
Beyond Series-Parallel Concurrent Systems: The
Case of Arch Processes
Olivier Bodini
Laboratoire d’Informatique de Paris-Nord, CNRS UMR 7030 - Institut Galilée - Université
Paris-Nord, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
Olivier.Bodini@lipn.univ-paris13.fr

Matthieu Dien
Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.
dien@stat.sinica.edu.tw

Antoine Genitrini
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6 -LIP6- UMR 7606, F-75005
Paris, France.
Antoine.Genitrini@lip6.fr

Alfredo Viola
Universidad de la República, Montevideo, Uruguay.
viola@fing.edu.uy

Abstract
In this paper we focus on concurrent processes built on synchronization by means of futures. This
concept is an abstraction for processes based on a main execution thread but allowing to delay
some computations. The structure of a general concurrent process is a directed acyclic graph
(DAG). Since the quantitative study of increasingly labeled DAG (directly related to processes)
seems out of reach (this is a]P-complete problem), we restrict ourselves to the study of arch
processes, a simplistic model of processes with futures. They are based on two parameters related
to their sizes and their numbers of arches. The increasingly labeled structures seems not to be
specifiable in the classical sense of Analytic Combinatorics, but we manage to derive a recurrence
equation for the enumeration.
For this model we first exhibit an exact and an asymptotic formula for the number of runs of a
given process. The second main contribution is composed of a uniform random sampler algorithm
and an unranking one that allow efficient generation and exhaustive enumeration of the runs of
a given arch process.

2012 ACM Subject Classification Mathematics of computing → Generating functions, The-
ory of computation → Generating random combinatorial structures, Theory of computation →
Concurrency

Keywords and phrases Concurrency Theory, Future, Uniform Random Sampling, Unranking,
Analytic Combinatorics

Digital Object Identifier 10.4230/LIPIcs.AofA.2018.14

Funding This research was partially supported by the ANR MetACOnc project ANR-15-CE40-
0014.

© Olivier Bodini, Matthieu Dien, Antoine Genitrini, and Alfredo Viola;
licensed under Creative Commons License CC-BY

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Olivier.Bodini@lipn.univ-paris13.fr
mailto:dien@stat.sinica.edu.tw
mailto:Antoine.Genitrini@lip6.fr
mailto:viola@fing.edu.uy
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

1 Introduction

Concurrent processes are logic units running independently in the same environment which
share resources (processing time, file inputs or outputs, etc). To guarantee the good behavior
of a concurrent program (a set of processes), a mechanism of synchronization has to be set
up. For example, synchronization can be used to avoid a process to write in a file currently
read by another process.

To deal with concurrent programs, researchers in the concurrency theory community
formalize the programs in an abstract language called process algebra. Different formalisms
exhibit different properties of concurrent programs. We are mainly interested in the so-
called Calculus of Communicating Systems introduced in [18], because of its popularity in
concurrency theory and the simplicity to reason about.

In this context, one of the main goals in concurrency is to check the good behavior of
such programs. A very popular method to do the verification is the model checking: several
logical properties (the specification of the program behavior) are checked for all the possible
runs of the program (see [3] as a reference book).

A common problem in such a method is the combinatorial explosion phenomenon: the
huge number of runs to check. To deal with that explosion, a statistical method has been
introduced: the Monte-Carlo model checking (see [13]). Here, the idea is to check the
specification only for few runs randomly sampled. Thus, the result of the method is not
anymore a proof of good behavior but a statistical certificate.

In this paper we investigate this phenomenon from a combinatorial point of view. We
consider concurrent programs as sets of atomic actions (executed computations) constrained
by a partial order relation: some actions have to finish before others start their computations.
Thus in this setting, a concurrent program can be modeled as a partial order (a.k.a. poset).
Then, its runs (possible execution flows) are its linear extensions (i.e. the total orders
compatible with the partial order) and the combinatorial explosion phenomenon (for a given
family of posets) is the fast growth of the number linear extensions as its number of atomic
actions increases.

The problem of counting the number of linear extensions of a poset is known to be
]P-complete [10]. As a consequence, an analytic approach to study this counting problem
for general posets seems out of reach. We thus limit the difficulty by considering restricted
classes of partial orders. In previous works we dealt with tree-like processes [9], tree-like
processes with non-deterministic choice [8] and Series-Parallel processes [5, 7]. In these
papers, like in the present one, we take the point of view to model a partial order by its
covering directed acyclic graph – DAG – (a.k.a. Hasse diagram). Then a linear extension
becomes an increasing labeling of the covering DAG. Previously this consideration let us to
use symbolic method to specify our models and so to use tools of Analytic Combinatorics
(see [11]).

In the present work we focus on processes built on synchronization by means of futures
or promises (see [4]). This concept is an abstraction for processes based on a main execution
thread but allowing to delay some computations. These computations are run asynchronously
and are represented as an object that can be queried in two ways: finish? to know if the
computation has terminated and get to retrieve the result of the computation (and properly
proceed the synchronization). This quite old principle aroses recently in many programming
languages, especially in the very popular Javascript language (see [1]).

