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Abstract
The purpose of this paper is to provide a central limit theorem for the number of occurrences of
double triangles in random planar maps. This is the first result of this kind that goes beyond face
counts of given valency. The method is based on generating functions, an involved combinatorial
decomposition scheme that leads to a system of catalytic functional equations and an analytic
extension of the Quadratic Method to systems of equations.
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1 Introduction

A planar map is a connected planar graph (loops and multiple edges are allowed) embedded
into the plane up to homeomorphism. A map is rooted if a vertex v is chosen from the map
and a half-edge e is chosen from all the edges incident to v, and called the root vertex and
root edge, respectively. Moreover, a planar map separates the plane into several connected
regions called faces. The root face in a rooted map is the face which is on the left side of e
(sometimes the root face is defined as the right side of e, but this does not make a principle
difference). Without loss of generality we may assume that the root face is the infinite (or
outer) face, in particular the root edge e is then adjacent to the outside face. In this paper,
all maps we consider are rooted and planar. By convenience we also include the trivial map
that consists just of one vertex and one face (which are also rooted). It is well known that

there are precisely Mn =
2 · 3n

(2n
n

)
n(n+ 1) different rooted planar maps with n edges [12]. In what
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Figure 1 Degenerate cases of double triangles that are represented as bold edges.

follows we assume that for any fixed n every map with n edges is equally likely. Hence every
parameter of rooted planar maps can be considered as a random variable related to random
planar maps with n edges.

The main goal of this paper is to prove the following theorem:

I Theorem 1. The number Xn of edges with valency 3 faces on both sides in a random
planar map with n edges satisfies a central limit law, i.e.,

Xn − E[Xn]
Var[Xn]1/2 → N (0, 1), (1)

where E[Xn] = µn+O(1) and Var[Xn] = σ2n+O(1), and µ, σ are positive constants.

I Remark. We cannot derive a simple analytic expression µ and σ since our analysis is
implicitly based on an infinite system of equations. So they are definitely hard to compute,
even in an approximate sense.

In an slight abuse of notation we will call the occurrence of an edge with valency 3 faces
on both sides a double triangle. Namely there are some degenerate cases as Figure 1 shows
(in the first case we identify vertices a and c and then also the edges ab and bc so that we
havee two double triangles between two triangles; in the second case, we identify vertices b
and d and then the edges ab and ad so that a bridge represents a double triangle).

The background of this result is a widely believed conjecture that the number of pattern
occurrences in planar maps (and many related graph classes) obeys a central limit theorem.
For (general) planar maps there are only very few results in this direction, see [7, 4] for the
number of faces of given valency or [9] for triangulation patterns in 2-connects triangulations
and quadrangulations patterns in simple quadrangulations. We also want to mention that
the expected number of occurrences of a given pattern in a random planar map with n edges
is asymptotically linear: EXn ∼ cn for some constant c > 0. This follows from the fact
that random planar maps have a Benjamini-Schramm limit, see [8, 1, 10, 11]. As mentioned
before it is expected that Xn satisfies a central limit theorem in all cases. However, it seems
that this is out of reach at the moment. Even the simplest case beyond face-pattern that
is considered in this paper requires a thorough and delicate analysis for the combinatorial
part as well as for the analytic part. We use an approach that is in principle close to that of
[7], namely we use generating functions, set up a system of catalytic functional equations
(Section 2) and finally provide a proper analytic extension of the classical Quadratic Method
[3, 12] (Section 3).
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2 Combinatorics

Our goal is to set up a recursive structure of planar maps that is suitable to take occurrence
of double triangles into account. For this purpose we distinguish between three different
cases: the initial case (a map without any edge, denoted by •), the bridgeable case (maps,
where the root edge is a bridge, denoted by D(b)) and the non-bridgeable case (maps, where
the root edge is not a bridge, denoted by D(n)):

D = •+D(b) +D(n).

We let D(z, u, w) be the ordinary generating function

D(z, u, w) =
∑

n,k,`≥0
dn,k,`z

nukw`,

where dn,k,` is the number of planar maps with n edges, valency k on its root face and `
edges that represent double triangles, where edges on the root face are not considered. For
the sake of brevity, we denote D(z, u, w) by D and D(z, 1, w) by D(1). (The same rule will
be applied to other generating functions.)

Clearly, the initial case corresponds to the generating function 1 and the bridgeable case
to zu2D2. The non-bridgeable case is split into two different classes: D7 denotes the class
where the second face (the face on the right side of the root edge) has valency not equal to 3
and DB denotes the class where the second face has valency 3. This means that we have
D = 1 + zu2D2 +D7 +DB, where D7 and DB are the corresponding generating functions
of D7 and DB, respectively.

I Lemma 2. The generating functions D = D(z, u, w), D7 = D7(z, u, w), and DB =
DB(z, u, w) satisfy the following system of equations:

D = 1 + zu2D2 +D7 +DB,

D7 = zu
D(1)− uD

1− u − zu−1 (D − 1− u[u1]D
)
, (2)

DB = zu−1 (D − 1− u[u1]D
)

+ (w − 1) ·
[
z2uD + (w + 1)

(
zu−1DB − z[u1]DB

)
− z2u(w − 1)DDB

− (w − 1)
(
z2DB(1)− uDB

1− u − z2DB(1)− z2u−2 (DB − u[u1]DB − u2[u2]DB
))]

.

