
Slow Convergence of Ising and Spin Glass Models
with Well-Separated Frustrated Vertices
David Gillman
Department of Computer Science, New College of Florida, Sarasota, FL, 34243, USA
dgillman@ncf.edu

Dana Randall1

School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA
randall@cc.gatech.edu

Abstract
Many physical models undergo phase transitions as some parameter of the system is varied. This
phenomenon has bearing on the convergence times for local Markov chains walking among the
configurations of the physical system. One of the most basic examples of this phenomenon is the
ferromagnetic Ising model on an n× n square lattice region Λ with mixed boundary conditions.
For this spin system, if we fix the spins on the top and bottom sides of the square to be + and
the left and right sides to be −, a standard Peierls argument based on energy shows that below
some critical temperature tc, any local Markov chainM requires time exponential in n to mix.

Spin glasses are magnetic alloys that generalize the Ising model by specifying the strength of
nearest neighbor interactions on the lattice, including whether they are ferromagnetic or antifer-
romagnetic. Whenever a face of the lattice is bounded by an odd number of edges with ferromag-
netic interactions, the face is considered frustrated because the local competing objectives cannot
be simultaneously satisfied. We consider spin glasses with exactly four well-separated frustrated
faces that are symmetric around the center of the lattice region under 90 degree rotations. We
show that local Markov chains require exponential time for all spin glasses in this class. This
class includes the ferromagnetic Ising model with mixed boundary conditions described above,
where the frustrated faces are on the boundary. The standard Peierls argument breaks down
when the frustrated faces are on the interior of Λ and yields weaker results when they are on
the boundary of Λ but not near the corners. We show that there is a universal temperature T
below which M will be slow for all spin glasses with four well-separated frustrated faces. Our
argument shows that there is an exponentially small cut indicated by the free energy, carefully
exploiting both entropy and energy to establish a small bottleneck in the state space to establish
slow mixing.
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24:2 Slow Convergence of Spin Glass Models

1 Introduction

The celebrated Ising model on the Cartesian lattice is a fundamental model for ferromagnetism
and one of the simplest models demonstrating an order-disorder phase transition. Each
configuration σ in the state space Ω = {−1,+1}n2 consists of an assignment of a + or −
spin to each of the vertices, and the Gibbs (or Boltzmann) distribution assigns weight

π(σ) = e−βH(σ)/Z(β),

where

H(σ) = −
∑

(i,j)∈E

σiσj

is the Hamiltonian (or energy) of the system, β = 1/T is inverse temperature, and Z(β) =∑
σ∈Ω e

−βH(σ) is the normalizing constant known as the partition function. In Sections 3 and 4
it will be convenient to write the probability of a configuration in terms of λ = e2β = e2/T ,
where λ can be seen as the weight assigned to edges whose endpoints are assigned like spins.

Physicists characterize when there is a phase transition in a physical model by asking
whether there is a unique limiting conditional distribution on finite subregions as the lattice
size grows. The Gibbs distribution is defined as any limiting measure, but this limit might
not be unique. For example, for the Ising model on Z2 at sufficiently low temperatures,
the probability of an interior vertex being assigned + will be much higher if the boundary
vertices were hard-wired to be + than if they were hard-wired to be −, and this difference
persists in the limit. The infinite volume Ising model was solved exactly by Onsager in 1944
[23], showing that there is a critical value βc = ln(1 +

√
2)/2 such that for β < βc (i.e., high

temperature), the limiting distribution is unique, and for β > βc (i.e., low temperature),
spins on the boundary of the region persist and there are multiple limiting distributions.
The all-plus and the all-minus boundary conditions are known to be extremal [1, 12]. and all
other infinite-volume Gibbs measures are convex combinations of these extremal measures.

A related effect has been observed in the context of mixing times of local Markov chains for
the Ising model on finite lattice regions with free boundaries (i.e., boundary vertices can take
on either spin). The mixing time τ(M) of a chainM, i.e., the number of steps required so
that the distribution over configurations is close to its stationary distribution, also undergoes
a phase change. When β is small, local dynamics are known to be efficient [18, 19, 15], while
when β is large, local chains require exponential time to converge to equilibrium [31]. At
low enough temperature, the Gibbs distribution strongly favors configurations that have
predominantly one spin, and it will take exponential time to move from a mostly + state to
a mostly − one using moves that only change o(n2) sites at a time [17].

Mixing times of Markov chains are known to be sensitive to boundary conditions. For
example, local chains on Ising configurations are conjectured to converge in polynomial time
at all temperatures for the “all +” boundary condition where all vertices on the boundary
are hard-wired to have + spins. While still open, Martinelli [16] showed mixing is indeed sub-
exponential at all temperatures with all + boundary conditions and subsequently Lubetsky
et al. [15] showed that the chain converges in quasi-polynomial time. However, a standard
Peierls argument can be used to show that when there are mixed boundary conditions with
4 connected components of like spins on the boundary, alternating “+,−,+,−”, then the
chain again will be slow at low temperatures. In particular, for mixed boundary conditions
where we fix the boundary to be + on all vertices on the vertical sides of the boundary and −
on the horizontal, then the chain provably requires time exponential in n at sufficiently low
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temperature. For “p-shifted mixed boundary conditions” where we rotate the mixed boundary
conditions clockwise p units, [6] for the Ising model establish bounds on the temperature
below which convergence is slow, but they do not easily extend to other cases we consider.

