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—— Abstract

We provide combinatorial decompositions as well as asymptotic tight estimates for two maximal
parameters: the number and average size of maximal independent sets and maximal matchings
in series-parallel graphs (and related graph classes) with n vertices. In particular, our results
extend previous results of Meir and Moon for trees [Meir, Moon: On maximal independent sets of
nodes in trees, Journal of Graph Theory 1988]. We also show that these two parameters converge
to a central limit law.
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Maximal Independent Sets and Maximal Matchings in Subcritical Graph Classes

1 Introduction

In this extended abstract we consider labelled, loopless and simple graphs only. For a graph
G = (V(G), E(G)), a subset J of V(G) is said to be independent if, for any pair of vertices x
and y contained in J, the edge {z,y} does not belong to E(G). An independent set J of a
graph G is said to be mazimal if any other vertex of G that is not contained in J is adjacent
to at least one vertex of J. A subset N of the edge set E(G) is called a matching if every
vertex x of G is incident to at most one edge of N. A matching N is called mazimal if it
cannot be extended to a bigger matching by adding an edge from E(G) \ N.

The purpose of this paper is to enumerate maximal independent sets and maximal
matchings (by means of symbolic methods) and to study their size distribution (using
complex analytic tools) in certain classes of graphs including trees, cactus graphs, outerplanar
graphs and series-parallel graphs. For simplicity we will only consider vertex labelled graphs,
thus making the combinatorial analysis as well as the analytic one considerably simpler.
However, in principle it is also possible to consider unlabelled graphs. We use the concept
of generating function in order to follow the classical connectivity-decomposition scheme,
first starting with the rooted blocks, i.e. maximal 2-connected components, then going to
the level of rooted connected graphs and finally to general (not necessarily connected and
unrooted) graphs.

Let G denote a proper class of vertex labelled graphs, which means that the vertices of
a graph with n vertices are labelled with the labels {1,2,...,n}. We denote by G, the set
of graphs in G with n vertices. For a graph G € G we denote by I(G) the set of maximal
independent sets of G and by

I, = |J I1(G) x {G}

Geg,

the system of all maximal independent sets of graphs of size n. More precisely, every maximal
independent set J is indexed by the corresponding graph, this is formally done by taking
pairs (J, G). Similarly, we denote by M (G) the set of maximal matchings of G and by

M, = | M(@G)x{G}
Geg,

the system of all maximal matchings of graphs of size n.

In this extended abstract, we present precise enumerative results on Z,, and M,,. In
particular, we will apply our method to two important graph families: Cayley trees and
series-parallel graphs. In principle our results can be extended to other graph classes that
have a so-called subcritical analytic structure, we will make this more precise in Subsection 2.3
(for instance, cactus graphs and outerplanar graphs also satisfy this analytic scheme). For
the mentioned graph classes we have the following universal structure in the asymptotic
enumeration formula for the number of graphs on n vertices, for n large enough:

5/2[)7”71!,

gn = |Gn| ~cn”
where ¢ > 0 and p is the radius of convergence of the (exponential) generating function
G(z) = EnZO gn% associated to the graph class under study. The first result is an asymptotic
estimate for both |Z,| and |M,,|:
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» Theorem 1. Let G either be the class of vertex labelled trees, cactus graphs, outerplanar
graphs or series-parallel graphs, and let p be the radius of convergence of the generating
function G(z) associated to G. Then we have

|Z,| ~ A1 n ™% 2p" 0! and  |My| ~ Aan =52 p3mnl,
where A1, Aa, p1, p2 are positve constants with 0 < p1 < p and 0 < pa < p.

As a direct corollary we obtain:

» Corollary 2. Let G be as in Theorem 1 and let AlL, be the average number of maximal
independent sets in a graph of size n in G and AM,, be the average number of matchings in
a graph of size n in G. Then it holds that

_ |7

Al, =— ~C-a" and AMn:M
In gn

NDan

where C, D, a, B are positive constants and « and B are larger than 1.

The second main result concerns the distribution of the respective size of maximal
independent sets and matchings. The following theorem shows that the limiting distribution
follows a central limit theorem with linear expectation and variance:

» Theorem 3. Let G either be the class of vertex labelled trees, cactus graphs, outerplanar
graphs or series-parallel graphs. Furthermore, let ST,, denote the size of a uniformly randomly
chosen mazimal independent set in T,, and SM, the size of a uniformly randomly chosen
matching in M,,. Then,

E[SI,] = un+ O(1), Var[SI,] = oin+ O(1),
E[SM,] = An+O(1), Var[SM,] = o3n+ O(1),

for some constants u, A > 0 and 02,02 > 0. Moreover, SI,, and M1, satisfy a central limit
theorem:

I, — E[S]
51, — E[SL,] 4 N(0,1) and

d SM, —E[SM,] 4
Var[S1T,] Var[SM,]

— N(0,1).

