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Abstract
We consider random rooted maps without regard to their genus, with fixed large number of edges,
and address the problem of limiting distributions for six different parameters: vertices, leaves,
loops, root edges, root isthmus, and root vertex degree. Each of these leads to a different limiting
distribution, varying from (discrete) geometric and Poisson distributions to different continuous
ones: Beta, normal, uniform, and an unusual distribution whose moments are characterised by a
recursive triangular array.
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1 Introduction

Rooted maps form a ubiquitous family of combinatorial objects, of considerable importance
in combinatorics, in theoretical physics, and in image processing. They describe the possible
ways to embed graphs into compact oriented surfaces [17].

The present paper focuses on asymptotic enumeration of basic parameters in rooted
maps with no restriction on genus. From a generating function point of view, if the genus of
the maps is not fixed, then the generating function of rooted maps is non-analytic (namely,
convergent only at zero) and often satisfies a Riccati differential equation, in contrast to
planar maps for which analytic (convergent) generating functions abound. The divergent
Riccati equations appear frequently in enumerative combinatorics. For example, at least 39
entries in Sloane’s OEIS [20] were found containing sequences whose generating functions
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13:2 Asymptotic Distribution of Parameters in Random Maps

Figure 1 Three rooted maps. Each root is marked by an arrow. The two last maps are equal.

satisfy Riccati equations, including some entries related to the families of indecomposable
combinatorial objects, moments of probability distributions, chord diagrams [9, 10, 14],
Feynman diagrams [11], etc. Some of these are closely connected to maps. Indeed, it is known
that rooted maps with no genus restriction also encode different combinatorial families such
as chord diagrams and Feynman diagrams on the one hand, and different fragments of lambda
calculus [5, 21] on the other hand. Thus most asymptotic information obtained on maps can
often be transferred to the aforementioned objects and lead to a better understanding of
them in the corresponding domains.

While the asymptotics and stochastics on planar maps have been extensively studied (see
for example [2, 4, 3, 12, 18]), those on rooted maps with no genus restriction have received
comparatively much less attention in the literature. Of closest connection to our study here is
the paper by Arquès and Béraud [1], which contains several characterisations of the number
of rooted maps and their generating functions. In particular, they give an explicit formula
for the number of maps, expressed as an infinite sum, from which the asymptotic number of
maps with n edges can be deduced (which is (2n + 1)!!). Recently, Carrance [7] obtained
the distribution of genus in bipartite random maps. To our knowledge, no other asymptotic
distribution properties of map statistics have been properly examined so far. Along a different
direction, Flajolet and Noy [14] investigated basic statistics on chord diagrams, and Courtiel
and Yeats [9] studied the distribution of terminal chords.

From an asymptotic point of view, for planar enumeration, as Bender and Richmond
put it in [3]: “The two most successful techniques for obtaining asymptotic information from
functional equations of the sort arising in planar enumeration are Lagrange inversion and the
use of contour integration.” An equally useful analytic technique is the saddle-point method
as large powers of generating functions are ubiquitous in map asymptotics; see [2, 13] for
more detailed information. In contrast, for divergent series, Odlyzko writes in his survey [19]:
“There are few methods for dealing with asymptotics of formal power series, at least when
compared to the wealth of techniques available for studying analytic generating functions."
We show however that a few simple linearizing techniques are very helpful in deriving the
diverse limit laws mentioned in the Abstract; the approaches we use may also be of potential
application to other closely related problems.

For a rigorous definition of a rooted combinatorial map we refer, for example, to [17, 1].
For our purposes in this extended abstract we use a less formal but more intuitive definition.

I Definition 1 (Maps). A map is a connected multigraph endowed with a cyclic ordering of
consecutive half-edges incident to each vertex. Multiple edges and loops are allowed. Around
each vertex, each pair of adjacent half-edges is said to form a corner. If there is only one
half-edge, there is only one corner. A rooted map is a map with a distinguished corner.

