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Abstract
We consider k-dimensional random simplicial complexes that are generated from the binomial
random (k + 1)-uniform hypergraph by taking the downward-closure, where k ≥ 2. For each
1 ≤ j ≤ k − 1, we determine when all cohomology groups with coefficients in F2 from dimension
one up to j vanish and the zero-th cohomology group is isomorphic to F2. This property is not
monotone, but nevertheless we show that it has a single sharp threshold. Moreover, we prove a
hitting time result, relating the vanishing of these cohomology groups to the disappearance of the
last minimal obstruction. Furthermore, we study the asymptotic distribution of the dimension of
the j-th cohomology group inside the critical window. As a corollary, we deduce a hitting time
result for a different model of random simplicial complexes introduced in [Linial and Meshulam,
Combinatorica, 2006], a result which has only been known for dimension two [Kahle and Pittel,
Random Structures Algorithms, 2016].
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7:2 Vanishing of Cohomology Groups of Random Simplicial Complexes

1 Introduction

1.1 Motivation
In their seminal paper [12], Erdős and Rényi introduced the uniform random graph and ad-
dressed the problem of determining the probability of this graph being connected. Nowadays,
this classical result is usually stated for the binomial model, in which each edge is present
with a given probability p independently: the connectedness of the binomial random graph
G(n, p) on n vertices undergoes a phase transition around the sharp threshold p = logn

n [24],
where log denotes the natural logarithm.

I Theorem 1.1. Let ω be any function of n which tends to infinity as n→∞. Then with
high probability,1 the following holds.
(i) If p = logn−ω

n , then G(n, p) is not connected.
(ii) If p = logn+ω

n , then G(n, p) is connected.

As an even stronger result, Erdős and Rényi [12] determined the limiting probability
for connectedness around the point of the phase transition. Subsequently, Bollobás and
Thomason [7] proved a hitting time result, stating that whp the random graph process
becomes connected at the very same time at which the last isolated vertex—the smallest
obstruction for connectedness—disappears.

Since then, various higher-dimensional analogues of both random graphs and connected-
ness have been analysed and in particular two different approaches have received considerable
attention. A first natural generalisation is the random k-uniform hypergraph Gp = G(k;n, p)
in which each (k + 1)-tuple of vertices forms a hyperedge with probability p independently.
There are several natural ways of defining connectedness of Gp, which have been extensively
studied [4, 5, 6, 8, 9, 10, 11, 15, 16, 22, 23].

A more recent approach concerns random simplicial complexes, of which a first model
for the 2-dimensional case was introduced by Linial and Meshulam [17]. They considered
F2-homological 1-connectivity of the random 2-complex as the vanishing of its first homology
group with coefficients in the two-element field F2, which is equivalent to the vanishing of the
first cohomology group. More precisely, the model Yp = Y(k;n, p) considered by Linial and
Meshulam [17] for k = 2 and subsequently by Meshulam and Wallach [20] for general k ≥ 2
is defined as follows. Starting from the full (k − 1)-dimensional skeleton on [n] := {1, . . . , n},
that is, all simplices from dimension zero up to k− 1, each (k+ 1)-set forms a k-simplex with
probability p independently. They showed that the vanishing of the (k − 1)-th cohomology
group Hk−1(Yp;F2) with coefficients in F2 has a sharp threshold at p = k logn

n .

I Theorem 1.2 ([17, 20]). Let ω be any function of n which tends to infinity as n → ∞.
Then with high probability, the following holds.
(i) If p = k logn−ω

n , then Hk−1(Yp;F2) 6= 0.
(ii) If p = k logn+ω

n , then Hk−1(Yp;F2) = 0.

Later, Kahle and Pittel [15] derived a hitting time result for the case k = 2 and determined
the limiting probability of Hk−1(Yp;F2) = 0 for general k ≥ 2 and p in the critical window.

In this paper, we aim to bridge the gap between random hypergraphs and random
simplicial complexes. We consider random simplicial k-complexes that arise as the downward-
closure of random (k + 1)-uniform hypergraphs. Unlike Yp, in this model the presence of the

1 With probability tending to 1 as n tends to infinity, whp for short.
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full (k − 1)-dimensional skeleton is not guaranteed, thus the vanishing of the cohomology
groups of dimensions lower than k − 1 does not hold trivially. Therefore, for each j ∈ [k − 1],
we introduce F2-cohomological j-connectedness as the vanishing of all cohomology groups
with coefficients in F2 from dimension one up to j and the zero-th cohomology group being
isomorphic to F2.