Apart for constants C' and D in Corollary 2, all the other appearing constants can be
computed explicitly to any degree of precision. The following table lists some of them:

| Fomi T R
Trees 1.273864 | 0.463922 || 1.313080 | 0.285910
Cactus graphs 1.282413 | 0.429472 || 1.371652 | 0.268268

Series-parallel graphs || 1.430394 | 0.269206 || 1.470167 | 0.254122

Let us mention that in [13], Meir and Moon obtained the estimate of Theorem 1 and the
expectation in Theorem 3 for maximal independent sets in Cayley trees, plane trees and
binary trees. Our contribution generalises their work, providing a precise limiting distribution
for the size of maximal independent sets in Cayley trees.

Finally, let us briefly discuss the extremal versions of those problems. In the literature,
one can find two such directions. One of them, started by Wilf [17] who was motivated by
the design of an algorithm to compute the chromatic number, consists in characterising the
extremal instances of a given family of graphs containing the maximum number of maximal
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independent sets (see [9], [15] and [18]), as well as maximum independent sets (see [19] and
[12]). Furthermore, the maximum number of both maximal matchings [10] and maximum
matchings [11] have been treated. The other direction consists in bounding the size of a
maximum matching in a graph [3]. However, the problems discussed in this extended abstract
seem to be of a different nature.

It is worth noticing that in [3], the authors also give tight bounds on the size of a maximal
matching in 3-connected planar graphs and in graphs with bounded maximum degree.

Structure of the extended abstract

Section 2 introduces the necessary background, namely the language of generating functions
and how they apply to graph decompositions in terms of their connectivity, as well as the
analytic concepts needed in the context of subcritical graph classes. Later, in Section 3 we
obtain a system of functional equations encoding maximal independent sets in subcritical
graph classes. We then analyse it using complex analytic tools in Subsection 3.2. And in
Section 4 we apply our results to the families of Cayley trees and series-parallel graphs. The
reader will finally find the analoguous scheme for maximal matchings in an appendix at the
end of the extended abstract.

2 Preliminaries

2.1 Generating functions

We follow the notation from [6]. A labelled combinatorial class is a set A together with a
size measure, such that if n > 0, then the set of elements of size n, denoted by A, is finite.
Each element a of A, is built from n atoms (typically, vertices in graph classes) assembled
in a certain way, the atoms bearing distinct labels in the set {1,...,n}. We always assume
that a combinatorial class is stable under graph isomorphism, namely, a € A if and only if
all graphs a’ isomorphic to a are also elements of A.

In enumerative problems, it is often useful to use the exponential generating function
(shortly the EGF) associated to the labelled class A:

A(z) == Z |AT|JCn, [z"]A(x) = [An|

n! n!
n>0

In our setting, we use the (exponential) variable z to encode vertices.

We can root the elements of a class A by distinguishing one of the items and discounting it,
which means that we reduce the size function by 1. Since we assume that our combinatorial
class is stable under graph isomorphism, this procedure can be performed by taking the item
with the largest label as the root. The corresponding new rooted class will be denoted by A°.
Since every element of A correponds uniquely to an element of A°, but the corresponding
term x"/n! in the generating function is replaced by #"~!/(n — 1)! (for an element of size
n), the correponding generating function satisfies

A°(z) = A'(z).

Similarly, we can consider a pointed structure 4°® by distinguishing one of the items without
discounting it. Since there are n different ways of choosing an item (for an element of size n),
the corresponding term z™/n! in the generating function is replaced by nz™/n! = 2™ /(n — 1)!
which leads to the relation

A*(x) = xA'(x).
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Finally, we will deal with the set construction of classes: given a labelled combinatorial
structure A, the set construction Set(.A) takes all possible sets of elements in A. The
corresponding generating function is then exp ((A(z)), where A(x) is the generating function
associated to A.

2.2 Graph decompositions

A block of a graph G is a maximal 2-connected subgraph of G. A graph class G is said to be
block-stable if it contains the graph e, the unique connected graph with two labelled vertices,
and satisfies that a connected graph G belongs to G if and only if any one of its blocks is in
G. The class G is also said to be connected component-stable when any graph G is in G if
and only if all connected components of G belong to G. For a graph class G, we denote by
C and B the families of connected and 2-connected graphs in G, respectively. In particular,
if G is a block-stable and connected-component stable class of graphs, then the following
combinatorial decomposition holds:

G = Set(C), C* = e x Set(B°oC*).