I Remark. If w = 1 the system collapses to the well-known catalytic equation for the
generating function M(z, u) = D(z, u, 1) of planar maps:

M(z, u) = 1 + zu2M(z, u)2 + zu
M(z, 1)− uM(z, u)

1− u . (3)

Proof. We have already discussed the first equation of (2). Thus, we can concentrate on the
non-bridgeable case. Here we relate the original map with the resulting map, where we have
removed the root edge. Actually it is more transparent to consider the reverse process of
adding a new root edge that cuts across the root face. This operation separates the root face
into two faces. For instance, there are five possible situations of cutting across a root face of
valency 4 as Figure 2 shows, and which have the following effect to the variable u:

u4 7→ z(u5 + u4 + u3 + u2 + u).

AofA 2018
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Figure 2 Cutting-across-process.
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Figure 3 Definition of the α and β-edge and face.

When we consider D7, we have to discount the case where the second face has valency 3.
In the cutting-across-process, we take out the situation that the new-appearing second face
has valency 3. The corresponding effect with the root face of valency r is

ur 7→ z(ur+1 + ur + · · ·+ u2 + u1) +
{
−zur−1 , if r ≥ 2
0 , if r = 0 or 1.

So the corresponding generating function of D7 is given by

D7 = zu
D(1)− uD

1− u − zu−1 (D − 1− [u1]D
)
.

Next, we consider maps whose second face is of valency 3 and whose generating function is
DB. We introduce some notations. When the second face has valency 3, the edges following
the root edge in clockwise order are called the α-edge and the β-edge. One side of the α-edge
is the second face, we call the face on the other side the α-face. Similar to the α-face, the
β-face is the face incident to the β-edge. Note that the α-face and the β-face might coincide
(see Figure 3).

For describing the class DB, we consider four different cases: both the α-face and the
β-edge are equal to the root face (denoted by Dα,βB ), only the α-face is equal to the root face
(denoted by DαB), only the β-face is equal to the root face (denoted by DβB) and neither the
α-face nor the β-face is equal to the root face (denoted by DD) (see Figure 4). Thus, we
have DB = Dα,β

B +Dα
B +Dβ

B +DD.
The maps corresponding to the class Dα,βB can be divided into a triangle and three maps.

Thus, we have Dα,β
B = z3u3D3.

The maps corresponding to the class DαB and DβB can be divided into a map and a map
stuck together with a triangle attached to an edge (see the left part of Figure 5). The
structure of a map stuck together with a triangle attached to an edge has either the property
that this edge corresponds to a double triangle or not (see the right of Figure 5).

If this edge is (resp. is not) a double triangle, we can think of it as adding two edges to a
map which belong to DB (resp. D7). The effect of these two additional edges is that the
number of edges increased by 2 and the valency of the outside (root) face increased by 1.
Hence, Dα

B = Dβ
B = z2u

(
wDB +D7

)
D.
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3 3 3 3 3

Figure 4 Four different cases of DB.
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Figure 5 A map in Dα
B or Dβ

B can be divided into a map and a map stuck together with a triangle
at an edge. This edge corresponds to a double triangle or not.

For the fourth class DD we need to consider three different cases. The first one is when
the α-edge is different from the β-edge but the α-face equals to the β-face (denoted by Dd

D).
The second one is when the α-edge is different from the β-edge and the α-face is different
from the β-face (denoted by D$D ). The third one is when the α-edge equals to the β-edge.
In this case, both the α-face and the β-face are equal to the second face (denoted by DψD)
(see Figure 6). By definition we have DD = Dd

D +D$
D +Dψ

D.
When we deal with the maps in Dd

D, the α-face coincides with the β-face if both of them
have valency 3, in particular, both the α-edge and the β-edge represent double triangles.
Therefore, we have to take care of the valency of the α-face and of the β-face. For this
purpose we consider the so-called “border-(α,β)-path”, that starts from the α-edge, goes
clockwise along the border of the α-face and finishes at the β-edge but dones not include the
α-edge nor the β-edge. We distinguish between three different cases by considering the length
of the border-(α,β)-path (denoted by |(α, β)|): |(α, β)| = 0 , |(α, β)| = 1 and |(α, β)| ≥ 2.
The corresponding sets of maps are denoted by Dd0

D , Dd1
D , and D

d≥2
D respectively, see Figure

7. From the above relation, we have Dd
D = Dd0

D + Dd1
D + D

d≥2
D and (similar to the above

considerations) they can be further decomposed which leads to the following relations:

Dd0
D =z3uD

[
w2 (w[u1]DB + [u1]D7

)
+
(
D(1)− [u1]D

)]
,

Dd1
D =z3w2(wDB +D7 + zu2D2) + z3 (D(1)− 1) (D − 1), (4)

D
d≥2
D =z2D(1)

(
zu
D(1)− uD

1− u − z(D − 1)− zuD
)
,

The proof is given in the Appendix A.1.
Next, DψD is the class of maps that combines maps and an edge inside a loop. The edge

inside the loop is a double triangle. Thus, we have Dψ
D = z2uwD.