Figure 1 shows some examples of rooted maps. Observe that the first two maps are
different since the cyclic ordering is not the same: in the first map, the pendant edge follows
counterclockwise the edge after the root (the corner pointed to by an arrow), while in the
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Figure 2 Left: The small triangles point at every corner of the map. Right: The light-blue line
marks the contour of one face of the map. The double-lined edges are the isthmi of the map. The
only loop of the map is adjacent to the rightmost isthmus, and the vertex incident to this loop has
degree 3.

Table 1 The six map statistics and their limit laws studied in this extended abstract.

Statistics Differential equation Mean ∼ Limit law

leaves L = v + (2− u)zL + zL2 + 2z2∂zL +
z(1− v)∂vL

1 Poisson(1)

root isthmic parts C = 1 + zC + vzC|v=1C + 2z2∂zC 2 Geometric( 1
2 )

vertices X = v + zX + zX2 + 2z2∂zX log n N (log n, log n)

loops Y = v + vzY + vzY |v=1Y 1
2 n A new law∗

+2vz2∂zY +v2z(vw−1)∂vY

root edges E = 1 + vzE + vzE|v=1E + 2vz2∂zE 2
3 n Beta(1, 1

2 )

root degree D = 1 + v2zD + vzD|v=1D
n Uniform[0, 2]

+ 2vz2∂zD − v2(1− v)z∂vD

second map it precedes in counterclockwise order. In contrast, the last two maps are equal:
although the leaves are at different positions, one can find an isomorphism between the two
maps preserving the vertices, the root and the cyclic orderings around each vertex. The
corners of the leftmost map are displayed in Figure 2 (left), showing all the possible rootings
of this map.

I Definition 2 (Map features). A face can be obtained by starting at some corner, moving
along an incident half-edge, then switching to the next clockwise half-edge and repeating the
procedure until the starting corner is met. A loop is an edge that connects the same vertex.
An isthmus is an edge such that the deletion of this edge increases the number of connected
components of the underlying graph. The degree of a vertex is the number of half-edges
incident to this vertex.

These definitions are illustrated in Figure 2 (right).
Arquès and Béraud [1] prove that the generating function of maps M(z) :=

∑
n>0 mnz

n,
where mn enumerates the number of maps with n edges, satisfies

2z2M ′(z) = (1− z)M(z)− 1− zM(z)2, (1)

a typical Riccati equation whose first few Taylor coefficients read M(z) = 1 + 2z + 20z2 +
444z3 + 16944z4 + · · · .

We address in this paper the analysis of the extended equations of (1) for bivariate (and
in one case, trivariate) generating functions M(z, v) :=

∑
n,k>0 mn,kz

nvk, where mn,k stands

AofA 2018
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Figure 3 Left: Root vertex degree. Right: Number of root isthmic parts.
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Figure 4 Left: Number of vertices. Right: Number of root edges.

for the number of maps with n edges and the value of the shape parameter equal to k. We
obtain limit laws for the distributions of six different parameters (see Figures 3 to 5).

We collect the statistics and their limit laws studied here in Table 1 for comparison.
We see that some of the limit laws are discrete (Poisson and Geometric), one of them (the
number of vertices) is Gaussian with a logarithmic mean, which is denoted by N (logn, logn),
and the others are continuous. For the number of root edges, root degree and loops, the
corresponding limit laws are normalized by n, the total number of edges. The distribution of
the number of loops follows a rather unusual limit law (see Figure 5) in the sense that we
can only characterise the limit law by its moment sequence, ηl, which satisfies ηl = η0,l with
ηk,l computable only through a recurrence involving ηk−1,l and ηk+1,l−1. The corresponding
probability density function of this law remains unknown and does not have an explicit
expression at this stage (see Figure 5). Finally, by the bijection from [10] and a known
property of chord diagrams in [14], it is possible to deduce the limit laws for the number of
leaves.