Similar questions can be examined in the context of spin glasses, or magnetic alloys that
are a natural generalization of the ferromagnetic and antiferromagnetic Ising models. We
are given a graph G = (V,E) and a set of couplings Jij ∈ {−1,+1} for each edge (i, j) ∈ E.
The state space Ω = {−1,+1}V , where a configuration assigns a spin to each vertex in V .
For a spin glass configuration σ ∈ Ω, the Hamiltonian is defined as

H(σ) = −
∑

(i,j)∈E

Jijσ(i)σ(j)

and the Gibbs distribution is defined as for the Ising model as π(σ) = e−βH(σ)/Z(β).
When all the Jij = +1, this model is precisely the ferromagnetic Ising model on G; when

all the Jij = −1, it is antiferromagnetic. In general, the behavior of a spin glass is much
richer than simple models of magnetism because of the presence of frustration, or competition
between local interactions. In the case of G = Λ, a square region in the lattice, a face of Λ is
frustrated when Jij = −1 for an odd number of edges around the face. No setting of the sites
on the corners of such a face will satisfy all four edges, i.e., make each Jijσ(i)σ(j) = 1. Even
finding the ground states (or most likely configurations) reduces to solving an optimization
problem that can be NP-hard (see, e.g., [2]. It will be convenient to refer to the dual lattice
Λ = (V ,E) and refer to a frustrated face f of Λ by the frustrated vertex v = f in V .

Here, we study spin glasses with exactly four well-separated frustrated vertices in order
to understand the long-range interactions and their effects on mixing times. Notice that
the Ising model with p-shifted mixed boundary conditions is a special case, where all four
frustrated squares lie just inside the boundary. Models with well-separated defects are widely
studied to understand long-range correlation; for example, in seminal work, Ciucu [4] studied
the monomer-dimer model with a constant number of monomers to establish a connection
with electrical networks and settle a nearly century old conjecture about long-range effects
due to the separation of the monomers. It is natural to consider similar questions in the
context of spin glasses with a few well-separated frustrated vertices.

We show that there is a universal temperature T below which the Markov chainM will
be slow for any spin glass with exactly four frustrated vertices defining the corners of a (not
necessarily axis-aligned) square in Λ. We identify a bottleneck in the state space by looking
at the how the free energy (i.e., lnZ/n2) changes as a parameter of the system is varied.

I Theorem 1.1. Let Λ be the kn× kn lattice region, k ≥ 2. Suppose that four distinguished
faces f1, .., f4 are symmetric around the center of the lattice region under 90 degree rotations.
There is a universal temperature T = 0.360 . . . such that the Glauber dynamics M for the
spin glass model on Λ with f1, ..., f4 the faces with frustration has mixing time τ(M) ≥ ecn,
for some constant c > 0, whenever t < T .

As a corollary, this gives a universal bound on the temperature for the Ising model with
p-shifted mixed boundary conditions.

The proof of Theorem 1.1 requires several innovations. The standard argument to show
slow mixing is based on the conductance of the Markov chain. The key is showing that the
state space Ω can be partitioned into two sets, S and its complement SC , such that getting
from S to some subset SC requires passing through a small cutset C ⊂ SC , and the stationary
weights π(S) and π(SC) are both exponentially larger than π(C). This establishes that the
chain has low conductance, which implies it takes exponential time to converge to equilibrium
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24:4 Slow Convergence of Spin Glass Models

[13]. The main ingredient is typically a Peierls argument [24], which introduces a map Ψ
from C to S ∪ SC . Typically Ψ is chosen so that for all σ ∈ C, we have π(Ψ(σ)) ≥ π(σ)ecn,
mapping elements of C to configurations with exponentially larger weight. If we can show
that Ψ is nearly injective (i.e., the cardinality of the inverse image of each configuration is
bounded by a polynomial), then we can conclude that π(C) is exponentially small.

In our setting, there is not always a natural candidate map that increases the probability
of a configuration exponentially. In fact, the standard map gives no guaranteed increase to
the stationary probability when each side of the boundary has close to an equal number of +
and − spins (when p = 0.5 and the boundary changes spin at the center of the four sides of
the boundary). In this case, we exploit the low entropy of C by defining an injective map
from C × 2cn → Ω, for some c > 0. The map never decreases the weight of a configuration,
so we again can conclude that π(C) is exponentially small. As we vary p, the free energy of C
remains small compared to the two sides of the cut due to a derease in energy (when p is
close to 0) or due to entropy (when p is close to 0.5); all other cases rely on both.