The previous formulas read as follows: first, each graph in G is a set of elements in C.
Secondly, a pointed connected graph in C*® can be decomposed as the root vertex, and a set
of pointed blocks (the ones incident with the root vertex) where we substitute on each vertex
a rooted connected graph. See [1, 4, 8] for details. These expressions translate into equations
of EGF in the following way:

G(z) = exp(C(a)), C*(2) = exp(B°(C*(x)).

See [16] for further results on graph decompositions and connectivity on graphs.

2.3 Asymptotics for subcritical graph classes

We call a block-stable and vertex labelled graph class subcritial if nB”(n) > 1, where 7
denotes the radius of convergence of B(x). In particular this is satisfied if B”(x) — oo as
x — n—. Cayley trees, cactus graphs, outerplanar graphs and series-parallel graphs are
subcritical. The main analytic property of subcritical graph classes is that they have many
universal asymptotic behaviours, see [2, 5, 14, 7].

In our context, we will just use the fact that the property nB”(n) > 1 ensures that the
functional equation C®(x) = zexp(B°(C*(x))) has solution C*(z) that has a squareroot
singularty at its radius of convergence p and, thus, a local expansion of the form

C*(z) = 2C'(z) = ¢y + ¢, <1‘Z>1/2+c2 <1”;> + ¢ (1z)3/2+... : (1)

where p is given by p = gOe_B/(EO) and 0 < ¢, = C*(p) < n is given by the equation
coB"(¢y) = 1. Furthermore ¢; < 0. Note that the singular behaviour of B(z) at its radius of
convergence 1) is irrelevant for the singular behaviour of C*(z) = zC’(z), we only make use
of the (analytic) behaviour of B’(z) around x = ¢, < 7.

From (1), and if we assume that the class is also connected component-stable, it follows
that C(x) and G(x) = e“® have the following singular behaviour around their common
radius of convergence p:

3/2
C(x):CO+CQ<1_%)+CS<1_% +oeey

G(x):90+92<17%)+gg(1fﬂ)3/2+...,

P
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where c3 and g3 are positive. If we further assume that £ = p is the only singularity on
the circle of convergence |z| = p which is satisfied for all our cases, and for proper positive
constants ¢/, ¢”, it then follows that (see for instance [6])

IC| = n! [z C(x) ~ ¢n™%2p™"n! and  |Gn| = n![z"] C(z) ~ ¢'n~%/2p 0l

3 Counting in block-stable graph classes

In this section, we consider block-stable vertex labelled graph classes and set up functional
equations for counting maximal independent subsets and maximal matchings. We use the
notation B for the family of 2-connected blocks in a block-stable graph class G and C for the
family of connected graphs in G.

3.1 Maximal independent sets in block-stable graph classes

A coloured block is a pair (I,b) consisting of a block b € B together with a distinguished
independent set I of b (note that I can be any independent set of b and not only a maximal
one). Let B(x,yo0,y1,y2) be the generating function enumerating coloured-blocks, where
the variable z marks vertices. The extra variables encodes the following: yg corresponds to
vertices of I, y; corresponds to vertices adjacent to a vertex in I (i.e. at distance one from I),
and yo corresponds to all other vertices, that is to vertices at distance at least two from I.
Similarly, a pointed coloured block is a pair (I,b°) consisting of a pointed block b° € B°
together with a distinguished independent set I of b. Let B; = B;(z,%0,¥y1,y2) be the
generating function counting pointed coloured blocks, where the pointed vertex is at distance
exactly i from I, for ¢ € {0,1}, and at distance at least 2 (case ¢ = 2). In those cases, the
pointed-vertex must neither be encoded by z or by any y;, for i € {0,1,2}. Hence,

B, = % : g—i, for i € {0,1,2}.
A coloured graph (J,g) is a pair consisting of a connected graph g € C and of a mazimal
independent set J of g. We can define pointed coloured graphs similarly to coloured blocks.
Let C = C(x,yo,y1) be the generating function counting coloured-graphs, where yo and y;
have the same meaning as in coloured blocks. For i € {0, 1}, let C; = C;(x,yo,y1) be the
generating functions enumerating pointed coloured-graphs, for which the pointed vertex is at
distance ezactly ¢ from J. Those two generating functions are given by

1 oC
;= —-—, fori e {0,1}. 2
=G frie (0.1) 2)
We finally need an auxiliary class. A special pointed coloured-graph is a pair (J, g°) where
J is an independent set of g which becomes maximal when adding the pointed vertex to J.
In other words, a special pointed coloured-graph is obtained from a coloured-graph pointed
at a vertex in J by removing it from J. We denote the corresponding counting formula
by Ca(z,y0,y1). Finally, observe that given a coloured-graph (J,g), the independent set J
together with the vertices of g at distance one from J define a partition of V' (g). Hence, the
following equalities hold:
oc _ Y% 870 y1 0C

9z~ z Oy + = o = 10Co + 11 Ch. (3)

Obviously we also have

G('TvyOa yl) = eXp(O(ma y07y1))7
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o
D l ':if;

Figure 1 Left is a connected series-parallel graph with a maximal independent set I (vertices

circled in red) and pointed at a vertex at distance one from I. Right is its block-decomposition.