Finally, we discuss the class D$D . By distinguishing whether the α-face and the β-face
have valency 3 we have to consider four different situations: neither the α-face nor the β-face
has valency 3 (denoted by D⊗

D), only the β-face has valency 3 (denoted by DβD), only the
α-face has valency 3 (denoted by DαD) and both the α-face and the β-face have valency 3
(denoted by Dα,βD ): D$

D = D⊗
D +Dβ

D +Dα
D +Dα,β

D .

AofA 2018
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Figure 6 Three different cases of DD.
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Figure 7 Three different cases of the length of the border-(α,β)-path of the maps in Dd
D.

When we study the class D⊗
D, we need to build up maps, where the second face has

valency 3 and neither the α-face nor the β-face has valency 3. We start with D7 and do
the cutting across process that adds an edge starting from the end point of the root edge of
the map. In cutting across process (see Figure 2) we always keep the second face valency
different from 3 and the outside face valency greater than 1 (in order to make sure that the
new α-edge and the new β-edge exist). In a second step we add an edge to complete the
construction (see the left of Figure 8).

We have to be careful in the cutting across process. For example, if the root face valency
equals r before we start the process, we have to avoid the case, where the root face valency
would get r − 1 in cutting across process. This means that the cases r = 0, 1, 2 have to be
considered separately. If r = 0 or r = 1 the root face valency r − 1 in cutting across process
can not appear, and when r = 2 the resulting root face of valency r − 1 = 1 is also excluded.
The effect on the variable u is therefore

ur 7→ z(ur+1 + ur + · · ·+ u2 + u1)− zu1 +
{
−zur−1 , if r ≥ 3
0 , if r = 0 or 1 or 2.

After adding an edge in second step we obtain the following relations for the corresponding
generating function: D⊗

D is

D⊗
D = zu−1

(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

.

By using similar ideas (by using DB instead) and by observing that the new β-edge will
be a double triangle (see the right of Figure 8) we obtain

Dβ
D = zu−1w

(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

.

By symmetry we have Dα
D = Dβ

D.
In order to describe the class Dα,βD we need to adjust both the root face and the face (we

call this face clockwise-face) on the right of the clockwise-edge have valency 3 (see Figure 9),
where the clockwise-edge is the edge in clockwise direction of the root edge on the outside
face. Suppose that DB is the class of maps, where both the root face and the clockwise-face
have valency 3, we have Dα,β

D = zu−1w2DB.
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Figure 8 Construction of a map contained in D⊗
D and Dβ

D, respectively.
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Figure 9 Definition of clockwise-edge and clockwise-face. Relation between DB and Dα,β
D .

The class DB is a subclass of DB. Hence, we can get DB by eliminating some cases
of DB. When we consider the clockwise-edge and the clockwise-face of DB, we have five
different cases. The first three cases where the clockwise-edge is not a bridge, and first, where
the clockwise-face has valency 3, second, where the clockwise-face has valency not equal to
3 and third, where the clockwise-face is equal to the second face. In the fourth case the
clockwise-edge is a bridge and in the last the clockwise-edge does not exist (see Figure 10).

The first case of DB is precisely DB.
The second case of DB (clockwise-face has valency not equal to 3) corresponds precisely

to the first step of the construction of DβD in Figure 8. Hence, the corresponding generating
function is given by

zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
)
.

The only difference to Dβ
D is the factor zu−1w.

In the third case of DB we have to consider several subcases that lead to the following
generating function:

z2u2wD[u1]DB + z2u2D[u1]D7 + z2uwDB + z2uD7 + z3u3D2.

In the fourth case of DB the second face has valency 3 and the clockwise-edge is a bridge.
Thus, it corresponds to the generating function zu2DDB.

Finally, in the last case the root face valency equals 1 and the second face has valency 3.
Consequently its corresponding generating function is u[u1]DB.

Summing up, the generating function of DB is given by

DB = DB − zu2DDB − u[u1]DB

−
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

−
(
z2u2D[u1]D7 + z2u2wD[u1]DB + z2uD7 + z2uwDB + z3u3D2) .

By collecting all these parts and by applying some simplifications (that are described in
the Appendix A.2) we obtain the third equation of the system (2). J

AofA 2018
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Figure 10 Five different cases of DB.

3 Asymptotic analysis

In order to analyze the system of equations (2) we apply a 2-step procedure that is in
principle close to that of [7]. In the first step we eliminate the terms [u1]D, [u1]DB, and
[u2]DB so that the system (2) is transferred into a catalytic system of equations that will be
solved then in a second step.

I Lemma 3. Suppose that D = D(z, u, w), D7 = D7(z, u, w), and DB = DB(z, u, w) are the
solution functions of the system (2). Then there exist analytic functions Kij(z, w, x0, x1, x2)
(for |z| < 1

2 , |x0| < 2, |x1| < 2, |x2| < 2, and |w − 1| < η for some sufficiently small η > 0),
i ∈ {0, 1, 2}, j ∈ {1, 2} such that for j ∈ {1, 2}

[uj ]D(z, u, w) = K0,j
(
z, w,D(z, 1, w), D7(z, 1, w), DB(z, 1, w)

)
,

[uj ]D7(z, u, w) = K1,j
(
z, w,D(z, 1, w), D7(z, 1, w), DB(z, 1, w)

)
,

[uj ]DB(z, u, w) = K2,j
(
z, w,D(z, 1, w), D7(z, 1, w), DB(z, 1, w)

)
.