Although this notion of connectedness is not monotone, we prove that nevertheless
F2-cohomological j-connectedness has a sharp threshold. Furthermore, we derive a hitting
time result and determine the limiting probability for F2-cohomological j-connectedness
in the critical window. As a corollary, we deduce a hitting time result for Yp in general
dimension, thus extending the hitting time result of Kahle and Pittel [15].

1.2 Model
Throughout the paper let k ≥ 2 be a fixed integer. For a positive integer `, let [`] := {1, . . . , `}.

I Definition 1.3. A family G of non-empty finite subsets of a vertex set V is called a
simplicial complex if it is downward-closed, i.e. if every non-empty set A that is contained in
a set B ∈ G also lies in G, and if the singleton {v} is in G for every v ∈ V .

The elements of a simplicial complex G of cardinality k + 1 are called k-simplices of G. If
G has no (k + 1)-simplices, then we call it k-dimensional, or k-complex. If G is a k-complex,
then for each j = 0, . . . , k − 1 the j-skeleton of G is the j-complex formed by all i-simplices
in G with 0 ≤ i ≤ j.

We aim to define a model of random k-complexes starting from the binomial random
(k+ 1)-uniform hypergraph Gp = G(k;n, p) on vertex set [n]: the 0-simplices are the vertices
of Gp, the k-simplices are the hyperedges of Gp, but there is more than one way to guarantee
the downward-closure property, to obtain a simplicial complex. In the model Yp considered by
Meshulam and Wallach in [20], the full (k− 1)-skeleton on [n] is always included. In contrast,
we shall only include those simplices that are necessary to ensure the downward-closure
property.

I Definition 1.4. We denote by Gp = G(k;n, p) the random k-dimensional simplicial complex
on vertex set [n] such that

the 0-simplices are the singletons of [n];
the k-simplices are the hyperedges of Gp;
for each j ∈ [k − 1], the j-simplices are exactly the (j + 1)-subsets of hyperedges of Gp.

In other words, Gp is the random k-complex on [n] obtained from Gp by taking the downward-
closure of each hyperedge.

Given a simplicial complex G, let Hi(G;F2) be its i-th cohomology group with coefficients
in F2 (see Section 2.1 for the definition). Connectedness of Gp in the topological sense—
which we call topological connectedness in order to distinguish it from other notions of
connectedness—is equivalent to H0(Gp;F2) being (isomorphic to) F2. We therefore define a
notion of connectedness as follows.

I Definition 1.5. For a positive integer j, a simplicial complex G is called F2-cohomologically
j-connected (j-cohom-connected for short) if

H0(G;F2) = F2;
Hi(G;F2) = 0 for all i ∈ [j].

One might define an analogous version of connectedness via the vanishing of homology
groups, which would be equivalent to F2-cohomological j-connectedness by the Universal
Coefficient Theorem (see e.g. [21]).

AofA 2018



7:4 Vanishing of Cohomology Groups of Random Simplicial Complexes

A significant difference between Gp and Yp is that for Yp the only requirement for F2-
cohomologically (k − 1)-connectedness is the vanishing of the (k − 1)-th cohomology group,
since the presence of the full (k − 1)-skeleton guarantees topological connectedness and the
vanishing of the j-th cohomology groups for all j ∈ [k − 2].

Moreover, it is important to observe that F2-cohomological j-connectedness is not a
monotone increasing property of Gp: adding a k-simplex to a j-cohom-connected complex
might yield a complex without this property (see Example 2.3). Thus, the existence of a
single threshold for j-cohom-connectedness is not guaranteed, but one of our main results
shows that such a threshold indeed exists.

1.3 Main results
The main contributions of this paper are fourfold. Firstly, we prove (Theorem 1.8) that for
each j ∈ [k − 1], F2-cohomological j-connectedness of Gp undergoes a phase transition at
around probability

pj := (j + 1) logn+ log logn
(k − j + 1)nk−j (k − j)!. (1)

Secondly, we prove a hitting time result (also Theorem 1.8), which relates the j-cohom-
connectedness threshold to the disappearance of all copies of the minimal obstruction Mj

(Definition 1.7). Thirdly, our results directly imply an analogous hitting time result for Yp
(Corollary 1.9), which Kahle and Pittel [15] proved for k = 2. Lastly, we analyse the critical
window around the threshold pj , showing that inside the window the dimension of the j-th
cohomology group converges in distribution to a Poisson random variable (Theorem 1.10).

Before defining the minimal obstruction Mj , we need the following concept.

I Definition 1.6. Given a k-simplex K in a k-complex G, a collection F = {P0, . . . , Pk−j}
of j-simplices forms a j-flower in K if K =

⋃
i Pi and C :=

⋂
i Pi satisfies |C| = j. We call

the j-simplices Pi the petals and the set C the centre of the j-flower F .
Observe that for each k-simplex K and each (j − 1)-simplex C ⊆ K, there is a unique

j-flower in K with centre C, namely

F(K,C) := {C ∪ {w} | w ∈ K \ C}.