One technique we use several times in our proofs consists in linearising the differential
equations satisfied by the generating functions, by choosing a suitable transformation, inspired
from the resolution of Riccati equations. Once the dominant term is identified, the analysis
for the limit law becomes more or less straightforward. When such a technique fails, we
rely then on the method of moments, which establishes weak convergence by computing
all higher derivatives of M(z, v) at v = 1 and by examining asymptotically the ratios
[zn]∂kvM(z, v)|v=1/[zn]M(z, 1) (which correspond to factorial moments of random variable).
Such a procedure also linearises to some extent the more complicated bivariate nature of the
differential equations and facilitates the resolution complexity of the asymptotic problem.
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Figure 5 Left: Joint distribution of root vertex degree and the number of loops. Right: Number
of loops.

ormap = or

Figure 6 A symbolic construction of rooted maps.

Structure of the Paper. In Section 2 we derive the nonlinear differential equations satisfied
by the generating functions of the map statistics. Then in Section 3 we sketch the proofs
for the limit laws of five statistics based on generating functions. The Poisson law for the
number of leaves (together with the root face degree and the number of trivial loops) will be
proved by a direct combinatorial approach in the last section.

2 Differential equations for maps

In this section, we derive the differential equations satisfied by the bivariate or trivariate
generating functions with the additional variable(s) marking the shape statistics.

Univariate generating function of maps. Since the Riccati equation (1) lies at the basis
of all other extended equations in Table 1, we give a quick proof of it via the recurrence
satisfied by mn, the number of maps with n edges (see Figure 6):

mn = 1[n=0] +
∑

06k<n
mkmn−1−k + (2n− 1)mn−1, (2)

which then implies the Riccati equation (1).
First, m0 = 1 because there is only one map with 0 edges. Then a map with n edges

can be formed either by connecting the roots of two maps (with k and n − k − 1 edges,
respectively) with an isthmus, or by adding an edge to a map with n− 1 edges, connecting

AofA 2018
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the root and a corner. The number of possible ways to insert an edge in this way is equal to
2n− 1, because there are 2n− 2 corners in a map of size n− 1, and there are two possible
ways to insert a new edge at the root corner (either before, or after the root). This proves
(2).

Vertices. Consider now the bivariate generating function X(z, v) =
∑
n,k>0 xn,kz

nvk, where
xn,k is equal to the number of rooted maps with n edges and k vertices. Arquès and Béraud [1]
showed that

X(z, v) = v + zX(z, v) + zX(z, v)2 + 2z2∂zX(z, v). (3)

This recurrence can be obtained from (2) by noticing that no new vertex is created when we
connect two maps with an isthmus, nor when we add a new root edge to a map. Note that
X(z, v) satisfies another functional equation (see [1])

X(z, v) = v + zX(z, v)X(z, v + 1),

which seems less useful from an asymptotic point of view.

Root isthmic parts. We count here the root isthmic parts, which are the number of isthmic
constructions used at the root vertex. Note that an isthmic part may not be a bridge because
the additional edge constructor may induce additional connections. Then the bivariate
generating function C(z, v) =

∑
n,k>0 cn,kz

nvk, where cn,k enumerates the number of maps
with n edges and k root isthmic parts, satisfies

C(z, v) = 1 + zC(z, v) + vzC(z, v)C(z, 1) + 2z2∂zC(z, v). (4)

In Figure 6, the number of root isthmic parts only changes whenever two maps are
connected by an isthmus. This yields vzC(z, v)C(z, 1) instead of zC2.

Root edges. Similarly, consider E(z, v) =
∑
n,k>0 en,kz

nvk, where en,k counts the number
of rooted maps with n edges and k root edges. Then E(z, v) satisfies

E = 1 + vzE + vzE|v=1E + 2vz2∂zE. (5)

This again results from the recurrence (2) and from Figure 6: the non-root edges come from
the bottom map in the isthmic construction, yielding the term vzE(z, v)E(z, 1).

Root Degree. Consider the degree of the root vertex. Note that this may be different
from the number of root edges because for the root degree, each loop edge is counted twice,
therefore the degree of the root vertex varies from 0 to 2n. By duality, the distribution of
the root face degree is the same as the distribution of the root vertex degree.