Proof. We rewrite the system (2) into an equivalent one. We substitute in all instances
D7 = D1 − zu−1(D− 1− u[u1]D) and DB = D2 + zu−1(D− 1− u[u1]D) so that we obtain
a system of the form

D = 1 + zu2D2 +D1 +D2, D1 = zu
D(1)− uD

1− u , D2 = (w − 1)H, (5)

where H is equal to

z2uD + (w + 1)
(
zu−1 (D2 − u[u1]D2

)
+ z2u−2 (D − 1− u[u1]D − u2[u2]D

))
+ (w − 1)

(
− z2uDD2 − z3D(D − 1− u[u1]D)− z2u

D2(1)−D2

1− u − z3uD(1)−D
1− u − z3

+ z2u−2 (D2 − u[u1]D2 − u2[u2]D2
)

+ z3u−3 (D − 1− u[u1]D − u2[u2]D − u3[u3]D
))

.

Next we consider the functions D, D1, D2 as power series in u:

D = 1 +
∑
`≥1

d`u
`, D1 =

∑
`≥1

d1,`u
`, D2 =

∑
`≥1

d2,`u
`,

and rewrite the system (5) into an infinite system of equations:

d` = z

`−2∑
j=0

djd`−2−j + zD(1)− z
`−2∑
j=0

dj + (w − 1)[u`]H,

d1,` = zD(1)− z
`−2∑
j=0

dj , (6)

d2,` = (w − 1)[u`]H,
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where ` ≥ 1, d0 := 1, and [u`]H is equal to

z2d`−1 + (w + 1)(zd2,`+1 + z2d`+2) + (w − 1)
[
− z2

`−2∑
i=0

did2,`−1−i − z3
`−2∑
i=0

did`−i

− z2

(
D2(1)−

`−1∑
i=0

d2,i

)
− z3

(
D(1)−

∑̀
i=0

di

)
+ z2d2,`+2 + z3d`+3

]
.

Note that we have not substituted D(1), D1(1), and D2(1). In a final step we use the
substitutions y0,` = d`v

`, y1,` = d1,`v
`, y2,` = d2,`v

`, ` = 1, 2, . . . (and y0,0 = 1) for some
parameter v > 0 to rewrite (6) to

y0,` = zv2
`−2∑
j=0

y0,jy0,`−2−j + zD(1)v` − zv2
`−2∑
j=0

y0,jv
`−2−j + (w − 1)H`, (7)

y1,` = zD(1)v` − zv2
`−2∑
j=0

y0,jv
`−2−j , y2,` = (w − 1)H`,

where

H` = z2vy0,`−1 + (w + 1)(zv−1y2,`+1 + z2v−2y0,`+2)

+ (w − 1)
[
− z2v

`−2∑
i=0

y0,iy2,`−1−i − z3
`−2∑
i=0

y0,iy0,`−i + z2v−2y2,`+2 + z3v−3y0,`+3

− z2

(
v`D2(1)− v

`−1∑
i=0

y2,iv
`−1−i

)
− z3

(
v`D(1)−

∑̀
i=0

y0,iv
`−i

)]
.

Now we consider D(1), D1(1), and D2(1) as new variables x0, x1, and x2 and rewrite the
system (7) into a new system

y0,` = zv2
`−2∑
j=0

y0,jy0,`−2−j + zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j + (w − 1)H̃`, (8)

y1,` = zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j , y2,` = (w − 1)H̃`,

where H̃` results from H` by this substitution. The solution functions yi,` = yi,`(z, w, x0, x1,

x2) are now considered as functions in z, w, x0, x1, x2 and in a next step we will show that
these functions are actually analytic in these variables (in a certain range). Of course, if we
have proved this assertion then we can obtain, for example,

d` = d`(z, w) = y0,`(z, w,D(z, 1, w), D1(z, 1, w), D2(z, 1, w))v−`

as an analytic function in z, w,D(z, 1, w), D1(z, 1, w), D2(z, 1, w). This also proves the lemma
after re-substituting D7 and DB in terms of D, D1, and D2.

The idea of solving (8) is to consider it as a fixed point equation in a complete metric
space and to solve it with the help of Banach’s fixed point theorem. For this purpose we
have to adjust the parameter v > 0 so that the right hand side of (8) is a contraction. More
precisely we set y0 = (y0,`)`≥1, y1 = (y1,`)`≥1, y2 = (y2,`)`≥1, and y = (y0,y1,y2) and
consider the `1 norm ‖y‖1 = ‖y0‖1 + ‖y1‖1 + ‖y2‖1, where

‖yj‖1 =
∑
`≥1
|yj,`|, j ∈ {0, 1, 2}.

AofA 2018
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Furthermore we define the mapping T : `1(C)3 → `1(C)3 by T(y) = (T0(y),T1(y),T2(y)),
where

T0(y) =

zv2
`−2∑
j=0

y0,jy0,`−2−j + zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j + (w − 1)H̃`


`≥1

,

T1(y) =

zx0v
` − zv2

`−2∑
j=0

y0,jv
`−2−j


`≥1

, T2(y) =
(
(w − 1)H̃`

)
`≥1 ,

where z, w are considered as complex parameters and v > 0 will be chosen in a proper way.
Clearly, a fixed point of T is a solution of (8).