When j is clear from the context, we simply refer to a j-flower as a flower. A j-cycle
is a set J of j-simplices such that every (j − 1)-simplex is contained in an even number of
j-simplices in J .

I Definition 1.7. A copy of Mj (see Figure 1) in a k-complex G is a triple (K,C, J) where
(M1) K is a k-simplex;
(M2) C is a (j − 1)-simplex in K and each petal of the flower F = F(K,C) is contained in

no other k-simplex of G;
(M3) J is a j-cycle that contains exactly one petal of F , i.e. there exists a vertex w0 ∈ K \C

such that

J ∩ F =
{
C ∪ {w0}

}
.

We will see (Lemma 2.2) that a copy of Mj can be interpreted as a minimal obstruction
for F2-cohomological j-connectedness.

The random k-complex Gp can be viewed as a process, by assigning a birth time to each
k-simplex. More precisely, for each (k+ 1)-set of vertices in [n] independently, sample a birth
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w2
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K

Figure 1 A copy of Mj for k = 5, j = 2. The centre C = {c1, c2} lies in all petals Pi = C ∪ {wi},
i = 0, . . . , 3 (dark grey), which are contained in no other k-simplex except K. The j-cycle J (light
grey) intersects the flower F(K, C) = {P0, P1, P2, P3} only in the petal P0 = C ∪ {w0}.

time uniformly at random from [0, 1].2 Then Gp is exactly the complex generated by the
(k + 1)-sets with birth times at most p, by taking the downward-closure. If p is gradually
increased from 0 to 1, we may interpret Gp as a process. Thus, we can define pMj

as the
birth time of the k-simplex whose appearance causes the last copy of Mj to disappear. More
formally, let

pMj := sup{p ∈ [0, 1] | Gp contains a copy of Mj}. (2)

Our first main result is that the value pMj
is the hitting time for j-cohom-connectedness

of Gp and is “close” to pj defined in (1), implying that pj is in fact a sharp threshold for
F2-cohomological j-connectedness.

I Theorem 1.8. Let k ≥ 2 be an integer and let ω be any function of n which tends to
infinity as n→∞. For each j ∈ [k − 1], with high probability the following statements hold.

(i) (j+1) logn+log logn−ω
(k−j+1)nk−j (k − j)! < pMj

< (j+1) logn+log logn+ω
(k−j+1)nk−j (k − j)!.

(ii) For all p < pMj , Gp is not F2-cohomologically j-connected, i.e.

H0(Gp;F2) 6= F2 or Hi(Gp;F2) 6= 0 for some i ∈ [j].

(iii) For all p ≥ pMj , Gp is F2-cohomologically j-connected, i.e.

H0(Gp;F2) = F2 and Hi(Gp;F2) = 0 for all i ∈ [j].

For the case j = k − 1, Theorem 1.8 gives a threshold pk−1 = k logn+log logn
2n for F2-

cohomologically (k− 1)-connectedness, which is about half as large as the threshold k logn
n in

Theorem 1.2 for Yp. The reason for this is that the minimal obstructions are different: in Yp
the minimal obstruction is a (k − 1)-simplex which is not contained in any k-simplex of the
complex (such a (k−1)-simplex is called isolated). By definition, isolated (k−1)-simplices do
not exist in Gp, because Gp contains only those (k − 1)-simplices that lie in some k-simplex.

Observe that Theorem 1.8 ii and iii provide a hitting time result for the process described
above. A similar result was proved by Kahle and Pittel [15] for Yp, but only for the 2-
dimensional case. As a corollary of Theorem 1.8, we can now derive a hitting time result for
Yp for general k ≥ 2. To this end, let

pisol := sup{p ∈ [0, 1] | Yp contains isolated (k − 1)-simplices} (3)

2 With probability 1 no two (k + 1)-sets have the same birth time.

AofA 2018



7:6 Vanishing of Cohomology Groups of Random Simplicial Complexes

be the birth time of the k-simplex whose appearance causes the last isolated (k − 1)-simplex
to disappear and let

pconn := sup{p ∈ [0, 1] | Hk−1(Yp;F2) 6= 0 } (4)

be the time when Yp becomes F2-cohomological (k − 1)-connected.

I Corollary 1.9. Let k ≥ 2 be an integer. Then, with high probability pconn = pisol.

Our last main result gives an explicit expression for the limiting probability of the random
complex Gp being F2-cohomologically j-connected inside the critical window given by the
threshold pj . More generally, we prove that the dimension of the j-th cohomology group
with coefficients in F2 converges in distribution to a Poisson random variable.