An important technical contribution in our proofs is in the construction of a new injective
map. The contour representation of a spin glass configuration consists of edges in the
dual lattice that cross edges e = (i, j) where Jijσ(i)σ(j) = −1; in this representation the
frustrated vertices in the dual lattice have odd degree and all other vertices have even degree.
Because of this property the contour representation can be decomposed into a even cycles
(closed contours) and two long paths whose endpoints are the four frustrated vertices. In the
standard case of the Ising model with alternating side boundary conditions, we can define an
injective map that shifts the paths connecting the four frustrated vertices to paths with much
shorter length, and therefore much larger probability. The new paths can be added along the
boundary by shifting closed contours. In our case we cannot do this since we cannot always
construct maps to configurations with larger probability. Therefore we define a map to a set
of configurations of at least equal probability. To complete the proof we require a careful map
that allows us to reconstruct the original path, the new path, and the closed contours that
are intersected when the new path is added. Verifying that the map is injective now requires
a very sensitive combinatorial encoding and decoding that is likely of independent interest.

2 Preliminaries

We review some standard background on Markov chains, convergence times, and the Ising
model that are required for our results.

2.1 Markov chains and mixing times
LetM be an ergodic, reversible Markov chain with arbitrary finite state space S, transition
probability matrix P , and stationary distribution π. Let P t(x, y) be the t-step transition
probability from x to y, and let ||·, ·|| denote total variation distance.

I Definition 2.1. For ε > 0, the mixing time is defined as

τ(ε) = min{t : max
x∈S

∑
y∈S
||P t

′
(x, y), π(y)|| ≤ ε, for all t′ ≥ t}.

A Markov chain is rapidly (or polynomially) mixing if the mixing time is bounded above by
a polynomial in logS, the length of a description of a state in S. A chain is slowly mixing if
the mixing time is bounded below by an exponential function. The conductance, introduced
by Jerrum and Sinclair [13], is useful to bound the mixing time [13].
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Figure 1 States with (a) positive orientation, (b) orientation 0, (c) negative orientation.

I Definition 2.2. For a Markov chain with stationary distribution π, the conductance Φ is

Φ = min
S:0<π(S)≤1/2

∑
x∈S,y 6∈S π(x)P (x, y)

π(S) .

I Theorem 2.3 (Jerrum and Sinclair [13]). The mixing time of a Markov chain with conduc-
tance Φ satisfies:

τ(ε) ≥
(

1− 2Φ
2Φ

)
ln ε−1.

To establish slow mixing, our strategy will be to define a set S along with sets T ⊂ SC and
C ⊂ SC \ T in the state space, such that π(S) = π(T ) and π(C)/π(S) < e−cn and such that
getting from S to SC in the Markov chain requires going through C.

In this paper, we will focus on the simplest local Markov chainM for the Ising and spin
glass models, known as Glauber dynamics, which connects pairs of configurations whose spins
differ on at most one vertex. In a given step, the chain picks any vertex v ∈ Λ at random and
changes the spin with the appropriate transition probabilities so that the chain converges to
the Gibbs distribution π. For our models, the transition probabilities ofM are defined as

P (σ, τ) = 1
2n2 min

(
1, π(τ)
π(σ)

)
,

if |{i : σi 6= τi}| = 1, and with all remaining probability stay at the current configuration.

2.2 The Contour representation of the Ising and spin glass models
It will be convenient to view Ising and spin glass configurations in terms of contours. For
every configuration σ ∈ Ω, there is a contour representation Γ(σ) in Λ, the planar dual to
Λ. We define Λ = (V ,E) by letting V correspond to the centers of unit squares in Λ and
edges E connect any two vertices whose corresponding squares share an edge in Λ. An
edge e′ ∈ E that is dual to e = (i, j) ∈ E is in Γ(σ) if Jijσ(i)σ(j) = −1 and we omit it if
Jijσ(i)σ(j) = +1. For the Ising model where all the Jij = +1, the contour representation
Γ(σ) is precisely the set of edges separating + and − components in σ. Note that we can
reconstruct the spin configuration σ from the contour representation (given a single spin) if
we know the values of {Jij}. The weight of a configuration σ is determined by Γ(σ), and
there is a weight-preserving bijection between the configurations of any two spin glasses with
the same set of frustated vertices.