By definition it follows that

‖T0(y)‖1 ≤ v2|z| (1 + ‖y0‖1)2 + v

1− v |zx0|+
v2

1− v |z| (1 + ‖y0‖1)

+ |w − 1|
v2 P0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
,

‖T1(y)‖1 ≤
v

1− v |zx0|+
v2

1− v |z| (1 + ‖y0‖1) ,

‖T2(y)‖1 ≤
|w − 1|
v2 P0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
,

where P0 is some polynomial with non-negative coefficients. Similarly we get

‖T0(y)−T0(z)‖1 ≤
(
v2|z| (2 + ‖y0‖1 + ‖z0‖1) + v2|z|

1− v

)
‖y0 − z0‖1

+ |w − 1|
v2 P̃0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
‖y− z‖1,

‖T1(y)−T1(z)‖1 ≤
v2|z|
1− v ‖y0 − z0‖1,

‖T2(y)−T2(z)‖1 ≤
|w − 1|
v2 P̃0

(
|z|, |x0|, |x1|, |x2|, ‖y0‖1, ‖y1‖1, ‖y2‖1, v,

1
1− v

)
‖y− z‖1,

where P̃0 is another polynomial with non-negative coefficients.
Thus, given upper bounds Z, X0, X1, X2, and Y for |z|, |x0|, |x1|, |x2|, and ‖y‖1 it is

easy to choose v > 0 and η > 0 such that for |w − 1| ≤ η the mapping T maps the set
{y ∈ `1(C)3 : ‖y‖1 ≤ Y } into itself and is a contraction, too. This shows that (8) has
a unique solution that can be obtained as the uniform limit of the iterations Tk(0). By
definition it is clear that all components of Tk(0) are analytic functions in z, w, x0, x1, x2.
Hence, the limits are analytic, too. This completes the proof of the lemma. J

We now go back to the original system (2) and substitute [u1]D, [u1]DB, and [u2]DB by
the analytic functions Kij given by Lemma 3 so that it can be rewritten as

D = 1 + zu2D2 +D7 +DB,

D7 = Q1(z, u, w,D,D(1), D7, D7(1), DB, DB(1)),
DB = Q2(z, u, w,D,D(1), D7, D7(1), DB, DB(1))
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with proper functions Q1, Q2. This is a catalytic system of three equations. In order to
make our analysis a little bit easier we eliminate D and D(1) by using the first equation. By
substituting D (and similarly D(1)) by

D =
1−

√
1− 4zu2(1 +D7 +DB)

2zu2

in the second and the third equation we finally obtain a system of two equations that we
represent in the form

P1(z, u, w,D7, D7(1), DB, DB(1)) = 0, P2(z, u, w,D7, D7(1), DB, DB(1)) = 0

for proper functions P1, P2 (that are by the way non-linear in D7, D7(1), DB, DB(1)).
We recall now a method by Bousquet-Mélou and Jehanne [2] on catalytic equations of

the form

P (z, u,M(z, u),M1(z)) = 0,

where M1(z) is usually M(z, 1) or M(z, 0) and P = P (z, u, x0, x1) is usually a polynomial
(however, the method also works with proper regularity conditions for P ). The first step is
to find functions u(z), y(z), and f(z) that satisfy the system of equations

P (z, u(z), y(z), f(z)) = 0,
Pu(z, u(z), y(z), f(z)) = 0, (9)
Px0(z, u(z), y(z), f(z)) = 0,

where Pu and Px0 denote the partial derivatives ∂P
∂u and ∂P

∂x0
, respectively. Then we can set

M1(z) = f(z) and can recover M(z, u) – if necessary – from the equation

P (z, u,M(z, u), f(z)) = 0. (10)

This method generalizes the classical Quadratic Method and can be extended in various ways.
It is also possible to guarantee unique power series solutions etc., for details we refer to [2].

We emphasize here some further extensions. First we can directly add a parameter
w or several parameters w = (w1, . . . , wk) into the equation without any change of the
method. From P (z, u,w,M(z, u,w),M1(z,w)) = 0 we, thus, obtain the solutions M1(z,w)
and M(z, u,w).

It was shown in [7] and [6] that the solution function M1(z) of a catalytic equation (10)
that is singular at z = ρ has usually a singularity of the form

M1(z) = g(z) + h(z)
(

1− z

ρ

)3/2
, (11)

where g(z) and h(z) are analytic at z = ρ. This is in particular true for the generating
function M(z, 1) that counts planar maps and is the solution of the catalytic equation (3):

M(z, 1) = 18z − 1 + (1− 12z)3/2

54z2 .

Here ρ = 1/12 is the radius of convergence of M(z, 1). Since M(z, 1) = D(z, 1, 1) it also
follows that D(z, 1, 1) and consequently the functions D7(z, 1, 1) and DB(z, 1, 1) have the
same kind of singularity at z = 1/12. What we show next (and which is actually the main
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property that will be used to prove the central limit theorem) is that we have the same kind
of singular behavior if we add some parameters. In particular we will show that D(z, 1, w)
can be represented as

D(z, 1, w) = gD(z, w) + hD(z, w)
(

1− z

ρ(w)

)3/2
, (12)

where gD, hD and ρ are analytic at z = 1/12 and w = 1.
We will first consider one catalytic equation and will then generalize it to a system.