I Theorem 1.10. Let k ≥ 2 be an integer, j ∈ [k− 1] and c ∈ R be a constant. Suppose that
cn ∈ R are such that cn

n→∞−−−−→ c. If

p = (j + 1) logn+ log logn+ cn
(k − j + 1)nk−j (k − j)!,

then dim
(
Hj(Gp;F2)

)
converges in distribution to a Poisson random variable with expectation

λj := (j + 1)e−c

(k − j + 1)2j! ,

while whp H0(Gp;F2) = F2 and Hi(Gp;F2) = 0 for all i ∈ [j − 1]. In particular, we have

P (Gp is j-cohom-connected) n→∞−−−−→ e−λj .

Note that a similar result for Yp was proved by Kahle and Pittel [15].

1.4 Related work
The vanishing of Hk−1(Yp;F2) considered in [17] and [20] is a monotone property due to the
presence of the full (k − 1)-dimensional skeleton. This fact in particular makes it possible to
use a simple second moment argument to prove the subcritical case (i.e. statement (i)) of
Theorem 1.2.

In contrast, Gp does not contain the full (k − 1)-dimensional skeleton. As a consequence,
we need to consider all cohomology groups up to dimension j, for each j ∈ [k− 1]. Moreover,
our notion of F2-cohomological j-connectedness is not a monotone property, which makes
the subcritical case far from trivial. In fact, it does not suffice to prove that Gp is not
j-cohom-connected at p− = (j+1) logn+log logn−ω

(k−j+1)nk−j (k − j)!; rather we need to show that whp
Gp is not j-cohom-connected for any p up to and including p−.

The proof of the supercritical case p ≥ pMj
is also more challenging than for Yp. We

are forced to derive better bounds for the number of bad functions (see Definition 2.1), due
to the fact that for j = k − 1, the threshold in Theorem 1.8 is about half as large as the
corresponding threshold in [20].

2 Preliminaries

2.1 Cohomology terminology
We formally introduce cohomology with coefficients in F2 for a simplicial complex. The
following notions are all standard, except the definition of a bad function (Definition 2.1).
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Given a simplicial k-complex G, for each j ∈ {0, . . . , k} denote by Cj(G) the set of
j-cochains, that is, the set of 0-1 functions on the j-simplices. The support of a function
in Cj(G) is the set of j-simplices mapped to 1. Each Cj(G) forms a group with respect to
pointwise addition modulo 2. We define the coboundary operators δj : Cj(G)→ Cj+1(G) for
j = 0, . . . , k−1 as follows. For f ∈ Cj(G), the 0-1 function δjf assigns to each (j+1)-simplex
σ the value

δjf(σ) :=
∑

τ⊂σ, |τ |=j+1

f(τ) (mod2).

In addition, we denote by δ−1 the unique group homomorphism δ−1 : {0} → C0(G). The
j-cochains in im δj−1 and ker δj are called j-coboundaries and j-cocycles, respectively. A
straightforward calculation shows that each coboundary operator is a group homomorphism
and that every j-coboundary is also a j-cocycle, i.e. im δj−1 ⊆ ker δj . Therefore, we can
define the j-th cohomology group of G with coefficients in F2 as the quotient group

Hj(G;F2) := ker δj/ im δj−1.

By definition, Hj(G;F2) vanishes if and only if every j-cocycle is a j-coboundary. This
motivates the following definition of a bad function.

I Definition 2.1. We say that a function f ∈ Cj(G) is bad if
(i) f is a j-cocycle, i.e. it assigns an even number of 1’s to the j-simplices on the boundary

of each (j + 1)-simplex;
(ii) f is not a j-coboundary, i.e. it is not induced by a 0-1 function on the (j − 1)-simplices.

Thus, Hj(G;F2) vanishes if and only if no bad function in Cj(G) exists.
Recall that a set J of j-simplices is a j-cycle if every (j − 1)-simplex lies in an even

number of j-simplices in J . It is easy to see that if f is a j-cocycle and J is a j-cycle such
that f |J has support of odd size, then f is not a j-coboundary and thus is a bad function.

2.2 Minimal obstructions
Let us explain why Mj (Definition 1.7) can be interpreted as the minimal obstruction to
j-cohom-connectedness. Given a copy (K,C, J) of Mj in a k-complex G, define a function
f ∈ Cj(G) that takes value 1 on the petals of the flower F(K,C) and 0 everywhere else. Since
each petal lies in K but in no further k-simplices, every (j + 1)-simplex contains either two
petals or none. In particular, f is even on the boundary of every (j + 1)-simplex. However,
J would be a j-cycle containing precisely one j-simplex (namely C ∪ {w0}) on which f takes
value 1, ensuring that f is bad. The support of f has size k − j + 1.