To emphasize these paradigm we consider arch processes: a simplistic model of processes
with futures. An arch process is composed of a main trunk from which start several arches

O. Bodini, M. Dien, A. Genitrini, and A. Viola 14:3

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •

c2 •

c3
•

ck
•

b1•b2•
b3 •

bk •

Figure 1 The (n, k)-arch process.

(modeling futures). The general shape of such a process is given in the Figure 1. Arch
processes are based on two parameters related to their sizes and their numbers of arches. A
combinatorial and recursive specification (as in [11]) for these increasing labeled structures
seems out of the reach at the moment. As a consequence we present here a different approach
to specify the problem.

For this model we exhibit exact and asymptotic formula for the number of increasing
labelings.As a second main contribution is the design of two algorithms. The first one
is an uniform random sampler for runs of a given arch process and the second one is an
unranking algorithm which allows to obtain an exhaustive builder of runs. The design of
these algorithms is motivated by the possible applications to (statistical) model checking.

The paper is organized as follows. The next section is devoted to the formal description of
(n, k)-arch processes and gives the solution of the recurrence equation driving their numbers
of runs. In Section 3 we prove the algebraicity of the bivariate generating function, we give a
closed form formula for it and the asymptotic behaviors of the diagonal coefficients of the
functions. Section 4 carefully describes both algorithms.

2 The arch processes and their runs

A concurrent program is seen as a partially ordered set (poset) of atomic actions where the
order relation define the precedence constraints over the executions of the actions.
A run of a concurrent program is a linear extension of the corresponding poset: i.e. a total
order compatible with the partial order relation.

Note that many other models of concurrent program exist but we have chosen to use this
one because it is well-suited to study the combinatorial explosion phenomenon.
We introduce now the model of arch processes, a family of restricted concurrent program
encoding synchronization by means of futures.

I Definition 1. Let n and k be two positive integers with k ≤ n+ 1. The (n, k)-arch process,
denoted by An,k, is built in the following way:

the trunk of the process: a sequence of (n+ k) actions a1, . . . , ak, x1, . . . , xn−k, c1, . . . , ck
and represented in Figure 1 on a semicircle;
the k arches that correspond to the triplets, for all i ∈ {1, . . . , k}, ai → bi → ci.

Thus k is the number of arches in the process, and n is the length (along the trunk) between
both extremities of each arch ai and ci (for all i). There are two extreme cases: when k = n,

AofA 2018

14:4 Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

1 •3 •
4•

6•

7•

9 •
11 •

12•
13•

2 •10 •
5 •

8 •

Figure 2 A run of the (5, 4)-arch process.

it corresponds to the arch processes that do not contain any node xi in the trunk, and the
case k = n+ 1 that corresponds to the case where both the nodes ak and c1 are merged into
a single node (and thus there is no node xi).

In Figure 1 representing the (n, k)-arch process, the precedence constraints are encoded
with the directed edges such that a → b means that the action a precedes b. We remark
that the (n, k)-arch process contains exactly (n + 2k) actions. Due to the intertwining of
the arches, we immediately observe when k is larger than 1 then the arch processes are
not Series-Parallel processes. Hence the results we exhibited in our papers [6, 7] cannot be
applied in this context.

I Definition 2. An increasing labeling for a concurrent process containing ` actions is
a bijection between the integers {1, . . . , `} and the actions of the process, satisfying the
following constraint: if an action a precedes an action b then the label associated to a is
smaller than the one related to b.

In Figure 2 we have represented an increasing labeling of the (5, 4)-arch process A5,4
corresponding to the run 〈a1, b1, a2, a3, b3, a4, x1, b4, c1, b2, c2, c3, c4〉. As one can see, every
directed path (induced by the precedence relation) is increasingly labeled. Our quantitative
goal is to calculate the number of runs for a given arch process.

I Proposition 3. The number of runs of a concurrent process is the number of increasing
labelings of the actions of the process.

Thus, each increasing labeling is in bijection with a single linear extension.
While there is the classical hook-length formula for tree-processes [15, 9] and its general-

ization for Series-Parallel processes [6], to the best of our knowledge, no closed form formula
is known for more general classes of processes. In the rest of the paper, for a given process
A, we denote by σ(A) its number of runs.

First, let us easily exhibit a lower bound and an upper bound (in the case k < n+ 1) in
order to obtain a first idea for the growth of the numbers of runs for the arch processes. We
remark that a similar approach could be used for the case when k = n+1. We first enumerate
the runs where all the bi nodes are preceded by ak, and all of them precede the node c1. This
imposes new precedence constraints for the process, and thus its number of runs is a lower
bound for the total number of runs. In this case the bi’s permute without any constraint, i.e.
k! possibilities and then each permutation of the bi’s shuffles with the sequence x1, . . . , xn−k.
Thus we get the following lower bound for the number of runs of An,k:

σ(An,k) ≥ k!
(
k + n− k

k

)
= n!

(n− k)! .