I Lemma 4. Suppose thatM(z, u,w) and M1(z,w) are the solutions of the catalytic equation
P (z, u,w,M(z, u,w),M1(z,w)) = 0, where the function P (z, u,w, x0, x1) is analytic and
M1(z,1) has a singularity at z = ρ0 of form (11) with g(ρ0) 6= 0, h(ρ0) 6= 0 such that for
z = ρ0, u = u0, x0 = M(ρ0, u0,1), x1 = M1(ρ0,1), and w = 1 we have3

P = 0, Pu = 0, Px0 = 0, Px1 6= 0, Px0x0Puu = P 2
x0u.

Furthermore, let z = ρ(w), u = u0(w), x0 = x0(w), x1 = x1(w) for w close to 1 be defined
by ρ(1) = ρ0, u0(1) = u0, x0(1) = M(ρ0, u0,1), x1(1) = M1(ρ0,1) and by the system

P = 0, Pu = 0, Px0 = 0, Px0x0Puu = P 2
x0u.

Then for w close to 1 the function M1(z,w) has a local singular representation of the form

M1(z,w) = g(z,w) + h(z,w)
(

1− z

ρ(w)

)3/2
, (13)

where g(z,w), h(z,w) are analytic at z = ρ0 and w = 1 and satisfy g(ρ0,1) = g(ρ0) 6= 0,
h(ρ0,1) = h(ρ0) 6= 0.

The Proof is an adaption of the methods of [7]. The essential step is to represent (with the
help of the Weierstrass preparation theorem) the function P locally around z = ρ0, u = u0,
x0 = M(ρ0, u0,1), x1 = M1(ρ0,1), and w = 1 by

P (z, u,w, x0, x1) = K(z, u,w, x0, x1)
(
(x0 −G(z, u,w, x1))2 −H(z, u,w, x1))

)
,

where all appearing functions are analytic and we have K(ρ0, u0,1,M(ρ0, u0,1),M1(ρ0,1)) 6=
0, G(ρ0, u0,1,M1(ρ0,1)) = M(ρ0, u0,1) and H(ρ0, u0,1,M1(ρ0,1)) = 0. The system (9)
translates into a smaller system of the form H(z,w, u(z,w), f(z,w)) = 0, Hu(z,w, u(z,w),
f(z,w)) = 0 which is suitable to extract the singular behavior of the form (13). In particular
the condition Px0x0Puu = P 2

x0u is equivalent to Huu = 0. Now we proceed as in [7], observe
the singular expansion for M1(z,w) of the form (13) and by comparing it with (11) we also
get the properties g(ρ0,1) = g(ρ0) 6= 0, h(ρ0,1) = h(ρ0) 6= 0.

In the case of a system of two catalytic equations P1 = 0, P2 = 0 (in unknown functions
M(z, u,w), M1(z,w), N(z, u,w), N1(z,w)) we apply an elimination procedure to reduce it
to a single catalytic equation so that Lemma 4 can be applied. We consider first the second
equation and replace M(z, u,w), M1(z,w) by two new variables v0, v1:

P2(z, u,w, v0, v1, N,N1) = 0

3 The notation Px denotes the partial derivative with respect to x – and similarly for partial derivatives
with respect to other variables or for higher order derivatives.
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and solve this catalytic equation in order to obtain solution functions N = N(z, u,w, v0, v1)
and N1 = N1(z,w, v0, v1). Then we substitute these solutions into the first equation and
obtain a single catalytic equation for M = M(z, u,w), M1 = M1(z,w):

P1(z, u,w,M,M1, N(z, u,w,M,M1), N1(z,w,M,M1)) = 0.

Finally we apply Lemma 4 and obtain the proposed singular representation. The only thing
that has to be checked is that P2,NNP2,uu 6= P 2

2,Nu and P2,N1 6= 0 so that the functions
N = N(z, u,w, v0, v1) and N1 = N1(z,w, v0, v1) are analytic in the region of interest. In our
special situation this is easy to check. With this method we obtain singular representations
for D7(z, 1, w) and DB(z, 1, w) and consequently (12) for D(z, 1, w).

The Proof of Theorem 1 is now almost immediate. Let Yn denote the number of edges
in a random planar map with n edges that represent double triangles but are not on the root
face. Then we have

D(z, 1, w) =
∑
n≥0

MnE[wYn ] zn,

where Mn = [zn]M(z, 1) denotes the number of planar maps with n edges. By a direct
application of [5, Theorem 2.35] it follows that Yn satisfies a central limit theorem of the form
(1) with expected value and variance asymptotically proportional to n. The only difference
between Xn and Yn is the number of edges on the root face that represent a double triangle.
However, if Xn and Yn are different then the root face has valency 3 which means that the
difference between Xn and Yn is at most 3. Hence, the central limit theorem (as well as
asymptotics for expected value and variance) of Yn transfers directly into a corresponding
central limit theorem for Xn which completes the proof of Theorem 1.
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A Appendix

A.1 Proof of the relations (4)
In the first part of the Appendix, we present a proper decomposition of the sets Dd0

D , Dd1
D ,

and D
d≥2
D that translate into the system (4).