I Lemma 2.2. Let G be a k-complex and let S be a non-empty support of a j-cocycle. Then
either S is the flower of an Mj (and thus |S| = k − j + 1) or |S| ≥ k − j + 2.

Both the presence of a copy of Mj and j-cohom-connectedness are not monotone, as the
following example shows.

I Example 2.3. Let G be the 2-complex on vertex set {1, 2, 3, 4, 5} generated by the 3-
uniform hypergraph with hyperedges {1, 2, 3} and {1, 4, 5}, see Figure 2. Then G is 1-cohom-
connected and thus contains no copies of M1. Adding to G the 2-simplex {2, 3, 4} (and its
downward-closure) creates several copies of M1 and thus yields a complex G′ which is not
1-cohom-connected. If we further add the 2-simplex {1, 3, 4} to G′, we obtain a 2-complex
G′′ which is 1-cohom-connected and thus contains no copies of M1.

AofA 2018
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1

2

3 4

5

G

1

2

3 4

5

G′

1

2

3 4

5

G′′

Figure 2 Adding simplices might create new copies of Mj or destroy existing ones.

3 Subcritical regime

3.1 Overview
In this section we study the subcritical case p < pMj and state results necessary for the
proofs of statements i and ii of Theorem 1.8.

Define

pT := sup{p ∈ [0, 1] | Gp is not topologically connected}

as the birth time of the k-simplex whose appearance causes the complex Gp to become
topologically connected. In addition, we will need the probabilities

p−0 := logn
nk

,

p−j :=
(

1− 1√
logn

)
(j + 1) logn

(k − j + 1)nk−j (k − j)! for each j ∈ [k − 1].

Observe that H0(Gp;F2) 6= F2 in [0, pT ) by definition. In order to prove Theorem 1.8 ii, we
aim to show that whp Hj(Gp;F2) 6= 0 in [p−j−1, pMj ) for all j ∈ [k − 1] and that

[0, pT ) ∪
j⋃
i=1

[p−i−1, pMi
) = [0, pMj

),

which we prove by showing that pT > p−0 and pMj > p−j > p−j−1 for all j ∈ [k − 1] whp. To
cover the interval [p−j−1, pMj

), we in fact prove the existence of just three copies of Mj such
that whp for all p in this interval, at least one of these copies is present in Gp.

I Lemma 3.1. Let j ∈ [k − 1]. With high probability, there exist three triples (K`, C`, J`),
` = 1, 2, 3, such that for all p ∈ [p−j−1, pMj

), (K`, C`, J`) forms a copy of Mj in Gp for some
`. In particular, whp Hj(Gp;F2) 6= 0 for all p ∈ [p−j−1, pMj ).

3.2 Topological connectedness
Topological connectedness of Gp is equivalent to vertex-connectedness of the random (k + 1)-
uniform hypergraph, whose (sharp) threshold follows e.g. as a special case of [8] or [22].

I Lemma 3.2. Let ω be any function of n which tends to infinity as n → ∞. Then with
high probability

logn− ω
nk

k! < pT <
logn+ ω

nk
k!

and thus in particular pT > p−0 .
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3.3 Finding obstructions
In order to prove Lemma 3.1, we make use of a simplified version of the obstruction Mj .

I Definition 3.3. copy of M−j in a k-complex G is a pair (K,C) such that
(M1) K is a k-simplex;
(M2) C is a (j − 1)-simplex in K such that each petal of the flower F(K,C) is contained in

no other k-simplex of G.

In other words, a copy of M−j can be viewed as a copy of Mj without the condition
(M3) of Definition 1.7, i.e. without the j-cycle J containing one of the petals. Therefore,
if (K,C, J) is a copy of Mj in Gp, then (K,C) is a copy of M−j . Vice versa, the following
lemma ensures that whp for p at least

p
(1)
j := 1

10(j + 1)
(
k+1
j+1
)
nk−j

,

whp every copy of M−j gives rise to a copy of Mj , allowing us to consider just copies of M−j
as obstructions to j-cohom-connectedness. In other words, the existence of copies of M−j
and Mj are essentially equivalent for p ≥ p(1)

j .

I Lemma 3.4. There exists a positive constant γ such that with high probability for every
p ≥ p(1)

j , each j-simplex σ in Gp lies in at least γn many j-cycles in Gp that meet only in σ.
In particular, whp for all p ≥ p(1)

j , every copy of M−j in Gp is part of a copy of Mj.