Pointed vertices are coloured in white.

where G(z,yo0,y1) denotes the corresponding generating function of coloured graphs in G.

The following lemma describes connected structures in terms of their block-decomposition
(see Figure 1 for an example). Thus, if we know B(z,yo,y1,y2) (or just B;(z,yo,y1,y2), for
each i € {0,1,2}), then we can determine 2¢

9o (2,90,y1) and consequently C(x,yo,y1) and
G(l’, Yo, yl)

» Lemma 4. With the above notations, the following system of equations holds:

Co = exp(Bo(x,y0Co, y1(C1 + C2),y1C1)),
C1 = (exp(Bi1(z,yoCo, y1(C1 + C2),11C1)) — 1) - Ca, (4)
Co = exp(Ba(x, 40Co, y1(C1 + C2),y1C1)).

Proof. Let us start by finding an expression for Cy and let (I, g°) be a pointed coloured-graph
whose pointed vertex is in I. Following the decomposition of graphs into blocks, observe that
the pointed vertex of g° determines a set of pointed coloured-blocks (J;,b9) (withi=1,...,k
for a certain k) for which the root of each by belongs to J;, i.e. coloured-blocks with the
pointed vertex in J; (and hence, counted by Bg). Observe that the independent sets J; can be
extended to I by pasting pointed coloured-graphs on each of their vertices (and completing
the graph to ¢°).

Without loss of generality, let us now fix a j € {1,...,k} and analyse the pair (J;,b?).

Jr%yg
First, to every vertex of b5 in J; must be attached a coloured-graph (L, h°) whose root is in

L, i.e. a coloured-graph counted by Cy. In terms of generating functions, this translates to
the substitution of yo by yoCo. Second, to each vertex of b] at distance one from J;, the
root of the pointed coloured-graph (L, h°) attached to it can either be at distance one or
more from L. This then translates to the substitution of y; by y;1(Cy + Cs). Finally, if a
vertex of b7 is at distance at least two from J;, then the root of the coloured-graph (L, h°)
attached to it must be at distance one from L, as we need to extend the independent set
to a maximal one. This translates to the substitution of ys by y;C; and the first equation
of (4) holds. The study of Cj is obtained following the exact same arguments as in Cj.

Let us finally discuss the equation for Cy. Assume that (I, g°) is a pointed coloured-graph
and that (J;,b7) (for i = 1,...,k) are the pointed coloured-blocks incident with the pointed
vertex of ¢°. In particular, for each ¢ € {1,...,k} the pointed vertex of b is either at
distance one or at least two from J;. Nevertheless, observe that there exists at least one of
the pointed-blocks (J;, b;) whose pointed vertex is at distance one from J;. This gives us
that

C, = exp21(Bl(x, Y0Co, y1(C1 + C2),y1C1)) - exp(Ba(, yoCo, y1(C1 + C2),41C1))
= Cy (exp(Bi(z,y0Co, y1(C1 + C2),11C1)) — 1).

Which concludes the argument. <

18:7
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3.2 Asymptotic Analysis

We study next the analytic structure of the solutions of the systems (4) and (9) provided
that the functions B; behave in a proper way that is similar to the behaviour of B(z) in the
case of sub-critical graph classes. Under these hypothesis (see Lemma 5) it is then very easy
to prove Theorems 1 and 3 which will be done at the end of this subsection. For the sake of
brevity we only discuss the system (4), the analysis of (9) runs along the same lines.

First we note that the functions B;(x,yo, y1,y2) are actually functions in three variables
since a monomial m"ygoy’fly§2 can only appear if kg + k1 + ky = n, that is, we have
Bi(x,y0,y1,y2) = Bi(1, 2y0, Ty1, y2) or equivalently B;(z,yo,y1,y2)
= Bi(zy2,Y0/Y2,y1/y2,1). However, it is more convenient to work with all four variables
Z, Y0, Y1, Y2. If Yo, y1, Y2 are positive real numbers then the function = — B(z, yo,y1,¥y2) is a
power series with non-negative coefficients. Hence the radius of convergence of this function
coincides with its dominant singularity in . We will denote this radius of convergence by
R(yo,y1,y2). Similarly for the solution functions Cy, Cy, Cs of the System (4) we denote by
pi(Yo,91), i =0, 1,2, the radius of convergence with respect to x when yg,y; are positive real
numbers.