In order to represent Dd0
D (and consequently the generating function of Dd0

D ) which
corresponds to the case |(α, β)| = 0, the main argument will focus on the valency of the
α-face (that equals to that of the β-face) which depends on the outside (root) face valency
of the map between (or inside) the α-edge and the β-edge. If this map has root face
valency 1, then the α-face has valency 3 which means the α-edge and the β-edge are both
double triangles. Moreover, in case this map has root face valency 1, if this map belongs
to DB (the second face has valency 3), then the root edge of this map will become a
double triangle after putting this map into the chink between the α-edge and the β-edge
and vice versa. Therefore, we have z3uDw2 (w[u1]DB + [u1]D7

)
. Contrarily, if this map

has root face valency not equal to 1, then the valency of the α-face is not equal to 3,
it corresponds to z3uD

(
D(1)− [u1]D

)
. Thus, the corresponding generating function is

Dd0
D = z3uD

[
w2 (w[u1]DB + [u1]D7

)
+
(
D(1)− [u1]D

)]
.

If |(α, β)| = 1 which corresponds to the class Dd1
D the border-(α,β)-path is just an edge

and the valency of the α-face (and of the β-face) is three (because of the α-edge, the β-edge
and the border-(α,β)-path) plus the outside (root) face valency of the map inside this triangle.

If the map inside the triangle has no edge (which means the corresponding generating
function of the map is 1), then the α-face has valency 3 which means that both the α-
edge and the β-edge represent double triangles. And whether the edge that equals to the
border-(α,β)-path corresponds to a double triangle or not depends on the other incident
face of this edge. The face on the other side may or may not have valency 3 and also may
equal to the outside face (see the above case of Figure 11). Hence this part corresponds to
z3w2(wDB +D7 + zu2D2). If the map (inside the triangle) has some edges (corresponding
to the generating function D(1) − 1), then the valency of α-face is not equal to 3 which
means that neither the α-edge nor the β-edge correspond to a double triangle, and the edge
that equals to the border-(α,β)-path must not correspond to a double triangle. We also
have to distinguish between three different coases fo the other incident face (see the below
case of Figure 11). This part corresponds to z3 (D(1)− 1) (DB +D7 + zu2D2) which can
be simplified to z3 (D(1)− 1) (D − 1) by the first equation of (2). Summing up we get the
corresponding generating function of Dd1

D as follows:

Dd1
D = z3w2(wDB +D7 + zu2D2) + z3 (D(1)− 1) (D − 1).

Finally D
d≥2
D is easier to describe, since the α-face (that is equal to the β-face) has

valency not equal to 3. So we do not have to care about whether the α-edge and the β-edge
are double triangles. We can directly decompose the map into two parts: one is a map with
second face valency greater than 3 (the length of the border-(α,β)-path greater than 2 and
plus the root edge), the other one is a map with plus edges (see Figure 12).

http://dx.doi.org/10.1007/s10959-016-0707-3
http://dx.doi.org/10.1007/s10959-016-0707-3
http://dx.doi.org/10.4153/CJM-1963-029-x
http://dx.doi.org/10.4153/CJM-1963-029-x
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3 3

3 3

Figure 11 Decomposition of Dd1
D : In the first (upper) case the the map (inside the triangle) has

no edge, whereas in the second (below) case this map is non-trivial. In both case we have the right
side face of the border-(α,β)-path is different to the root face and its valency is either equal to 3 or
not, or it equals the root face.

3 +≥ 3

Figure 12 Decompose a map that belongs to D
d≥2
D into two parts.

The first map class can be counted with the help of a cutting across process (see Figure
2) where we have take out the situation where the new-appearing second face has valency 1
or 2. The corresponding effect to ur is

ur 7→ z(ur+1 + ur + · · ·+ u2 + u1)− z(ur+1 + ur) +
{

0 , if r ≥ 1
zu0 , if r = 0

which leads to zuD(1)−uD
1−u − z(D − 1) − zuD. After combining this with a map plus two

edges (which is counted by z2D(1)) we have,

D
d≥2
D =z2D(1)

(
zu
D(1)− uD

1− u − z(D − 1)− zuD
)

which completes the proof of (4).

A.2 Simplification of the representation of DB

In the second part of the Appendix we prove that DB can be simplified into the form that is
given in (2).
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After collecting all parts of DB that are described in the Proof of Lemma 2 we obtain

DB = z3u3D3 + 2z2uD
(
wDB +D7

)
+ z3uD

[
w2 (w[u1]DB + [u1]D7

)
+
(
D(1)− [u1]D

)]
+ z3w2(wDB +D7 + zu2D2) + z3 (D(1)− 1) (D − 1)

+ z2D(1)
(
zu
D(1)− uD

1− u − z(D − 1)− zuD
)

+ z2uwD

+ zu−1
(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

+ 2zu−1w

(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

+ zu−1w2DB − z2uw2DDB − zw2[u1]DB

− zu−1w2
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

− zw2 (z2uD[u1]D7 + z2uwD[u1]DB + z2D7 + z2wDB + z3u2D2) .
We use the first two terms of the 2nd line and the first three terms of the 3rd line to cancel
the last line. We also cancel the third term of the 2nd line and the third term of the 4th line.
Moreover, we cancel part of the last term of the 3rd line and the second term of the 4th line.