3.4 Excluding obstructions and determining the hitting time
A second moment argument shows that at time

p̄j :=
(j + 1) logn+ 1

2 log logn
(k − j + 1)nk−j (k − j)!, (5)

whp Gp̄j
contains (a growing number of) copies of M−j , and thus whp also copies of Mj by

Lemma 3.4. Define p̄Mj
as the first birth time p larger than p̄j such that there are no copies

of Mj in Gp. By definition of pMj
, conditioned on the high probability event Mj ⊂ Gp̄j

, we
have p̄Mj

≤ pMj
. In the next lemma we show that they are in fact equal whp.

To do so, we need the following definition.

I Definition 3.5. Given a k-complex G, a k-simplex K is a local obstacle if K contains at
least k − j + 1 many j-simplices which are not contained in any other k-simplex of G.

Observe that each M−j is in particular a local obstacle. Moreover, whp each copy of M−j
in Gp for p ≥ p̄j gives rise to copies of Mj by Lemma 3.4.

I Lemma 3.6. With high probability, for all p ≥ p̄j every local obstacle that exists in Gp
also exists in Gp̄j

. In particular, we have pMj
= p̄Mj

whp.

I Corollary 3.7. Whp for all p ≥ pMj
, there are no copies of M−j in Gp.

By first and second moment arguments, we can now easily derive that pMj is “close to”
pj . Observe that the following corollary is exactly Theorem 1.8 i.

I Corollary 3.8. Let ω be any function of n which tends to infinity as n tends to infinity.
Then whp

(j + 1) logn+ log logn− ω
(k − j + 1)nk−j (k − j)! < pMj

<
(j + 1) logn+ log logn+ ω

(k − j + 1)nk−j (k − j)!.
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3.5 Covering the interval
Our strategy to derive Lemma 3.1 is to divide the interval [p−j−1, pMj

) into three subintervals
[p−j−1, p

(1)
j ], [p(1)

j , p−j ], [p−j , pMj ), each of which we cover by one copy of Mj . We first use a
second moment argument to show that at time p−j−1, whp there are “many” copies of Mj .
With high probability, at least one copy (K1, C1, J1) survives until probability p(1)

j .
In order to find a copy of Mj that covers the interval [p(1)

j , p−j ], we show that whp “many”
copies of M−j exist at time p−j , of which one whp was already present at the beginning of
the interval. Together with the fact that whp each M−j gives rise to a copy of Mj (Lemma
3.4), this implies that whp one copy (K2, C2, J2) of Mj exists throughout this interval.

For the remaining interval [p−j , pMj
), consider a copy (K3, C3) of M−j that vanishes at

time pMj . Corollary 3.8 implies that whp p−j = (1− o(1))pMj , and thus (K3, C3) whp was
already present at time p−j . Now Lemma 3.4 ensures the existence of a j-cycle J3 such that
(K3, C3, J3) is a copy of Mj throughout the range [p−j , pMj ).

4 Critical window and supercritical regime

In this section, we study obstructions around the point of the claimed phase transition and in
the supercritical regime, that is, for p = (1 + o(1))pj and p ≥ pMj

, respectively. The results
of this section will form the foundation of the proof of Theorem 1.8 iii. Furthermore, they
will play a crucial role in the proof of Theorem 1.10.

By the definition of pMj , there are no copies of Mj in Gp (and also no copies of M−j by
Corollary 3.7) for any p ≥ pMj

. It remains to show that there are no other obstructions
either. In fact, we shall even prove (Lemma 4.2) that from slightly before pMj

onwards, any
j-cocycles are generated by copies of M−j . To make this more precise, we need the following
notation.

I Definition 4.1. We say that a j-cochain fK,C arises from a copy (K,C) of M−j in a
k-complex G if its support is the j-flower F(K,C). Observe that then fK,C is a j-cocycle.

We say that a j-cocycle f in G is generated by copies of M−j if it lies in the same
cohomology class as a sum of cocycles that arise from copies of M−j . We denote by NG the
set of j-cocycles that are not generated by copies of M−j .

We show that whp for all p ≥ pMj
, NGp

= ∅, which will in particular imply that there are
no non-empty j-cocycles in Gp. Furthermore, a similar argument will enable us to directly
relate the number of copies of M−j with the dimension of Hj(Gp;F2) (cf. Theorem 1.10).

I Lemma 4.2. For every p ≥ p−j , we have NGp
= ∅ with high probability. Moreover, with

high probability NGp = ∅ for all p ≥ pMj simultaneously.

In order to prove Lemma 4.2, we first show that a smallest support of elements of NG
would have to have a property we call traversability.

I Definition 4.3. Let G be a k-complex and S ⊆ G be a collection of j-simplices. For
σ1, σ2 ∈ S, we write σ1 ∼ σ2 if σ1 and σ2 lie in a common k-simplex.3 We say that S is
traversable if the transitive closure of ∼ is S × S.