Let D(z, v) =
∑
n,k>0 dn,kz

nvk denote the bivariate generating function for maps with
variable v marking root degree. Then

D = 1 + v2zD + vzD|v=1D + 2vz2∂zD − v2(1− v)z∂vD. (6)

In this case, the original construction in Figure 6 is insufficient, and we need to consider
further cases in Figure 7. When an additional edge becomes a loop, it increases the degree
of the root vertex by 2; otherwise, the root degree is increased merely by 1. Note that
the equation (6) is now a bona fide partial differential equation, making the analysis more
difficult.
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ormap = or

Figure 7 Symbolic method to count root degree and loops in rooted maps.

Leaves. The differential equation for the bivariate generating function of maps with variable
v marking leaves (see Table 1) can be obtained in a similar way by considering different cases
in the new edge constructor. The number of special leaf corners is equal to the number of
leaves.

Loops. Finally, we look at the number of loops whose enumeration necessitates the con-
sideration of the joint distribution of the number of loops and the number of root edges,
namely, we consider the trivariate generating function Y (z, v, w) =

∑
n,k,m yn,k,mz

nvkwm,
where yn,k,m denotes the number of rooted maps with n edges, root degree equal to k, and
m loops. Then Y (z, v, w) satisfies a partial differential equation

Y = 1 + zvY + zvY |v=1Y + 2z2v∂zY + zv2(vw − 1)∂vY. (7)

As in the symbolic construction of Figure 7, a new edge becomes a loop only if it is attached
to one of the corners incident to the root vertex. The differential equation (7) is then a
modification of (6) with an additional variable marking the number of loops.

Note that Equation (7) is catalytic with respect to the variable v, i.e. putting v = 1
introduces a new unknown object ∂vY |v=1 to the differential equation. One of the strategies
for dealing with catalytic equations was developed by Bousquet-Mélou and Jehanne [6],
generalising the so-called kernel method and quadratic method. However, their method does
not work in our case because our equation is differentially algebraic.

3 Limit laws

This section describes the techniques we employ to establish the limit laws.
From now on, by a random map (with n edges) we assume that all rooted map with n

edges are equally likely. For notational convention, we use X ′ = ∂zX to denote derivative
with respect to z. Due to space limit, we give only the sketches of the proofs.

3.1 Transformation into a linear differential equation
For most of the equations in the previous section, it turns out that a transformation similar
to that used for Riccati equations largely simplifies the resolution and leads to solvable
recurrences, which are then suitable for our asymptotic purposes. We begin by solving
the standard Riccati equation (1) and see how a similar idea extends to other differential
equations.

I Proposition 3. The number mn of maps with n edges satisfies

mn

φn
= 2n− 1 +O

(
n−1), where φn = (2n)!

2nn! = (2n− 1)!!. (8)

AofA 2018
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Proof. We solve the Riccati equation (1) by considering the transformation

M(z) = 1 + 2zφ′(z)
φ(z) , (9)

for some function φ(z) with φ(0) = 1. Substituting this form into the equation (9), we get
the second-order differential equation 2z2φ′′ + (5z − 1)φ′ + φ = 0. From this equation, the
coefficients φn := [zn]φ(z) satisfy the recurrence φn+1 = (2n+1)φn, which implies the double
factorial form of φn by φ0 = 1.

Moreover, by extracting the coefficient of zn in (9), we obtain a relation between the
coefficients mk and φ`. By the inequality mn > (2n− 1)mn−1 (see (2)), we then deduce the
asymptotic relation (8). J

I Theorem 4. Let Xn denote the number of vertices in a random rooted map with n edges.
Then Xn follows a central limit theorem with logarithmic mean and logarithmic variance:

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1), E(Xn) ∼ logn, V(Xn) ∼ logn. (10)

Proof. Similar to (9), we define a bivariate generating function S(z, v) =
∑
n>0 sn(v)zn such

that

X(z, v) = v + 2zS′

S
, S(0) = 1.

Substituting this X(z, v) into (3) leads to a linear differential equation from which one can
extract the recurrence

sn(v) = (2n+ v − 2)(2n+ v − 1)
2n sn−1(v).