DB = z3u3D3 + z2uD
(
wDB +D7

)
+ z2uD

(
wDB +D7

)
− z3uD[u1]D − z3(D − 1) + z2D(1)

(
zu
D(1)− uD

1− u

)
+ z2uwD

+ zu−1
(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

+ 2zu−1w

(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

+ zu−1w2DB − z2uw2DDB − zw2[u1]DB

− zu−1w2
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

.

We now rewrite DB according to the appearing power of w and separate as follows:

DB = A0 + wA1 + w2A2

= A0 +A1 +A2 + (w − 1)A1 + (w2 − 1)A2

= (A0 +A1 +A2) + (w − 1) (A1 + (w + 1)A2)

where A0, A1, A2 are explicit functions in z, u,D,D7, DB, [u1]D, [u2]D, [u1]D7, [u2]D7,

[u1]DB, [u2]DB.

In order to show that this representation can be simplified to the form in (2) we first
have to show that A0 +A1 +A2 = zu−1 (D − 1− u[u1]D

)
. By summing up the expressions
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of A0 +A1 +A2 (and cancelling already two terms) we get

z3u3D3 + z2uD
(
DB +D7

)
+ z2uD

(
DB +D7

)
− z3uD[u1]D − z3(D − 1) + z2D(1)

(
zu
D(1)− uD

1− u

)
+ z2uD

+ zu−1
(
zu
D7(1)− uD7

1− u − zuD7(1)− zu−1 (D7 − u[u1]D7 − u2[u2]D7
))

+ zu−1
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

+ zu−1DB − z2uDDB − z[u1]DB.

Now by using the relation DB +D7 = D − 1− zu2D2, we can deduce two properties:

F1 : [u1]DB + [u1]D7 = [u1](D − 1− zu2D2) = [u1]D,
F2 : [u2]DB + [u2]D7 = [u2](D − 1− zu2D2) = [u2]D − z.

We combine the 3rd and 4th line by applying F1 and F2 and use the last term of it to cancel
z3 in the 2nd line. Then, applying the relation D = 1 + zu2D2 +D7 +DB in the 1st line,
we obtain

z2uD(D − 1) + z2uD
(
DB +D7

)
− z3uD[u1]D − z3D + z2D(1)

(
zu
D(1)− uD

1− u

)
+ z2uD

+ z2uD(1)− uD + zu3D2 − zuD(1)2

1− u − z2u−2 (D − 1− zu2D2 − u[u1]D − u2[u2]D
)

+ zu−1DB − z2uDDB − z[u1]DB.

We cancel some terms from 1st, 2nd, and 4th. Next, We introduce the notation K :=
zuD(1)−uD

1−u and use it in the 2nd and 3rd line:

z2uD2 + z2uDD7 − z3uD[u1]D − z3D + z2D(1)K
− z2D(1) + zu−1K − z2(uD +D(1))K − z2u−2 (D − 1− zu2D2 − u[u1]D − u2[u2]D

)
+ zu−1DB − z[u1]DB.

After canceling some terms from the first two lines and applying DB = D− 1− zu2D2 −D7
in the 3rd line we obtain

z2uD2 + z2uDD7 − z3uD[u1]D − z3D

− z2D(1) + zu−1K − z2uDK − z2u−2 (D − 1− zu2D2 − u[u1]D − u2[u2]D
)

+ zu−1(D − 1− zu2D2 −D7)− z([u1]D − [u1]D7).

We apply D7 = K − zu−1(D − 1 − u[u1]D) in the 1st and 3rd line and apply [u1]D7 =
[u1]K − [u1]zu−1 (D − 1− u[u1]D

)
= [u1]K − z[u2]D in the 3rd. After simplifying we obtain

z2uD2 − z2D(1) + zu−1K + zu−1(D − 1− zu2D2 −K)− z([u1]D − [u1]K).

We replace now K by D − 1− zu2D2 and apply [u1]K = [u1]D so that we have

z2uD2 − z2D(1) + zu−1 (D − 1− zu2D2)
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which reduces to zu−1(D − 1− zuD(1)).
Finally we observe that we have relation

[u1]D = [u1](1 + zu2D2 + zu
D(1)− uD

1− u ) = z[u0]D(1)− uD
1− u = zD(1)

which implies that we actually end up with

A0 +A1 +A2 = zu−1(D − 1− zuD(1)) = zu−1(D − 1− u[u1]D)

as proposed.
Finally we apply some simplifications to A1 and A2. Recall that the second term of DB

is (w − 1) (A1 + (w + 1)A2). It is clear that

A1 = 2z2uDDB + z2uD + 2zu−1P (DB)
A2 = zu−1DB − z2uDDB − z[u1]DB − zu−1P (DB)

where

P (DB) =
(
zu
DB(1)− uDB

1− u − zuDB(1)− zu−1 (DB − u[u1]DB − u2[u2]DB
))

.

After canceling some terms we finally get that A1 + (w + 1)A2 is equal to

z2uD + (w + 1)
(
zu−1DB − z[u1]DB

)
− z2u(w − 1)DDB − zu−1(w − 1)P (DB)

which completes the proof.
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