For the spin glass model considered here, all vertices of V \ {v1, ..., v4} have even degree
in Γ(σ) and the frustrated vertices {v1, ..., v4} will have odd degree. It follows that Γ(σ)
must be the union of two paths terminating at the frustated vertices, along with even cycles.
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(Note that these paths and cycles can intersect each other, and therefore are not necessarily
unique.) In all that follows, it will be convenient to shift the primal lattice Λ by (−1/2,−1/2)
so that the vertices of Λ are integral. Now, recall that we assume that the four frustrated
vertices lie on the boundary of a 2n × 2n square S within Λ centered at (n, n), and they
are the corners of a (not necessarily axis-aligned) square. Without loss of generality, we
label these so that v1 lies on the top side of S and is the ith vertex from the upper left
corner for some 0 ≤ i ≤ n. Setting p = i/2n, v1 is at a distance of 2pn from the upper left
corner, v2 is on the right side of S a distance of 2pn from the upper right corner, v3 is on
the bottom of S a distance of 2pn from the lower right corner, and v4 is on the left side of S
a distance of 2pn from the lower left corner. The key to all of our arguments is how the two
long paths in Γ(σ) pair up these frustrated vertices. Let α(σ) be the length of the shortest
path in Λ from the connected component of Γ(σ) containing v1 to the connected component
containing v4 (if v1 a nd v4 are connected, α(σ) = 0). Likewise, let β(σ) be the length of the
shortest path between the component containing v1 and the component containing v2. Let
γ(σ) = β(σ)− α(σ) be the orientation of the configuration σ. We partition the state space
Ω into a disjoint union Ω = ∪i∈Z Ωi, where σ ∈ Ωi if γ(σ) = i.

The partition of Ω into ∪iΩi allows us to define a cut in the state space in order to
bound the conductance. In particular, we let Ω− = ∪i<0 Ωi and Ω+ = ∪i>0 Ωi, and we
observe that Ω = Ω− ∪ Ω0 ∪ Ω+. We specify a subset of C ⊂ Ω0 that will be critical to
defining the cut as C = {σ ∈ Ω0 : α(σ) = β(σ) = 0} (i.e., the configurations in which v1 is
connected to both v2 and v4). See Figure 1. Finally, we define C∗ = C ∪ Ω−1 ∪ Ω1 to be the
configurations where the paths connecting the frustrated vertices are within distance 1 of
each other. Following [25], for configurations in C, we partition the cross into two paths, one
from v1 to v3 and a one from v2 to v4; we do the same for configurations in Ω−1 and Ω1,
although it may be necessary to add a single “defect” that encodes where one or both of
these paths incurs a jump by one unit. To move from a configuration in Ω− to one in Ω+

using Glauber dynamics, we must pass through a configuration in C∗. We will show that
the probability of C is exponentially small, and this will allow us to argue that the Glauber
dynamics requires exponential time to converge to equilibrium.

3 Slow Mixing for the Ising model with Mixed Boundaries

We start with the standard approach used to show slow mixing when the boundary conditions
alternate spins on the boundary of a (2n + 1) × (2n + 1) lattice region Λ. Here Λ is the
2n× 2n lattice region centered in Λ. This will motivate the approach used in the general
spin glass setting (when the frustrated vertices are not necessarily on the boundary of Λ)
and will elucidate the difficulties in generalizing this simpler result.

Fix 0 ≤ p ≤ 1/2 and let q = 1− p. We define v1 = (2pn, 2n), v2 = (2n, 2qn), v3 = (2qn, 0)
and v4 = (0, 2pn). Recall that all vertices on the boundary between v1 and v2 and between
v3 and v4 are assigned + and the others are assigned −. The vertices v1, ..., v4 define the
endpoints of a pair of paths in each configuration. (There may be more than one choice
of paths.) Using the strategy outlined in Section 2.2, we recall that C consists of those
configurations where there are paths from v1 to both v2 and v4 (and therefore also to
v3). Using the notion of “fault lines” introduced in [25], we note that this is the set of
configurations that contain a horizontal fault line, i.e.,. a path from v2 to v4, and a vertical
fault line, i.e., a path from v1 to v3. When both fault lines are present (and intersect) we call
their union a cross. We define the cross so that it is a maximal component of the contour
representation of the configuration.
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Let C be a cross in Λ. As we will show in Lemma 4.1, the minimum length of C is
L = 6n − 4np. We write the length as |C| = L + `, for some ` ≥ 0. Let CC be the set of
configurations in C that have C as their cross.

We will write the weight of a configuration σ as λ−H(σ), λ = eβ = e1/T , and note that
the energy H(σ) is the number of edges in the contour representation of σ.

I Lemma 3.1. For any cross C, we have

π(CC) ≤ λ−(2n−4pn+`).

Proof. We define the injective map ψC : CC → Ω so that π(ψC(σ)) = π(σ)λ(L−4n+`) for any
fixed C. Given this map, we find

1 = π(Ω) ≥
∑
σ∈CC

π(ψC(σ)) =
∑
σ∈CC

π(σ)λ(L−4n+`) = λ(2n−4pn+`)π(CC).

The map ψC is defined by removing C; then, along the upper-left boundary of Λ between v1
and v4 we add each edge not in σ and remove each edge in σ; then, along the lower-right
boundary of Λ between v3 and v2 we add each edge not in σ and remove each edge in σ. J

I Theorem 3.2. Let Λ ⊂ Z2 be an (2n + 1) × (2n + 1) lattice region and 0 ≤ p ≤ 1/2
define a family of balanced mixed boundary conditions on Λ. Let Ω be the set of all Ising
configurations and let C be the Ising configurations containing a cross. Then

π(C) ≤ f(n)e−cn,

for some polynomial f(n) and constant c > 0, whenever λ(1−2p) > 3(3−2p).