O. Bodini, M. Dien, A. Genitrini, and A. Viola 14:5

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •

c2 •
c3•

ck
• •c′1

b1•b2•
b3 •

bk •

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •

c2 •
c3•

ck
• •c′1

b1•b2•
b3 •

bk •

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •

c2 •
c3•

ck
• •c′1

• b1

b2•
b3 •

bk •

a1•a2•
a3•

ak•
x1•

xn−k•
c1 •

c2 •
c3•

ck
• •c′1

• b1

b2•
b3 •

bk •

Figure 3 From left to right, the processes denoted Dn,k, Dn,k, D
1
n,k and D2

n,k.

We now focus on an upper bound for the number of runs of An,k. Here again we suppose
that all the permutations of the bi’s are possible, but we allow each bi to appear everywhere
between a1 and ck. This constraint is satisfied by all the runs, but some possibilities are
not valid runs: thus we are computing an upper bound. Once the permutation of the bi’s is
calculated, we shuffle it into the trunk (containing n+ k nodes):

σ(An,k) ≤ k!
(
k + n+ k − 1
n+ k − 1

)
= (n+ 2k − 1)!

(n+ k − 1)! .

A refinement of these ideas for the bounds computation allows to exhibit a recurrence formula
for the value σ(An,k).

I Theorem 4. Let n and k be two integers such that 0 ≤ k ≤ n+ 1. The number σ(An,k)
of runs of the process An,k is equal to tn,k that satisfies:

tn,k = n+ 2k − 1
2 tn,k−1 + n− k

2 tn+1,k−1 and tn,0 = 1. (1)

In order to provide the proof, we first introduce the four processes in Figure 3. Notice that
they are not arch processes. From left to right, the first process, denoted by Dn,k, is almost
the process An,k. In fact, the single difference is that Dn,k contains exactly one more action,
denoted by c′1, that is preceded by all the other actions. The second process Dn,k is related
to Dn,k in the following way: the precedence relation starting at b1 is replaced, instead of
having b1 → c1, it is b1 → c′1. Finally, for the two last processes D1

n,k and D2
n,k, it is also the

relations a1 → b1 → c1 which are modified.

Proof. The extreme case An,0 corresponds to a process without any arch: just a trunk.
Obviously it admits a single increasing labeling: it has a single run.

Suppose first that k < n+ 1. The number σ(An,k) is equal to the number of runs σ(Dn,k)
because for all runs, the integer associated to c′1 is inevitably the largest one: 2k + n + 1.
Then, using a inclusion/exclusion principle, we obtain the following formula for the number
σ(Dn,k):

σ(Dn,k) = σ(Dn,k)−
(
σ(D1

n,k)− σ(D2
n,k)

)
. (2)

In fact we are focusing on the action preceded by b1. In Dn,k it corresponds to c1. By
modifying it to c′1 in Dn,k we allow runs where b1 appears after c1, thus that are not valid
for Dn,k. We remove this number of non-valid runs with σ(D1

n,k)− σ(D2
n,k), by playing with

both actions x1 and c1. To compute σ(Dn,k), first omit the action b1 (and its incoming

AofA 2018

14:6 Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

and outgoing edges) ; the remaining process is a (n, k − 1)-arch process, up to renaming,
with added top and bottom actions (a1 and c′1) which do not modify the number of runs
of An,k−1. It remains to insert b1 in this “almost” An,k−1, somewhere between a1 and c′1:
there are (2 · (k − 1) + n− 1) + 2 = 2k + n− 1 possibilities. The term (2 · (k − 1) + n− 1)
are the cases where b1 is put between a2 and ck and the term 2 corresponds to the cases
where b1 is either before a2 or after ck. The process D1

n,k is similar to the arch process An,k,
there is only an action a1 that precedes it, so σ(D1

n,k) = tn,k. Lastly, for the process σ(D2
n,k),

forgetting b1 we recognize An+1,k−1 up to renaming, so b1 can be inserted between x1 and
c1: there are n− k possibilities. Finally we obtain the following equation

σ(An,k) = (n+ 2k − 1) · σ(An,k−1)− σ(An,k) + (n− k) · σ(An+1,k−1).

Suppose now that k = n+ 1. Here there is no action xi and both the nodes ak and c1 are
merged into a single node. We can adapt equation (2) and obtain the same recurrence, but via
a small difference in the computation: σ(Ak−1,k) = 3k ·σ(Ak−1,k−1)−σ(Ak−1,k)−σ(Ak,k−1).
But since k = n+ 1, this recurrence is equal to equation (1) too. J

When k ≥ n+ 1, one can think to the arch process An,k as an arch process where the last
(k−n) actions an−i are merged with the first (k−n) actions ci. But the recursive formula (1)
does not apply to such models: once k > n+ 1 the recurrence loses its combinatorial meaning.

The next result exhibits a closed form formula for the number of runs of the arch processes.

I Theorem 5. Let n and k be integers such that 0 < k ≤ n+ 1. The number 1 of runs of
the (n, k)-arch process is

σ(An,k) =(2k + n− 1)!!
2k−1

k−1∑
s=0

(n+ s) par(n, s)
(n+ s+ 1)!!