» Lemma 5. Suppose that the function R(yo,y1,Yy2) extends to an analytic function
R(yo,y1,y2) for a sufficiently small neighbourhood around the positive real numbers. Fur-
thermore assume that for all positive real numbers yo, y1,y2 we have
m OB ) )
im —(z, Yo, y1, =00
= R(Y0,y1,y2)— 32/,2 yo- v, b2
for at least one of the i € {0,1,2}. Then the solutions Cy, C1,Ca of the system (4) have the
property that the functions p;(yo,y1), ¢ =0, 1,2, coincide and extend to an analytic function
(Yo, y1) for a sufficiently small neighbourhood around the positive real numbers. Moreover,
the dominant singularity is of squareroot type and we have a local expansion of the form

1/2
Ci(z,y0,91) = ¢io(yo,y1) + ci,1 (Yo, y1) (1 - m)

) (©)
+¢i2(Yo, 1) (1 - m) +

where ¢;1(yo,y1) < 0 (for positive real yo,y1) and that extends to sufficiently small neigh-
bourhood in x,yo,y1 around the positive real numbers.

Proof. We recall some basic facts on (positive) systems of functional equations that are
taken from [4]. Suppose that we have a system of three equations of the form

C = F(x)C’ D’ E)7
D = G(m7 C7D7E)7
E = H(x7 C7D7E)’

in unknown functions C' = C(z), D = D(x), E = E(z), where F,G, H are power series with
non-negative coefficients. We also assume that the system is strongly connected which means
that no subsystem can be solved before solving the whole system. We set

1-Fc —Fp —Fg
—He —Hp 1-Hg

the functional determinant of the system {C' — F =0, D — G =0, E — H =0} and let r be
the spectral radius of the Jacobian matrix of the right hand-side of the system of equations.
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Note that » = 1 implies that A = 0. We also assume that there is a unique non-negative
solution C'(0), D(0), E(0) for x = 0 with the property that r < 1, which also shows that
A # 0. Thus by iteration, the solution for z = 0 extends to power series solutions C(z),
D(xz), E(x) with non-negative coefficients and a positive radius of convergence. By the
strongly connectedness assumption, this radius of convergence p is the same for all three
solutions functions C(z), D(z), E(x). By the theory given in [4], this radius of convergence
is determined by the condition r = 1 provided that we are still working within the region of
convergence of F', G, and H. The condition r = 1 can be also witnessed by the condition
A = 0 or equivalently by the condition

FpGpHc+FrGcH GrpH FrpH FpG
AF =Gy T aoan (ot T GoFo)ams) T 0=Foi—ap) — - (7)

Note that the left hand-side is smaller than 1 for x =0 and C = C(0), D = D(0), E = E(0)
and is strictly increasing in x. Thus, in order to find p we just have to find the value for
which the left hand-side hits the value 1. If we are still inside the region of convergence of F,
G, and H, then it follows that the solution functions C(x), D(z), E(x) have a squareroot
singularity of the form (1) at z = p;.

In our special situation all the above assumptions concerning positivity, strongly connec-
tedness etc. are satisfied. Now let us also observe that B o0 implies that Fo — 00, since

F(z) = exp(Bo(z,y0C,y1(D + E),y1 D) and By = 1 BB (note the two different meanings of

Yo). Similar observations hold for Gp and H. Thus ‘it is clear that (7) is satisfied inside
the region of convergence of F', G and H. We recall the fact that the left hand-side of (7) is
smaller than 1 for z = 0 and strictly increasing in z. |

Finally we show that under the hypothesis of Lemma 5, it is immediate to deduce our
main results Theorem 1 and Theorem 3: from (6) and (3) it follows that C(x,yo,y1) can be
represented as

T

3/2
X
C(x,yo, =c , +c , 1—— | +e¢ , 1—- — e
( Yo 1/1) o(yo y1) 2(:Uo y1)( P (yo,yl)) 3(:Uo yl)( pl(yo,yl))

where ¢3(yo,y1) > 0 for positive real yo,y1. Thus, if we set yo = y1 = 1 and p1(1,1) = py,
then we have

3/2
C(2,1,1) = co(1,1) + c2(1, 1) (1 - x) +es(1,1) (1 - x) TR
1 P1
and consequently

Gl 1,1) = YO IT S = exp(C(a,1,1))

n>0

— go(1,1) + ga(1, 1) (1 - /i) +gs(1,1) (1 - ;“"1)3/2 4

This directly implies Theorem 1 for the case of maximal independent sets by standard
singularity analysis (see [6]). We just have to observe that zo = p = p(1,1) is the only
singularity on the circle of convergence. However, this follows from the fact that there exists
graphs of all sizes n > 1.