Proof. By Lemma 3.1,

π(C) ≤
∑
C

λ−(2n−4pn+`) ≤
∑
`≥0

λ−(2n−4np+`)3(6n−4np+`) ≤ 4n2(3(3−2p)λ−(1−2p))2n,

which is exponentially small when λ(1−2p) > 3(3−2p). The second inequality holds because
there are at most 3(6n−4np+`) ways to choose a cross of length 6n− 4np+ `. J

Thus, when λ(1−2p) > 3(3−2p) we have that the size of the cut is exponentially small, and
therefore the conductance of the graph is also exponentially small. By Theorem 2.3, this
implies that the chain takes exponential time to mix.

I Corollary 3.3. Glauber dynamics for the Ising model on Λ with balanced mixed boundary
conditions takes time at least ecn to mix, for some constant c > 0, when λ(1−2p) > 3(3−2p).

Notice that this gives λ > 27 when p = 0 and λ > 3(2(k+1)+1) when p = 1/2− 1/2k and when
p = 1/2 this fails to give any useful bound.

4 Slow Mixing for Frustrated Spin Glasses Using Free Energy

We will now proceed to extend the result in Section 3 by establishing slow mixing below
some temperature for spin glasses with four well-separated frustrated vertices.

In this setting we define Λ as the kn× kn lattice region, k ≥ 2, centered at (n, n). Four
distinguished faces are symmetric around the center of the lattice region under 90 degree
rotations. The centers of these faces are four vertices v1, .., v4 in Λ. As in Section 2.2 we
define C to be the set of contour configurations in which v1 is connected to both v2 and
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(a) (b)

Figure 2 (a) A minimal cross is shown in black, with two possible monotone paths in green. Any
monotone path in either shaded region is possible. (b) A staircase is shown in black, together with
the part of a cross containing a path from v1 to v4. The green arrow shows the direction edges of σ
are shifted in the region bounded by the middle section of the staircase and the cross.

v4, and we define the cross C in such a configuration as the component containing v1. The
argument in Section 3 fails when p = 1/2, in particular when ` = o(n). The length of the
cross C in that case is 4n+ `, and our injective map ψC removes C and replaces it with two
paths of total length 4n. The difference in energy, H(σ) −H(ψC(σ)) = `, is too small to
show that σ has exponentially small probability.

The remedy comes from noticing that in exactly the case ` = o(n), C is nearly a minimal
cross and there are many alternative choices of ψC . We will allow any monotone path that,
in order to ensure loss of energy, does not intersect C. The set of possible paths is illustrated
in Figure 2(a). We have the following lemma, whose proof appears in the Appendix.

I Lemma 4.1. Let Sn be the 2n× 2n axis-aligned square whose sides contain v1, .., v4. For
some ` ≥ 0, |C| = 6n−4pn+`. If ` < 2pn there are two (2n−2pn−`)×(2pn−`) rectangular
regions on opposite corners of the interior of Sn that contain no edges of C.

Our new strategy is to use all possible choices of ψC , thereby defining an exponential
family of images. We will define a function ΨC that involves mapping a configuration σ ∈ CC
to the union of possible ψC(σ) defined by different pairs of monotone paths. Figure 2(a) also
shows the tradeoff between energy and entropy for our method. As p decreases, the energy
loss due to the map increases. As the width of each shaded area decreases, the number of
possible paths,

( 2n
2np
)
, also decreases. This is what we mean by a decrease in entropy.

Just as we needed ψC to be injective in Section 3, we would like our new map to have
the property that two different configurations map to disjoint sets of configurations. Instead,
we define ΨC to pass a small amount of “side information,” and with this definition we will
get a disjointness property that serves our purpose. The side information is in the form of
tokens placed on certain edges along each of the two paths that define the configuration σ is
mapped to. Formally, for each path this information is encoded as a binary string of length
2n: 0 for any plain edge, 1 for an edge with a token. The nice property that will make this
side information small is that no two adjacent edges of a path are occupied by tokens.

Let B(m) be the set of binary strings of length m with no consecutive 1’s. Let B = BC =
B(2n−`). Formally, we will define a function ΨC : CC → 2Ω×B×B that has the nice properties
in the following lemma. To get our hands on the set of mapped configurations minus the
tokens, we define the projection operator Π : 2Ω×B×B → 2Ω, so that Π({σi, bi, b′i}) = {σi}.
Formally, Π ◦ΨC is the map from one configuration to a set of configurations.