∑
1≤i1<···<is≤k

s∏
j=1

(ij + j + n− k − 1)
Γ
(

2(k−ij)+n+j+2
2

)
Γ
(

2(k−ij)+n+j+3
2

) ,

where par(n, s) =


(2s/2)−1 if s is even
√
π(2(s+1)/2)−1 if s is odd and n is even

(2(s−1)/2√π)−1 if s is odd and n is odd.

Let us recall the double factorial notation: for n ∈ N, n!! = n · (n−2)!! with 0!! = 1!! = 1. We
remark that the ratio of the two Γ-functions is related to the central binomial coefficient. The
asymptotic behavior of the sequence does not seem immediate to obtain using this formula.

key-ideas. The formula for σ(An,k) is obtained by resolving the recurrence stated in equa-
tion (1). First remark that the calculation of σ(An,k) requires the values of σ(Ai,j) in the
triangle such that n ≤ i ≤ n + k and 0 ≤ j ≤ k − (i − n). The formula is computed by
unrolling k times the recurrence. In particular, the index s in the formula corresponds to
the number of times we have used the second term of equation (1), to reach the final term
σ(An+s,0). The ij values indicate in which iteration the second terms of equation (1) have
been chosen. They describe the path from (n, k) to (n+ s, 0). The brute formula obtained in
this way is composed of a product of truncated double factorials that can be written as ratios

1 In Theorem 5 we use the convention that the sum over the sequence of ij ’s is equal to 1 when s = 0.

O. Bodini, M. Dien, A. Genitrini, and A. Viola 14:7

of double factorial numbers. Finally, by coupling the adequate numerators and denominators
in the product we exhibit several Wallis’s ratios [2] that are easily simplified by using the

Γ-function: (2n− 1)!!
(2n)!! = 1√

π

Γ
(
n+ 1

2
)

Γ (n+ 1) . J

By using this closed form formula, or the bivariate recurrence (cf. equation (1)), we easily
compute the first diagonals of the recurrence. The values of a given diagonal correspond to
the class of arch processes with the same number of actions xi in the trunk.

(σ(Ak−1,k))k∈N\{0,1} = (1, 12, 170, 2940, 60760, 1466640, 40566680, 1266064800, . . .)
(σ(Ak,k))k∈N∗ = (1, 5, 44, 550, 8890, 176120, 4130000, 111856360, . . .)

(σ(Ak+1,k))k∈N∗ = (2, 11, 100, 1270, 20720, 413000, 9726640, 264279400, . . .)
(σ(Ak+2,k))k∈N∗ = (3, 19, 186, 2474, 41670, 850240, 20386800, 561863960, . . .)

We remark that the first terms of the sequence (σ(Ak+1,k))k∈N∗ coincide with the first terms
of the sequence A220433 (shifted by 2) in OEIS 2 . This sequence is related to a specific Alia
algebra and is exhibited in the paper of Khoroshkin and Piontkovski [14]. In their paper, the
exponential univariate generating function naturally appears as an algebraic function. This
motivates us to study in detail the bivariate generating function for (tn,k) and in particular
its diagonals.

3 Algebraic generating functions

Let us associate to the bivariate sequence (tn,k)n,k the generating function, denoted by
A(z, u), exponential in u and ordinary in z:

A(z, u) =
∑

n≥0,k≥0

tn,k
k! z

nuk.

Recall this series enumerates the increasing labelings of the arch processes, when k ≤ n+ 1,
but has no combinatorial meaning beyond this bound.

I Proposition 6. The bivariate generating function A(z, u) is holonomic and satisfies the
following differential equation.

(2zu− 2z − u) ∂

∂u
A (z, u) + (z − 2)A (z, u) + z (z + 1) ∂

∂z
A (z, u) + C(u) = 0.

where C(u) is an algebraic function determined by the initial conditions of the equation.

The differential equation can be exhibited since the recursive behavior of (tn,k) is not disturbed
beyond the bound k > n+ 1.

key-ideas. The differential equation is directly obtained from the recurrence equation (1).
The function C(u) encodes the initial conditions of the equation. The differential equation
satisfied by A(z, u) ensures its holonomicity (cf. [21, 11]). J

2 OEIS corresponds to the On-line Encyclopedia of Integer Sequences: http://oeis.org/.

AofA 2018

http://oeis.org/

14:8 Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

It is important to remark that C(u) is holonomic. In fact we have C(u) = u ∂
∂uA(0, u) +

2A(0, u) and consequently C(u) is holonomic as a specialization of a holonomic bivariate
generating function. A direct computation for C(u) exhibits the following differential equation

4
(
24u2 + 3u+ 1

)
C(u)− 4u

(
84u2 − 3u+ 1

) d
duC(u)

− 2u2 (216u2 − 151u+ 13
) d2

du2C(u)

− 2u2 (58u3 − 75u2 + 33u− 2
) d3

du3C(u)

− u3 (8u3 − 15u2 + 12u− 4
) d4

du4C(u)− 8 (3u+ 1) = 0.