AofA 2018



18:10

Maximal Independent Sets and Maximal Matchings in Subcritical Graph Classes

Finally, if we set y; = 1 then we have

ZTL
G(z,y0,1) = Y Elyg ™) |Zal —; = exp(C(x, 40, 1))

n>0

. " 3/2
:go(y071)+92(90v1) <1 ,01(3/071)) +g3(171) (1p1<y071)> 4+ ..

Hence, a direct application of [4, Theorem 2.35] implies a central limit theorem of the
proposed form, as well as the asymptotic expansions for the expected value and variance.
This proves Theorem 3 for the case of maximal independent sets.

What remains is to check condition (5). We work this out in details for trees and series-
parallel graphs in Section 4. The other cases (cactus graphs and outerplanar graphs) can
be handled in a similar way and this will be covered in the paper version of this extended
abstract.

4 Applications

Our first application concerns the most basic subcritical graph class, namely Cayley trees.
We note that the case of maximal independent sets was already discussed in [13]. We will
then deal with the class of series-parallel graphs.

4.1 Maximal independent sets in trees

In both structures (maximal independent sets and maximal matchings), we proceed following
the block-decomposition of trees, and we explicitly give the generating functions By, B
and Bs. Notice that in a tree, blocks are reduced to single edges. The computations of the
constants given in Table 1 are obtained by computing the branch point of the corresponding
system, using the explicit expressions for By, By and Bs.

We first give the generating functions counting the rooted blocks carrying an independent
set. From the possible choices of an independent set in a single edge, namely B(z, yo,y1, y2) =
2
5 (2y0y1 + yg), we obtain that

By = zy1, By = xyo, Bs = zys.

Thus, the following property holds:

So Lemma 5 applies in the case of maximal independent sets in trees, which completes the
proof.

4.2 Maximal independent sets in series-parallel graphs

We are now concerned with the generating functions of the labelled series-parallel graphs
carrying a maximal independent set. As above, the vertices of the graphs carrying an
independent set I are said to be of type ¢ (i € {0,1}), when they are at distance i from I,
and of type 2 otherwise. We will now explicit the classical decomposition of graphs in terms
of networks.
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Series-parallel networks

A series-parallel network D;; is a labelled graph with an oriented edge ij that is distinguished
and whose endpoints, called the poles, are unlabeled and respectively of type ¢ and j. Observe
that by symmetry D;; = Dj;, so we can restrict the range of the pairs of indexes ij to
the set {00,01,02,11,12,22}. The network D;; is either the single rooted edge e;;, where
eo1 = e22 = y and e;; = 0 otherwise, a series network counted by the generating function
Si;, or a parallel network counted by the generating function P;;. We then specify those
generating functions via the following positive system of 18 equations and 18 unknowns:

D;; = e;; + Sij + Py,
Sij = Diowyo(Doj — Soj) + (Dir + Dig)xyi (D1 — Sij) + (Diayr + Dizy2)x(Daj — Saj),
Poo = eXpZ2(SOO)7
Po1 = yexpsq(Sor + Soz) + exp>(So1) + exps; (So1) expsi (Soz),
Pz = exp4(So2),
Pri1 = exp>,(S11) + exp>1(S11)(y exp(2512 + S22) + expx4 (2512 + S22))
+(1+y) exp21(512)2 exp(Saa),
Pry = yexp>(S12) exp(Saz) + expso(Si2) + expsq(S12) expsi(Sa22),
Py = yexpsq(Sa2) + expso(Saz).

In order to proceed further, we eliminate D;; from this system to obtain a posit-
ive and strongly connected system of equations for S;; = Si;(x,y,v0,y1,y2) and P;; =
P;;(x,v,Y0,Y1,Y2), where the right hand-side consists of entire functions (note that for the
equations defining S;;, the term D;; — Si; = e;; +F;

;> which makes the whole system positive).