In the following lemmas, fix 0 ≤ p ≤ 1/2 and let L = 6n− 4np.
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I Lemma 4.2. Let C be a maximal cross of length |C| = L + `. There exists a function
ΨC : CC → 2Ω×B×B such that ∀σ, σ′ ∈ CC , σ′′ ∈ Π ◦ΨC(σ),

ΨC(σ) ∩ΨC(σ′) = ∅,

|ΨC(σ)| =
(

2n− 2`
2pn− `

)2
,

and H(σ′′) ≤ H(σ)− (2n− 4np+ `).

We postpone constructing the function ΨC (and proving Lemma 4.2) until the next
subsection. Theorem 4.5 is an analogue of Theorem 3.2 that gives an exponential bound for
all p, 0 ≤ p ≤ 1/2. As a corollary of Theorem 4.5, we will prove our main result, Theorem 1.1,
asserting slow mixing for spin glasses with frustration.

We first bound the probability of the set of configurations containing a given cross C.

I Lemma 4.3. For any maximal cross C of length |C| = L+ ` we have

π(CC) ≤ π(Π ◦ΨC(CC))λ−(2n−4np+`)φ4n−2`+1
/(

2n− 2`
2np− `

)2
, (1)

where φ = (1 +
√

5)/2.

Proof. It is well known that |B(m)| is the mth Fibonacci number, which is within 1 of φm.
Each σ′′ ∈ Π ◦ΨC(σ) appears in at most |B|2 ≤ φ4n−2`+1 elements of ΨC(σ). The bound
on H(σ′′) in Lemma 4.2, gives π(σ′′) ≥ π(σ)λ−(2n−4np+`) and the two equalities imply

π(Π ◦ΨC(CC)) ≥
∑
σ∈CC

π(σ)λ(2n−4np+`)φ−(4n−2`+1)
(

2n− 2`
2np− `

)2
. (2)

The inequality follows by replacing
∑
π(σ) with π(CC). J

Our main theorems establishing slow mixing of Glauber dynamics for spin glasses with
well-separated frustrated vertices (Theorems 4.5 and 1.1) depend on the following technical
lemma regarding the set C` of configurations containing maximal crosses of fixed length L+ `:
C` = ∪{CC : |C| = L + `}. The idea of the lemma is to show that π(C`) is exponentially
small, where the constant in the exponent is independent of `. This also means that the free
energy ln π(C`)/n is less than some negative constant. Since there are polynomially many
values of `, it will follow that the whole set C is exponentially small.

I Lemma 4.4. Let C` be the spin glass configurations where v1, .., v4 are all connected by a
maximal cross of length L+ `. Then for λ ≥ 256 we have

π(C`) ≤ 2−0.2n poly(n). (3)

Proof. Let s = 1/2− p and r = `/n. We will actually prove that

π(C`) ≤ λ−8sn (3/λ)rn 2n[(4−2r) log2 φ+L(r,s)+P(r,s)−T (r,s)] poly(n) , (4)

where

L(r, s) = (2 + 4s+ r)h( r

2 + 4s+ r
),

P(r, s) = (2 + 4s)h( 2s
1 + 2s ),

T (r, s) = max(0, 4− 4r)h(1
2 −

s

1− r ),
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and h(x) = −x log2(x)− (1− x) log2(1− x). Then we will show that the right-hand side of
Equation 4 is less than 2−0.2n.

First, we establish Equation 4. Each C consists of vertical path connecting v1 to v3
and a horizontal path connecting v2 to v4. The vertical path contains a minimal vertical
path of 2n vertical edges and 2n − 4pn horizontal edges. There are

(4n−4pn
2n−4pn

)
=
(2n+4sn

4sn
)

choices of minimal vertical path. There is one choice of minimal horizontal path, which
contains only horizontal edges connecting v2 and v4 to the vertical path. Then there are(6n−4np+`

`

)
=
(2n+4sn+rn

rn

)
ways to choose the locations of the ` extra edges, and 3 possible

directions for each extra edge. Applying Lemma 4.3 and Stirling’s formula,

π(C`) ≤
(

6n− 4np+ `

`

)(
4n− 4pn
2n− 4pn

)
3` max
|C|=L+`

π(CC)

≤ 2(2n+4sn+rn)h(r/(2+4s+r))2(2n+4sn)h(2s/(1+2s))3rn

· λ−(8sn+rn)φ4n−2rn+12−2(2n−2rn)h((1−r−2s)/(2−2r)).

Equation 4 follows immediately by collecting the terms in the exponents.
By taking logs and dividing by n it follows that log2 π(C`)/n ≤ F(r, s), where

F(r, s) = (−r − 8s) log2 λ+ r log2 3 + (4− 2r) log2 φ+ L(r, s) + P(r, s)− T (r, s)

It remains to show that F(r, s) ≤ −0.2, for all s, r, 0 ≤ s ≤ 1/2, r > 0, and large enough λ.
L(r, 0) is concave as a function of r, L(r, s) and P(r, s) are concave as functions of s, and

−T (r, s) is convex as a function of s. We numerically approximate the concave functions
with a tangent line and the convex function with a secant, yielding these results:

L(r, 0) ≤ 0.5 + 2.9r; P(r, s) ≤ 0.5 + 12s;
L(r, s) ≤ 0.5 + 2.9r + 2rs ≤ 0.5 + 3.9r; −T (r, s) ≤ −4 + 4r + 8s.

