

wp (1 - ?/(%)) over L
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