Note that we prove also that C(u) is solution of an algebraic equation. This fact is really
not obvious from a combinatorial point of view. But it is deduced through the fact that the
function A(0, u) is algebraic:

(8u3 − 15u2 + 12u− 4)A(0, u)3 + (12u2 − 12u+ 6)A(0, u)− 2u3 = 0. (3)

The equation is obtained by a guess and prove approach. Once it has been guessed it remains
to prove it by using the holonomic equation proven in Proposition 6. Thus we get

32
(
9u2 − 12u+ 8

)
(u− 1)3

+ 48
(
36u6 − 120u5 + 202u4 − 199u3 + 123u2 − 44u+ 8

)
(u− 1)2

C(u)

+
(
8u3 − 15u2 + 12u− 4

)3
C(u)3 = 0.

I Theorem 7. The function A(z, u) is an algebraic function in (z and u) whose annihilating
polynomial has degree 3:

2 + 6
(
12zu3 − 18zu2 − 2u2 + 13zu+ 2u− 3z − 1

)
A(z, u)

+ 6z2 (8u3 − 15u2 + 12u− 4
)
A(z, u)2

+
(
8u3 − 15u2 + 12u− 4

) (
z3 + 6zu+ 3z2 − 3z − 1

)
A(z, u)3 = 0.

Note that the choice to use a doubly exponential generating function (in u and z) for (tn,k)
would have made sense and would be holonomic too (closure property of Borel transform). But
it would not be algebraic because of the inappropriate asymptotic expansion (cf. Theorem 9).

Proof. The fact that the initial conditions and a diagonal of A(z, u) are algebraic suggests that
it could also be algebraic as a function of z and u. Applying a bivariate guessing procedure,
we observe that the bivariate function H(z, u) = (u+ 1)(z3 + 3z2 + 6zu− 3z − 1)A(z, u) is
such that [zn]H(z, u) = 0 for n > 2. Furthermore [zj]H(z, u) is algebraic for j = {0, 1, 2}.
So, let us calculate these z-extractions. First recall that [z0]A(z, u) satisfies the algebraic
equation (3). In the same vein, [z1]A(z, u) satisfies the algebraic equation(

8u3 − 15u2 + 12u− 4
)
f(u)3 + 3

(
8u3 − 15u2 + 12u− 4

)
f(u)2

+3
(
8u3 − 15u2 + 10u− 2

)
f(u) + 8u3 − 15u2 + 6u = 0,

and finally [z2]A(z, u) satisfies the algebraic equation(
8u3 − 15u2 + 12u− 4

)
f(u)3 +

(
−24u3 + 45u2 − 36u+ 12

)
f(u)2

+
(
−72u3 + 135u2 − 84u+ 18

)
f(u)− 40u3 + 75u2 − 36u = 0.

O. Bodini, M. Dien, A. Genitrini, and A. Viola 14:9

Thus we obtain

[z0]H(z, u) = −(1 + u)A(0, u)
[z1]H(z, u) = −1 + (u+ 1)

(
(6u− 3)A(0, u)− [z1]A(z, u)

)
[z2]H(z, u) = (u+ 1)

(
(6u− 3)[z1]A(z, u)− [z2]A(z, u) + 3A(0, u) + (6u− 4)

)
.

Finally we get A(z, u) = [z≤2]H(z, u)
(u+ 1) (z3 + 3z2 + 6uz − 3z − 1) . By using the elimination theory,

we get a closed form algebraic equation for A(z, u) of degree 27, that obviously cannot fit in
the conference paper format. Nevertheless, this equation is not minimal. Simplifying it, we
get a minimal polynomial of degree 3 which annihilates A(z, u):

(
8u3 − 15u2 + 12u− 4

) (
z3 + 3z2 + 6zu− 3z − 1

)
A(z, u)3

+ 6z2 (8u3 − 15u2 + 12u− 4
)
A(z, u)2

+ 6
(
12zu3 − 18zu2 − 2u2 + 13zu+ 2u− 3z − 1

)
A(z, u) + 2 = 0.

A direct proof by recurrence confirms the validity of this equation. J

We remark in the previous section that the diagonals of the function A(z, u) are of
particular interest because they define subclasses of arch processes with a fixed number of xi
actions covered by all the arches. In order to extract the generating functions of this subclass,
we could use the Cauchy formula to compute [u0]A(z/u, u) and so on; we would keep the
holonomicity property of the sequences but not their algebraicity. So, we prefer to define
the generating function B(z, u) = A(z/u, u). A similar proof as for the case A(z, u) can be
done to prove the algebraicity of B(z, u). In particular, it exhibits the following algebraic
equation satisfied by B(z, u)(

9u2 + 12u− 4
) (
z3 + 3z2 + 6u− 3z − 1

)
B(z, u)3 + 6z2 (9u2 + 12u− 4

)
B(z, u)2

+6
(
18u2z − 18u2 + 6uz + 9u− 3z − 1

)
B(z, u) + 2 (6u− 1)2 = 0

In particular, B(0, u) is associated to the sequence (tk,k)k, [z1]B(z, u) corresponds to the
sequence (tk−1,k)k and so on. By specializing z = 0 in the latter algebraic equation then
by resolving it through the Viète-Descartes approach for the resolution of cubic equation
(detailed in the paper [19]), we obtain the following closed form formula corresponding to
the branch that is analytic in 0:

B(0, u) =
√

2
√

1− 3u
1− 3u− 9

4u
2 cos

1
3 arccos

 6u− 1√
2(1− 3u)

√
1− 3u− 9

4u
2

1− 3u

 .