We then get an explicit expression for sn(v), from which we deduce, by singularity analysis,
that

E(vXn) = 2v−1

Γ(v) n
v−1(1 +O(n−1)),

and conclude by applying the Quasi-Powers Theorem [13, 15]. J

A finer Poisson(logn+ c) approximation, for a suitably chosen c, is also possible, which
results in a better convergence rate O(logn)−1 instead of (logn)− 1

2 ; see [16] for details.

I Theorem 5. Let Cn denote the number of root isthmic parts in a random rooted map with
n edges. Then,

Cn
d−→ Geometric

( 1
2
)
.

Proof. Since C(z, 1) = M(z), we use again the substitution (9) and apply it to (4):

2z2(φC ′ + vφ′C) = (1− (1 + v)z)φC − φ.

The trick here is to multiply both sides by φ(z)v−1 and set Q(z, v) = φ(z)vC(z, v). We then
obtain

2z2Q′ = (1− (1 + v)z)Q− φv.
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Using the recurrence for the normalised coefficients q̂n(v) := qn(v)/φn and dominant-term
approximations, we find that the n-th coefficient of Q is proportional to

q̂n(v) = v

2n
∑

16k6n

(n
k

)v/2
+O(n−1/2) = v

2− v +O(n− 1
2 ).

This corresponds to a (shifted by 1) geometric distribution with parameter 1
2 . By the

definition Q(z, v) = φ(z)vC(z, v), we deduce that the limiting distribution of Cn is also
geometric with parameter 1

2 . J

I Theorem 6. Let En denote the number of edges incident to the root vertex in a random
rooted map with n edges. Then En follows asymptotically a Beta distribution:

En
n

d−→ Beta
(
1, 1

2
)
, (11)

with the density function 1
2 (1− t)− 1

2 for t ∈ [0, 1).

Proof. We use again the substitution E(z, 1) = M(z) = 1 + 2z φ
′

φ in (5), giving

2vz2(φE′ + φ′E) = (1− 2vz)φE − φ.

With Q(z, v) = φ(z)E(z, v), we then obtain

2vz2Q′ = (1− 2vz)Q− φ. (12)

This linear differential equation translates into a recurrence for the coefficients qn(v) of
Q(z, v), which yields the closed-form expression

qn(v) = 2nn!
∑

06j6n

(
2j
j

)
4−jvn−j . (13)

Returning to E(z, v), we see that its coefficients behave asymptotically like qn(v). This
implies the Beta limit law (11) for the random variable En/n since

(2j
j

)
4−j ∼ (πj)−1/2 for

large j. J

I Theorem 7. Let Dn denote the degree of the root vertex in a random rooted map with n
edges. Then, Dn, divided by the number of edges, converges in law to the uniform distribution
on [0, 2]:

Dn

n

d−→ Uniform [0, 2] . (14)

Proof. The substitutions

D(z, 1) = M(z) = 1 + 2zφ′

φ
, and D(z, v) = Q(z, v)

φ(z)

lead to a partial differential equation, which in turn yields the recurrence for the coefficients
qn(v) := [zn]Q(z, v):

qn(v) = v(2n− 1 + v)qn−1 − v2(1− v)q′n−1(v) + φn.

We then get the exact solution qn(v) = φn(1 + v + · · · + v2n). Accordingly, dn(v) :=
[zn]D(z, v) ∼ qn(v). This implies the uniform limit law (14). J

A more intuitive interpretation of this uniform limit law is given in the next section.

AofA 2018
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3.2 Approximation and method of moments
Unlike all previous proofs, we use the method of moments to establish the limiting distribution
of the number of loops. The situation is complicated by the presence of the term involving
∂vY in (7), which introduces higher order derivatives with respect to v at v = 1 when
computing the asymptotic of the moments.

I Theorem 8. Let Yn denote the total number of loops in a random rooted map with n edges.
Then

Yn
n

d−→ L, (15)

where L is a continuous law with a computable density on [0, 1].