In other words, a set of j-simplices in a k-complex is traversable if it cannot be partitioned
into two non-empty subsets such that no k-simplex contains j-simplices in both subsets.

3 Observe that this relation is reflexive, because every j-simplex is contained in at least one k-simplex.
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I Lemma 4.4. Let G be a k-complex and f be an element of NG with smallest support S.
Then S is traversable.

We then show that whp no such smallest support can exist in Gp. For “small” support
size and probability around pj , a standard application of the first moment method suffices.

I Lemma 4.5. For p = (1 + o(1))pj and for any constant d ≥ k− j+ 2, with high probability
Gp has no j-cocycle with traversable support of size s with k − j + 2 ≤ s ≤ d.

For larger size, we make use of traversability to define a breadth-first search process
that finds all possible supports. Using this process, we can bound the number of possible
smallest supports of elements of NGp

more carefully, thus allowing us to prove that whp for
all relevant p simultaneously, such a smallest support cannot be “large”.

I Lemma 4.6. There exists a positive constant d̄ such that with high probability for all
p ≥ p−j , the smallest support of a j-cocycle in NGp

has size s < d̄.

In particular, for any fixed p = (1 + o(1))pj , whp the smallest support of elements of NGp
is

not “small” by Lemma 4.5 and not “large” by Lemma 4.6, which means that NGp
= ∅ whp.

Finally, we complete the argument by proving that any new element of NGp
with “small”

support that might appear if we increase p would have to give rise to a “new” local obstacle.
But Lemma 3.6 already tells us that whp no new local obstacles appear. This concludes the
proof of Lemma 4.2.

5 Proofs of main results

5.1 Proof of Theorem 1.8
Corollary 3.8 states that for any function ω of n which tends to infinity as n→∞, whp

(j + 1) logn+ log logn− ω
(k − j + 1)nk−j (k − j)! < pMj <

(j + 1) logn+ log logn+ ω

(k − j + 1)nk−j (k − j)!,

which is precisely Theorem 1.8 i.
To prove ii, recall that Lemma 3.1 tells us that for each i ∈ [j − 1], whp Hi(Gp;F2) 6= 0

for all p ∈ [p−i−1, pMi
). By i, whp

pMi
>

(
1− 1√

logn

)
(i+ 1) logn

(k − i+ 1)nk−i (k − i)! = p−i ,

and thus whp Gp is not j-cohom-connected throughout
j⋃
i=1

[p−i−1, pMi
) = [p−0 , pMj

).

Now observe that by Lemma 3.2 whp pT > p−0 and that Gp is not topologically connected
in [0, pT ) by definition of pT . Therefore, whp Gp is not j-cohom-connected in

[0, pMj
) = [0, pT ) ∪ [p−0 , pMj

),

as required.
It remains to prove iii. By Corollary 3.7, we know that for all p ≥ pMj , there are no copies

ofM−j in Gp. Thus, if Hj(Gp;F2) 6= 0, then any representative of a non-zero cohomology class
cannot arise from copies of M−j and therefore lies in NGp

(Definition 4.1). But by Lemma
4.2, whp each such NGp

is empty and thus whp Hj(Gp;F2) = 0 for all p ≥ pMj
. Analogously,

whp all cohomology groups Hi(Gp;F2) for i ∈ [j − 1] vanish, because whp pMi
< pMj

by i.
Finally, by i and Lemma 3.2 whp pT < pMj , meaning that whp Gp is topologically connected
for all p ≥ pMj

. This implies that whp each such Gp is F2-cohomologically j-connected. J
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5.2 Proof of Corollary 1.9
Let ω be any function of n which tends to infinity as n→∞. It follows by a simple first and
second moment argument (see e.g. [20]) that whp

k logn− ω
n

< pisol <
k logn+ ω

n
. (6)

In order to prove that pconn = pisol whp, suppose that a (k − 1)-simplex σ is isolated in
Yp for some p. The indicator function fσ of σ is a (k− 1)-cocycle, because σ is isolated. But
fσ is not a (k − 1)-coboundary, because σ lies in (many) (k − 1)-cycles due to the presence
of the full (k − 1)-dimensional skeleton. In particular, Hk−1(Yp;F2) 6= 0. By the definitions
of pconn and pisol, this implies that pconn ≥ pisol.