Even if the way we represented B(0, u) could suggest a singularity when the argument of the
arccos function is equal to 1, the function admits an analytic continuation up to its dominant
singularity ρ : the solution of 1 − 3u − 9

4u
2 = 0, thus corresponding to ρ = 2

3

(√
2− 1

)
.

Furthermore, by studying the global generating function B(z, u), we obtain its singular
expansion.

I Lemma 8. Near the singularity when u tends to ρ, the function B(z, u) satisfies

B(z, u) =
u→ρ

a(z) + b(z)√
ρ− u

+ o
(

(ρ− u)−1/2
)
,

with a(z) and b(z) two functions independent from u.

AofA 2018

14:10 Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

By using this result we deduce the asymptotic behaviors of the diagonal coefficients of A(z, u).

I Theorem 9. Let i be a given integer greater than −1, and k tend to infinity:

tk+i,k ∼
k→∞

γi
ρ−k√
k
k! with γ0 = 1

2

√
3√
2π

(√
2− 1

)
and γi =

(
1√

2− 1

)i
γ0.

This theorem is a direct consequence of Lemma 8. The (γi)i can be deduced by asymptotic
matching (using an Ansatz).

Finally, by computing [z1]B(z, u) with the algebraic equation it satisfies, we prove that
its second derivative is solution of the algebraic equation exhibited in OEIS A220433.

4 Uniform random generation of runs

We now introduce an algorithm to uniformly sample runs of a given arch process An,k. Our
approach is based on the recursive equations (1) and (2) for the sequence (tn,k). Here we
deal with the cases k ≤ n and avoid the limit case k = n+ 1. Although the latter limit case
satisfies this equation too, its proof is based on another combinatorial approach, and so the
construction of a run cannot be directly deduced form the combinatorial approach proposed
for the cases k ≤ n. Of course, a simple adaptation of the algorithm presented below would
allow to sample in Ak−1,k, but the lack of space prevent us to present it here.

Our algorithm is a recursive generation algorithm. But since the objects are not specified
in a classical Analytic Combinatorics way, we cannot use the results of [12]. As usual for
recursive generation, the first step consists in the computation and the memorization of the
value tn,k and all the intermediate values (ti,j) needed for the calculation of tn,k.

I Proposition 10. In order to compute the value tn,k, it is sufficient to calculate the values
in the bi-dimensional set {ti,j | n ≤ i ≤ n+ k and 0 ≤ j ≤ k − (i− n)}. This computation
is done with O

(
k2) arithmetic operations.

Recall that the coefficient computations are done only once for a given pair (n, k), and then
many runs can be drawn uniformly for An,k by using the recursive generation algorithm.

Let us present the way we exploit the recurrence equation (2) to design the sampling
method. The main problem that we encounter is the presence of a minus sign in the recurrence
equation. Let us rewrite it in a slightly different way: σ(Dn,k) + σ(D1

n,k) = σ(Dn,k) + σ(D2
n,k).

Recall that the structures under consideration are depicted in Figure 3. We introduce
the classes of increasingly labeled structures from Dn,k, D

1
n,k, Dn,k and D2

n,k, respectively
denoted by In,k, I

1
n,k, In,k and I2

n,k. Remark that the number of runs of An,k is equal to |In,k|,
where the function | · | corresponds to the cardinality of the considered class. Obviously the
equation on the cardinalities can be written directly on the classes In,k ∪ I

1
n,k = In,k ∪ I

2
n,k

(since their intersections are empty: In,k and I1
n,k are distinct even if they are isomorphic).

Thus, we consider the problem of sampling the class In,k ∪ I
1
n,k where we bijectively replace

the runs belonging to I
1
n,k by runs of In,k (which can be performed recursively during

the sampling procedure). The Algorithm Sampling(n, k) is based on the correspondence
depicted in the Figure 3 and its adaptation presented above on the classes In,k ∪ I

1
n,k. In

each case the algorithm completes a recursively drawn run and applies some renaming on
the actions of that run. Then, it inserts the action b1 according to the cases In,k\I

1
n,k, I

1
n,k

or I2
n,k. In the specific case I1

n,k, instead of b1, it is the action bk that is inserted and the
renaming occurs in a similar fashion to obtain a run of In,k from the one of I1

n,k.