Also, r log2 3 < 1.5r and (4− 2r) log2 φ < (2.8− 1.4)r. Adding terms, for λ ≥ 256, we get

F(r, s) ≤ (−r − 8s) log2 λ+ 8r + 20s− 0.2 ≤ −0.2. J

We now state the key theorem bounding the probability of the set C of configurations
containing crosses.

I Theorem 4.5. Let Ω be the set of all spin glass configurations in a kn×kn square lattice Λ
centered at (n, n), k ≥ 2. Suppose that four distinguished vertices v1, .., v4 lie on the boundary
of an axis-aligned 2n× 2n square S centered in Λ, and these four vertices form the corners
of a (not necessarily axis-aligned) square (i.e., they are shifted by 2p around the boundary of
S). Let C be the set of configurations in which v1 is connected to both v2 and v4. Then for
λ ≥ 256 we have

π(C) ≤ 2−0.2npoly(n). (5)

Proof. Since ` has at most (cn)2 values, π(C) ≤ (cn)2 max` π(C`) ≤ 2−0.2npoly(n). J

Proof of Theorem 1.1. Set T = 2/ ln 256 = 0.360.... Let t < T . The state space Ω contains
the two disjoint subsets Ω− and Ω+, separated by a cut set C∗ consisting of all configurations
within two steps of C. We have π(C∗) < π(C)poly(n) and by symmetry π(Ω−) = π(Ω+). The
conductance Φ satisfies

Φ ≤
∑
σ∈Ω−,σ′∈ΩC π(σ) Pr(σ, σ′)

π(Ω−) ≤ 4 · π(C∗) ≤ 2−0.1n, for large enough n. (6)

Therefore the Markov chain mixes slowly. J
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Figure 3 (a) A staircase and patch that share edges (left), and an encoding that loses information
(right). (b) A staircase and patch with the default path (left), and an encoding that preserves
information (right).

4.1 Construction of the Map

In this section we will construct the map ΨC using pairs of paths as shown in Figure 2(a).
An upper staircase with respect to a cross C of length L+ ` is a path of min(`, 2pn) west
edges starting at v1 followed by zero or more west and south edges, followed by min(`, 2pn)
south edges ending at v4. We refer to the section of west and south edges as the “middle
2n− 2 min(`, 2pn) edges.” We define a lower staircase to be a path v3 to v2, which, when the
configuration is rotated 180°, becomes an upper staircase. Note that the edges on a staircase
need not be edges of a particular configuration. Given upper and lower staircases, we will
map σ ∈ CC to some σ′ ∈ Ω, marking certain edges with tokens. We will show that one can
reconstruct σ from C, σ′, and the marked edges, that no two marked edges are adjacent,
and H(σ′) ≤ H(σ)− |C|+ 4n, implying Lemma 4.2.

Our map is motivated by the map ψC in the proof of Lemma 3.1. In fact, the construction
is the same along the first min(`, 2pn) edges and last min(`, 2pn) edges: we add each edge
not in σ and remove each edge in σ. Along the middle section of the staircase that contains
west and south edges, our map must encode the locations of the staircase edges in σ′ without
increasing H(σ′). The basic strategy is to remove C, shift edges in σ away from the staircase,
toward the removed edges of C, then add the edges of the staircase.

Let SU be an upper staircase and SL be a lower staircase. The simple regions in the
interior of C ∪ SU ∪ SL may be two-colored gray and white, with the exterior, denoted R,
colored gray. Regions separated by an edge in C ∩ SU or C ∩ SL will have the same color.
We assume in what follows that ` < 2pn. In particular, SU and SL do not both contain
edges in any one region boundary. When ` ≥ 2pn, SU and SL are contained in the boundary
of the 2n× 2n square Sn, and the proof of Lemma 3.1 applies.

By Lemma 4.1 there is one white simple region R whose boundary contains the middle
2n − 2` edges of SU . The map will shift edges of σ in R southeast, and it will shift the
corresponding region bounded by the middle 2n− 2` edges of SL northwest. See Figure 2(b).

We may assign a + or − to each site in R ∪R so that the sites adjacent to C are + and
the edges of σ restricted to R ∪ R are exactly those edges between two neighboring sites
of opposite sign. We define a patch to be a connected set of − sites in R ∪ R. The outer
boundary of a patch is the unique cycle of edges in the configuration that, when traversed
counterclockwise, has sites inside the left of each edge and sites outside to the right.