Proof. First, we show by induction that there exist constants ηk,`, such that as n→∞,

[zn]∂kv∂`wY (z, v, w)
∣∣
v=w=1 ∼ ηk,`n

k+`+1φn, k, ` > 0. (16)

For k = ` = 0 the statement clearly holds. Let y(k,`)
n := [zn]∂kv∂`wY (z, v, w)

∣∣
v=w=1 for larger

k, ` > 0. By translating (7) into the corresponding recurrence for the coefficients and by
collecting the dominant terms (using the induction hypothesis (16)), we deduce that

y(k,`)
n ∼ (2n+ k)y(k,`)

n−1 + `y
(k+1,`−1)
n−1 + (2kn− 2k)y(k−1,`)

n−1 + 1[k=0]y
(k,`)
n−1 .

Accordingly, we are led to the recurrence

ηk,` = 1
k + 2`+ 1[k>0]

(2kηk−1,` + `ηk+1,`−1),

for k + ` > 0 (provided that we interpret ηk,` = 0 when any index becomes negative). In
particular, when ` = 0, we obtain the moments of the random variable En, the number of
root edges: ηk,0 = 2k+1

k+1 , which coincides with the moments of the uniform random variable
Uniform[0, 2]. Finally, it is not complicated to check that the numbers η0,` satisfy the
condition of Hausdorff moment problem, i.e. η0,` uniquely determine the limiting random
variable defined on [0, 1]. J

4 Combinatorics of map statistics

We examine briefly the combinatorial aspect of the map statistics, relying our arguments on
the close connection between maps and chord diagrams (see [8]).

Recall that a chord diagram [14] with n chords is a set of vertices labelled with the
numbers {1, 2, . . . , 2n} equipped with a perfect matching. A chord diagram is indecomposable
if it cannot be expressed as a concatenation of two smaller diagrams.

Why the root degree follows a uniform law? We begin with Cori’s bijection [8] between
rooted maps and indecomposable diagrams. In this bijection, each chord connecting labels i
and j corresponds to matching of the half-edges with labels i and j. The set of half-edges
incident to each vertex of the resulting map corresponds to the set of nodes to the right of
the starting points of the so-called outer chords, i.e. chords that do not lie under any other
chord.

I Proposition 9. There exists a bijection between rooted maps of root degree d with n edges,
and indecomposable diagrams with n+ 1 chords such that the vertex d− 2 is matched with
vertex 1.
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Figure 8 Random rooted maps, respectively with 1000 and 20000 edges.

Once this proposition is available, it leads to a simpler and more intuitive proof of
Theorem 7 as follows. In a (not necessarily indecomposable) diagram, the label of the vertex
matched with 1 follows exactly a uniform law on {2, . . . , 2n}. But a diagram is almost surely
an indecomposable diagram (because its cardinality is asymptotically the same); thus the
label of the vertex matched with 1 divided by 2n obeys asymptotically a uniform law on
[0, 1] (or Uniform[0, 2] if divided by n as in Theorem 7).

Uniform random generation. Cori’s bijection is also useful for generating random rooted
maps. Uniformly sampling a random diagram can be achieved by adding the chords se-
quentially one after another. If this procedure results in a decomposable diagram, it is
rejected (which occurs with asymptotic probability 0). A successful sampled diagram is then
transformed into a map using Cori’s bijection [8]. Figure 8 shows two instances of random
maps thus generated.

The number of leaves. Another bijection in [10] is useful in proving the Poisson limit law
of the number of leaves. This bijection sends leaves of a map into the isolated chords (namely,
edges connecting vertices k and k + 1) of an indecomposable chord diagram. According
to [14, Theorem 2], the number of isolated edges in a random chord diagram has a Poisson
distribution with parameter 1. We can then deduce the following theorem.

I Theorem 10. The number of leaves in a random map with n edges follows asymptotically
a Poisson law with parameter 1.

Two dual parameters. We briefly remark that two other parameters, namely root face
degree and the number of trivial loops do not seem easily dealt with by the method of
generating functions because marking them requires additional nested information such
as the degrees of all the faces. However, such parameters can be easily marked in their
corresponding dual maps. Their limit distributions are uniform and Poisson, respectively.
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