O. Bodini, M. Dien, A. Genitrini, and A. Viola 14:11

Algorithm 1 Uniform random sample for In,k.
1: function Sampling(n, k)
2: if k = 0 then
3: return 〈x1, x2, . . . , xn〉
4: r := rand_int(0, 2 · tn,k − 1) . a uniform integer between 0 and 2 · tn,k − 1 in r
5: if r < |In,k| then . generation in In,k
6: U := Sampling(n, k − 1)
7: pb := 1 + r//tn,k−1 . The position of the new b to insert
8: if pb > px1 then . generation in Ī1

n,k

9: Rename x1 by ak ; and each xi with i > 1 by xi−1
10: Insert bk at position pb ; and ck at the end of U
11: else . generation in In,k\Ī1

n,k

12: In U , rename each ai (resp. ci and bi) by ai+1 (resp. ci+1 and bi+1)
13: Rename xn−k+1 by c1
14: Insert b1 at position pb ; and a1 at the head of U
15: else . generation in I2

n,k

16: U := Sampling(n+ 1, k − 1)
17: pb := 2 + (r − (n+ 2k − 1) · tn,k−1)//tn+1,k−1
18: Rename xpb

by b1 and xn−k+2 by c1 ; and each xi with i > pb by xi−1
19: Insert a1 at the head of U
20: return U

Line 4 and 17 : the binary operator // denotes the Euclidean division.
The position of an action in a run is its arrival number (from 1 to the number of actions).

I Theorem 11. The Algorithm Sampling(n, k) builds uniformly at random a run of An,k
in k recursive calls, once the coefficients computations and memorizations have been done.

Since each object of In,k is sampled in two distinct ways, the uniform sampling in In,k ∪ I
1
n,k

induces the uniform sampling of In,k.
Focus on the run of A5,4 depicted in Figure 2: 〈a1, b1, a2, a3, b3, a4, x1, b4, c1, b2, c2, c3, c4〉.

It is either obtained from a (renamed) run of Ī1
5,4: 〈a1, b1, a2, a3, b3, x1, x2, c1, b2, c2, c3〉 with

pb = 8 (Line 8 of the algorithm). Or it is built from 〈a1, a2, b2, a3, x1, b3, x2, b1, c1, c2, c3〉 of
Ī5,4\Ī1

5,4, with pb = 1 (Line 11). But it cannot be built from a run of I2
5,4.

In Figure 4, we have uniformly sampled 1000 runs for A1000,1000 and we have represented
in blue points every pair (k, n) corresponding to an increasing sub-structure from An,k that
has been built during the algorithm (k for abscissa and n for ordinate). Only around 4.78 ·104

sub-structures have been built among the 50 · 104 inside the red lines which are calculated
for the value t1000,1000. At the beginning n ≈ k and the if branch on Line 5 is preferred
(instead of the else one on Line 15) because the number of xi actions is too small. After
some recursive calls, the number of xi actions has increased and then both branches of
the algorithm are taken with probabilities of the same order. Recall that the constants γi
(cf. Theorem 9) are evolving with an exponential growth. Finally, we observe that only a
small number of diagonals are necessary for the samplings. Since the diagonals (tni,ki

) for
increasing sequences (ni)i and (ki)i follow P-recurrences (cf. [16]), a lazy calculation of the
terms of the necessary diagonals that envelop the blue points would allow to minimize the
pre-computations of Proposition 10.

We close this section with the presentation of an unranking algorithm for the construction

AofA 2018

14:12 Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

Figure 4 The terms ti,j needed for the sampling of 1000 runs of A1000,1000.

of the runs of a given arch process An,k. This type of algorithm has been developed during
the 70’s by Nijenhuis and Wilf [20] and introduced in the context of Analytic Combinatorics
by Martínez and Molinero [17]. Our algorithm is based on a bijection between the set of
integers {0, . . . , tn,k − 1} and the set of runs of An,k. Here again we restrict ourselves to the
values k ≤ n. As usual for unranking algorithms, the first step consists in the computation
and the memorization of the values of a sequence. But compared to the uniform random
sampling, here we need more information than the one given by the sequence (tn,k).

To be able to reconstruct the run associated to a given rank, we need to know the position
of the action x1 in the recusively drawn run in order to decide if the action b1 appears before
or after it. First suppose k < n and let tn,k,` be the number of runs in An,k whose action x1
appears at position `. Let us denote by In,k,` the associated combinatorial class. We obtain
directly a constructive recurrence for the sequence.

tn,k,` = (`− 2) tn,k−1,`−2 + (n− k) tn+1,k−1,`−1 and tn,0,1 = 1; tn,0,`>1 = 0.

I Proposition 12. The computation of tn,k,` is done with O
(
k2) arithmetic operations.

The Unranking algorithm computes a run given its rank in the following total order:

α �n,k β iff.


α ∈ In,k,i0 and β ∈ In,k,i1 ∧ i0 < i1,

or α, β ∈ In,k,i ∧ α is built recursively from In,k−1,i−2 and
β is built recursively from In+1,k−1,i−1

or α, β ∈ In,k,i ∧ α, β ∈ In,k−1,i−2 (resp. In+1,k−1,i−1) and
α0, β0 inducing α, β satisfy α0 �n,k−1 β0.

The run example of Figure 2 has rank 479 among the 1270 runs of A5,4. Note that in the
case k = n (at the end there is no x1) the algorithm is easily extended by considering the
position of b1 as the one of x1.

I Theorem 13. The Algorithm Unranking(n, k, r) builds the r-th run of An,k in k recursive
calls, once the coefficient memorizations tn,k,`, for all ` such that k + 1 ≤ ` ≤ 2k + 1 (and
the necessary n and k), have been done.