Thus, all functions have a common singular behaviour that is (again) of squareroot type:

1/2
X

Sij( » Y0, Y1,Y2) = S0;i5\Y, Yo s + 81:44 (Y, Yo ,2<1—> 4+

o) o1 2) g (40,91, 2) P(Ys Yo, Y1, Y2)

and

1/2
x
Pij (2,9, 90, Y1, Y2) = Posij (Ys Yo, Y1, Y2) + P13i5 (Y, Yo, Y1, Y2) (1 - fww) +oeey

where 51,35 (Y, Yo, y1,%2) < 0 and p1,i;(y, Yo, y1,y2) < 0 for positive y, yo,y1, y2-

2-connected series-parallel graphs

The next step is to relate these network generating functions with the generating function
B(z,y,90,Y1,y2) of independent sets in 2-connected series parallel graphs. Note that an
added variable y takes into account the number of edges. In the (usual) counting procedure
for series parallel graphs, we have the property that %—]3 = %2 exp(S(z,y)), where S(x,y)
denotes the generating function of series networks (similarly to the above). The combinatorial
property behind this relation is that an edge-rooted series-parallel graph (that corresponds
to the generating function %—5) can be seen as a series-parallel network between the two
vertices of the root-edge, consisisting of this edge and a collection of series-networks between
the two vertices.

18:11
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In our present situation we have a similar property, namely

0B
En = 2yoy1 exp(So1 + So2) +

2
x
71/3 exp(Sa2) + 2 y1y2 exp>1(S12) exp(Sa2)

2

+ ?y% (exp(511 + 2S12 =+ SQQ) — 26Xp(512 + 522) + eXp(SQQ)) .

This is immediate by considering all possible situation for the rooted edge. Observe that,

despite the negative terms, %—5 is in fact a positive function of the generating functions {S;;}.

Hence, %—f has also a squareroot singularity:

0B

1/2
xT
Fy:bO(y7yO>y17y2)+b1(y7y07y17y2) (1_)> T ’

R(y7 Yo, Y1, Y2

where b1 (y, Yo, y1,y2) < 0 for positive y,yo,y1, y2. Next, by applying the proof method of

[4, Lemma 2.28], we can integrate %—5 with respect to y and then take the derivative with

respect to yo and obtain the same kind of squareroot singularity for g—i

0B T 1/2
— = b10(¥Y, Y0, Y1,Y2) + b1,1(Y, Yo, Y1, Y2 (1> +o
9o (¥:30,91,2) 30,31, 32) R(Y,90,Y1,Y2) ’
and consequently the following representation of %2]23 :
0

0’B
5 = b2 ) ) ’ 1-
o 1(¥: Y0, Y1, 42) (

T >—1/2+b ( "
= 2,1\Y, Y0, Y1, Y2 Ty
R(ya yOvylva)

which implies that (5) holds for ¢ = 0. This completes the proof for maximal independent
sets in series-parallel graphs.
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A Maximal matchings

A.1 Maximal matchings in block-stable classes of graphs

In this subsection we deal with the case of maximal matchings. Most of the definitions and
concepts are the natural analogues of the ones developed in the case of maximal independent
sets. Hence, we will skip unnecessary repetitions.

A matched block is a triple (I, M,b) with a block b € B, a matching M in b, and an
independent set I of b, and where no element of [ is incident to an edge in M. In other
words, we split the set of vertices of b in three disjoint subsets: matched vertices, vertices
in I, and the rest. A pointed matched block is a triple (I, M,b°), where b° € B° and M
and I are respectively a matching and an independent set of b, and where again no element
of I is incident to any edge in M. Let B(w, 2o, 21, 22) be the generating function counting
matched blocks, where the variable z marks vertices, zo marks vertices in I, z; marks vertices
matched by M, and 2, the remaining ones. For i € {0,1,2}, let B; = B;(x, 20, 21, 22) be the
generating function counting pointed matched blocks where the pointed vertex is either in I,
is incident with M or none of the previous cases. In particular,

— 1 0B

B; = , for i € {0,1,2}.

z 0z
A matched graph is a triple (I, M, g) consisting of a connected graph g in C C G, a
matching M of g, and an independent set I C V(g) \ V(M). Similarly, a pointed matched
graph is a triple (M, I,g°) where now ¢° is a pointed graph. Let C(x, zo, 21, 22) be the
generating function counting matched graphs, where x, zg, 21 and zo respectively mark
vertices, vertices incident with I, vertices incident with M, and the rest of the vertices.
Notice that when zo = 0, C := C(, 29, 21) = C(x, 20, 21, 0) encodes matched graphs where
M is maximal. For each i € {0, 1,2}, let us define the following generating function
61‘ = 61(7,‘, 20, Zl) = l . gﬁ(x, 20, 2170).
Zq

18:13
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Observe then that C counts pointed matched graphs, where the matching is maximal and
the pointed vertex belongs to the independent set, C; counts pointed matched graphs, where
the matching is maximal and the pointed vertex belongs to the matching, whereas C's counts
pointed matched graphs, where the matching is not necessarily maximal and the pointed
vertex does not belong to either the independent set or the matching. In the latter case, the
matching is maximal except for possibly the pointed vertex, which might be unmatched and
adjacent to other unmatched vertices. In particular, this implies that the generating function
of pairs of connected graphs and maximal matchings is given by

% = 2060 + 2161. (8)

The main idea behind this encoding of the problem is that vertices in the independent set I
play the role of vertices that will not be matched in the block decomposition. In particular,
we exploit independence in order to ensure that the matching cannot be extended. On the
other hand, the set of vertices that are unmatched and not in I will be matched by an
attached block of the decomposition.