For the opposite direction, fix the birth times of all k-simplices. Then for all p ≥ pisol,
we have Yp = Gp and therefore Yp is F2-cohomological (k − 1)-connected whp for every
p ≥ max(pisol, pMk−1) by Theorem 1.8 iii. By (6) and Theorem 1.8 i for j = k − 1, whp for
any (slowly) growing function ω

pisol >
k logn− ω

n
>
k logn+ log logn+ ω

2n > pMk−1 ,

hence whp for all p ≥ pisol we have Hk−1(Yp;F2) = 0. This means that whp pconn ≤ pisol
and thus pconn = pisol, as required. J

5.3 Proof of Theorem 1.10
We are interested in the asymptotic distribution of Dj := dim

(
Hj(Gp;F2)

)
for

p = (j + 1) logn+ log logn+ cn
(k − j + 1)nk−j (k − j)!, where cn

n→∞−−−−→ c ∈ R.

Denote by X− the number of copies of M−j in Gp. Standard calculations show that

E(X−) = (1 + o(1))λj , where λj = (j + 1)e−c

(k − j + 1)2j! .

Moreover, we show that for each fixed integer t ≥ 1

E
(
X−
t

)
= (1 + o(1))

λtj
t! .

These equalities are precisely what is necessary to apply the method of moments (see e.g.
[13]) in order to show that X− converges in distribution to a Poisson random variable with
expectation λj , which we denote by X−

d−→ Po(λj).
It remains to show that X− = Dj whp. To this end, denote by f1, . . . , fX− the j-cocycles

arising from the copies of M−j in Gp. Lemma 4.2 states that whp the cohomology classes of
f1, . . . , fX− generate Hj(Gp;F2), which means that X− ≥ Dj whp.

In order to prove the opposite direction, we show that the cohomology classes of
f1, . . . , fX− are linearly independent. Observe first that whp X− = o(n) by Markov’s
inequality, because X− has bounded expectation. Let I ⊆ [X−] be non-empty and let S
be the support of

∑
i∈I fi. Whp no two fi’s can have their supports contained in the same

k-simplex K, because otherwise their union would be a traversable support of size s with
k − j + 2 ≤ s ≤ 2(k − j + 1), but such supports whp do not exist by Lemma 4.5.
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Thus, whp the fi’s have disjoint support by property (M2) of an M−j (Definition 3.3), and
in particular S 6= ∅. Pick σ ∈ S. Lemma 3.4 tells us that whp there are Θ(n) many j-cycles in
Gp that contain σ and are otherwise disjoint. But at most |S| ≤ (k− j+ 1)|I| = o(n) of these
j-cycles can contain another j-simplex in S, which means that whp there are j-cycles that
meet S only in σ, showing that

∑
i∈I fi is not a j-coboundary. Therefore the cohomology

classes of f1, . . . , fX− are linearly independent whp. This shows that X− ≤ Dj and thus
X− = Dj whp, as desired.

Together with X−
d−→ Po(λj), this proves that Dj

d−→ Po(λj). By Theorem 1.8 (for j − 1
instead of j), whp H0(Gp;F2) = F2 and Hi(Gp;F2) = 0 for all i ∈ [j − 1]. In particular,

P(Gp is j-cohom-connected) = P
(
Hj(Gp;F2) = 0

)
+ o(1)

= (1 + o(1))P
(
Po(λj) = 0

)
= (1 + o(1))e−λj .

This concludes the proof of Theorem 1.10. J

6 Concluding remarks

The vanishing of cohomology groups with coefficients in F2 is just one possible way of defining
the concept of “connectedness” of Gp. An obvious alternative would be to consider coefficients
from other groups or fields. For Yp, such notions of connectedness have been studied for
coefficients in any finite abelian group, in Z, or in any field [1, 2, 14, 18, 19, 20].

A rather strong notion of connectedness would be to require the homotopy groups
π1(Gp), . . . , πj(Gp) to vanish. For the 2-dimensional case, the vanishing of π1(Yp) was studied
by Babson, Hoffman and Kahle [3]. In particular, they showed that whp π1(Yp) 6= 0 at the
time that H1(Yp;F2) becomes zero. From that time on, the models Yp and Gp coincide. As
π1(Gp) 6= 0 follows immediately from H1(Gp;F2) 6= 0, the range that should be of particular
interest with respect to π1(Gp) in the 2-dimensional case is

logn+ 1
2 log logn
n

≤ p ≤ 2 logn+ ω

n
.

A natural conjecture would be that whp π1(Gp) 6= 0 in this range.
Theorem 1.9 provides a limit result for the dimensions Dj = dim(Hj(Gp;F2)) around the

point of the phase transition. It would be interesting to know the behaviour of Dj also for
earlier regimes. More precisely, we know by Theorem 1.8 that whp Dj 6= 0 in the interval
[p−j−1, pMj

). Can we say more about the value of Dj in this interval? How far below p−j−1 do
we have Dj > 0 whp?
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