Note that the implementation of both algorithms can be much more efficient than the
pseudocode exhibited above. Actually, only the absolute positions of the bi actions are
important in a run, because all other actions have their positions determined by the positions
of the bi actions. However, such implementations are much more cryptic to read, and so we
preferred to present here easy-to-read algorithms.

O. Bodini, M. Dien, A. Genitrini, and A. Viola 14:13

Algorithm 2 Unranking for In,k.
1: function Unranking(n, k, r)
2: ` := k + 1
3: while r ≥ 0 do
4: r := r − tn,k,l
5: ` := `+ 1
6: return Cons(n, k, `, r)
7: function Cons(n, k, `, r)
8: if k = 0 then
9: return 〈x1, x2, . . . , xn〉

10: if r < (`− 2) · tn,k−1,`−2 then . generation in In,k−1,`−2
11: rr := r % tn,k−1,`−2
12: U := Cons(n, k − 1, `− 2, rr)
13: pb := 1 + r//tn,k−1,`−2 . The position of the new b to insert
14: In U , rename each ai (resp. ci and bi) by ai+1 (resp. ci+1 and bi+1)
15: Rename xn−k+1 by c1
16: Insert b1 at position pb ; and a1 at the head of U
17: else . generation in In+1,k−1,`−1
18: r′ := r − (`− 2) · tn,k−1,`−2
19: rr := r′ % tn+1,k−1,`−1
20: U := Cons(n+ 1, k − 1, `− 1, rr)
21: pb := 2 + r′//tn+1,k−1,`−1
22: Rename xpb

by b1 and xn−k+2 by c1 ; and each xi with i > pb by xi−1
23: Insert a1 at the head of U
24: return U

Line 11 and 19 : the binary operator % denotes the Euclidean division remainder.

References

1 The ecmascript 2015 language specification. Technical report, ECMA-262 6th Edition, 2015.
URL: http://www.ecma-international.org/ecma-262/6.0/index.html.

2 M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo print-
ing edition, 1964.

3 C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008.

4 H. C. Baker, Jr. and C. Hewitt. The incremental garbage collection of processes. In
Proceedings of the 1977 Symposium on Artificial Intelligence and Programming Languages,
pages 55–59. ACM, 1977.

5 O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H.-K. Hwang. Increasing diamonds.
In Latin American Symposium on Theoretical Informatics, pages 207–219. Springer, Berlin,
Heidelberg, 2016.

6 O. Bodini, M. Dien, A. Genitrini, and F. Peschanski. Entropic uniform sampling of linear
extensions in series-parallel posets. In 12th International Computer Science Symposium in
Russia (CSR), pages 71–84, 2017.

7 O. Bodini, M. Dien, A. Genitrini, and F. Peschanski. The Ordered and Colored Products
in Analytic Combinatorics: Application to the Quantitative Study of Synchronizations in

AofA 2018

http://www.ecma-international.org/ecma-262/6.0/index.html

14:14 Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

Concurrent Processes. In 14th SIAM Meeting on Analytic Algorithmics and Combinatorics
(ANALCO), pages 16–30, 2017.

8 O. Bodini, A. Genitrini, and F. Peschanski. The combinatorics of non-determinism. In
FSTTCS’13, volume 24 of LIPIcs, pages 425–436. Schloss Dagstuhl, 2013.

9 O. Bodini, A. Genitrini, and F. Peschanski. A Quantitative Study of Pure Parallel Processes.
Electronic Journal of Combinatorics, 23(1):P1.11, 39 pages, (electronic), 2016.

10 G. Brightwell and P. Winkler. Counting linear extensions is]P-Complete. In STOC, pages
175–181, 1991.

11 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009. URL: http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521898065.

12 P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random generation of
labelled combinatorial structures. Theoretical Computer Science, 132(1-2):1–35, 1994.

13 R. Grosu and S. A. Smolka. Monte carlo model checking. In TACAS’05, volume 3440 of
LNCS, pages 271–286. Springer, 2005.

14 A. Khoroshkin and D. Piontkovski. On generating series of finitely presented operads.
Journal of Algebra, 426:377–429, 2015.

15 D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

16 L. Lipshitz. The diagonal of a d-finite power series is d-finite. Journal of Algebra, 113(2):373–
378, 1988.

17 C. Martínez and X. Molinero. Generic algorithms for the generation of combinatorial
objects. In MFCS’03, pages 572–581. Springer Berlin Heidelberg, 2003.

18 R. Milner. A Calculus of Communicating Systems. Springer Verlag, 1980.
19 R.W.D. Nickalls. Viète, descartes and the cubic equation. The Mathematical Gazette,

90(518):203–208, 2006.
20 A. Nijenhuis and H.S. Wilf. Combinatorial algorithms. Computer science and applied

mathematics. Academic Press, New York, NY, 1975.
21 R.P. Stanley. Enumerative Combinatorics:. Cambridge Studies in Advanced Mathematics.

Cambridge University Press, 2001.

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065

	Introduction
	The arch processes and their runs
	Algebraic generating functions
	Uniform random generation of runs