The following lemma relates all the previous generating functions. Note that the generating
functions C(x, 2o, 21,0) and G(z, 29, 21) = exp(C(z, 20, 21)) directly follow from the solution
of the next system.

» Lemma 6. The following equalities hold:

go :?(PLEO(%Z&@OvZL62,ZL61)),
C1 =2 Bi(x,20C0, 2102, 21Ch), 9)
CQ :EXP(BQ((E,Z()C(),210272101)).

Proof. Let (M,1,g°) be a pointed matched graph, with pointed vertex v. Suppose first that
v € I, i.e. the case counted by Cj. It therefore is the pointed vertex of a (possibly empty)
set of adjacent pointed blocks (I, Mj,b7), in which v € I}, and is not adjacent to any other
pointed block. This means that all the pointed blocks adjacent to v are counted by By.
Suppose next that v € V(M), i.e. the case counted by C;. Then the edge of M incident with
v must belong to a single pointed block whose pointed vertex (v) is incident to an edge of
the respective matching. Hence, attached to v are this one block together with any number
(possibly null) of pointed blocks counted by B, since v is already incident to an edge of
a matching. Suppose finally that we are in the case counted by Cy. Then v is neither in
I nor in V(M). Therefore, any block attached to it must not have its pointed vertex in
an independent set or incident to and edge of a matching. This means that v belongs to a
(possibly empty) set of blocks counted by Bs.

Let now {(I;, M;,b9) : i =1,...k} be the pointed blocks in the decomposition of (M, I, ¢°)
and fix a j € {1,...k}. Then using the same arguments as just above, we see that to a vertex
in I; must be attached a pointed matched graph counted by C), to a vertex in V(M,) one
counted by Cy and to any other vertex must be attached a pointed matched graph counted
by C1, as we need to extend the matching to maximality. <

A.2 Maximal matchings in trees
Observe that in this case B(z, 29, 21, 22) = % (22022 + 22 + z%), which gives
F():.TZQ, El =Xz, Egzx(zo—sz).

Hence, we are in a similar situation as above and Lemma 5 applies. This completes the proof
for maximal matchings in trees.
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A.3 Maximal matchings in series-parallel graphs

We proceed similarly to Subsection 4.2. Let G be a series-parallel graph with a matching M
and an independent set I such that TNV (M) = (. A vertex v of G is said to be of type 0
when v € I, of type 1 when v € V(M) and of type 2 otherwise.

Series-parallel networks

Let D;j(x,y, 20, 21, 22) be the exponential generating function counting matchings in series-
parallel networks whose poles are of type i and j. As before, observe that D;; = D;; and
for ij € {00,01,02,11, 12,22}, define S;; and P;; to be the generating functions counting
matchings in networks that are respectively series and parallel.

The following system of 18 equations and 18 unknowns holds:

Di; = e;j + Sij + Pij,

Sij = (Dio — Sio)xz0Doj + (Di1 — Si1)xz1Daj + (D2 — Si2)x(21 D15 + 22Daj),
Poo = exp>5(Soo),

Po1 = So1(y exp(Soz) + exp>1(So2)),

Poo = yexpx1(S02) + expx2(S02),

Piy = (yS11 + (1 +y)STy) exp(Sa2) + (y + S11) exps (S22),

Pra = S12(y exp(S22) + exp>;(522)),

Pyy = yexps1(S22) + expso(S22),

where this time eg2 = €11 = e22 = y and e;; = 0.

2-connected series-parallel graphs

It remains to check the relevent analytic properties of
B(z,y, 20, 21, #2) in order to assure that Lemma 5 can be applied. Eliminating D;; from the
above system, we again get a positive and strongly connected system of equations for the
set of generating functions {S;;, P;;}, where the right hand-side consists of entire functions.
In particular, the functions S;; and P;; all have a common singular behaviour that is of
squareroot type.

And we have that

0B
o = 222021801 exp(Soz) + 222022 exp(Soz) + 2221 20512 exp(Saz)
a? a? 2
t5% exp(S22) + 5 A (S11 + Sy + 1) exp(Saz).

Finally, using the very same arguments as in the case of maximal independent sets, we
show that (5) is satisfied in the context of maximal matchings in series-parallel graphs. Thus
completing the proof.
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