A naive map would remove C from the configuration and add the upper staircase and
lower staircase to the configuration. The flaw in this approach is that σ cannot always
be reconstructed when part of a staircase coincides with part of the boundary of a patch.
Figure 3(a) shows an upper staircase in black that shares edges with a patch, shown in blue.
Adding the staircase creates double edges. The natural recourse is removing double edges
while preserving degrees, but shared edges are no longer recoverable from such a map.
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(a) (b)

Figure 4 (a) The components to encode. (b) The contour pieces defining the map.

Our map modifies the naive approach by shifting the staircases before adding them to
the configuration, and shifting edges that are between the staircases toward the empty space
left behind after the removal of C. Let S be the maximal contiguous section of SU that
forms part of the boundary of R and contains the middle 2n− 2` edges of SU . We define the
default path to be S shifted one step east. It consists of alternating west and south sections.
The first south (northernmost) edge of each south section, and the first west edge of each
west section, are each incident to S at just one vertex (with the exception of the first edge of
S if it is a south edge preceded in SU by a south edge). All other edges on the default path
are on S or not incident to it. The last south and last west edges are defined accordingly.

Figure 3(b) shows the same staircase and patch, with the default path in red. σ is mapped
to σ′ by starting with the union of the patch and the default path, and removing double
edges. The default path can be reconstructed from σ′, because it contains the first-south
and first-west edges of the default path. This is the information that was missing from the
previous mapping. The mapping contains no more energy than the original.

A subtler problem of lost information arises when the staircase enters the interior of a
patch. We define an interior edge of S to be one that bounds two − sites. Each maximal
contiguous segment of interior edges of S divides a patch into two patches, which we refer to
as the above-patch (or A-patch) and the below-patch (or B-patch).

To solve the problem of interior segments, we triple each interior edge of the staircase,
shifting the staircase and the B-patch one step east, and shifting the B-patch one step south.
The drawing on the left of Figure 4(a) shows the staircase in black and the patch in blue
before the two shifting steps, and the drawing on the right shows the default path in red and
the two patches after the shifts. After the shifts, our mapping removes all double edges.

The doubled interior edges of the default path consist of all interior west edges of the
A-patch except the last-west edge of each west section, and all interior south edges of the
below patch except the last-south edge of each south section.

This mapping has the one final problem that it increases the energy of the configuration.
This problem can be illustrated by labeling the edges as in Figure 4(b). EA and EB (blue)
are exterior edges of the A-patch and B-patch, respectively. IA and LW (orange) are south
and last-west interior edges of the A-patch, resp. IB and LS (purple) are west and last-south
interior edges of the B-patch, resp. FI, FW, and FS (red) are the first interior edge and all
first-west and first-south edges of the default path, resp. FE and SE (red) are the first and
second “exterior” edges of the default path following this segment of interior edges. The first
exterior edge will not be interior to any patch, but the second exterior edge may be interior
to this or another patch.

The increase in energy is caused by the “detours” at FS-LW and FW-LS. The final
mapping step is to flip the signs of sites bounded by corners of those two types and to place
a token at each such site. The Appendix presents the map steps in detail.
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4.2 Reconstruction
The default path (and hence σ restricted to RL) can be reconstructed from σ′, before
token-placing, as it contains all of the first-west and first-south edges. Starting from the FI
edge, the default path continues until it encounters the first FS or FW edge. Then it changes
direction and the FS or FW edge inductively plays the role of the FI edge. The rest of the
interior segment is reconstructed by induction on the number of south and west sections.

Reconstructing the default path in the presence of tokens is the same recursive process,
except we look ahead one step. If the next edge has a token, we flip the adjacent site before
proceeding. The adjacent site is unambiguous because it is between the A- and B-patches.
The Appendix presents the reconstruction steps in detail.

4.3 Energy loss
Before token-placing and sign-flipping, σ′ has more energy than H(σ)− |C|+ 4n. The EA
and EB naturally correspond 1-1 to the edges of the original patch. The IA and IB edges
correspond 1-1 to the interior segment of the staircase. The excess energy consists of one
pair of edges, FS-LW or FW-LS, for each corner of the interior segment, plus two more edges,
the FI edge and one LW or LS edge incident to FE.

The mapping solves this problem by short-circuiting the corners. Each FS-LW pair occurs
as part of a segment FS-LW-IA that form three sides of a site, and each FW-LS pair occurs
as part of a segment FW-LS-IB that also form three sides. The mapping flips the sign of
each such site, replacing three edges with one, and places a token at the flipped site.

Two such sites may be adjacent. This happens when an IA or IB section is one edge long.
Then one of the two sites is bounded by an FS-LW-IA-FW segment or an FW-LS-IB-FS
segment. In either case the mapping replaces four edges with zero. One sign-flip in the first
traversal removes the excess energy of both sites, and one token is placed. It also flips one
edge of the adjacent site, ensuring that no two tokens will be adjacent. (See Figure 5(a) steps
(d)-(f).) Each sign-flip in the second traversal converts three edges to one, canceling excess
energy due to this site. In this case, this site will not be adjacent to another token site.

The two remaining excess edges are the FI edge and one LW or LS edge. Suppose it
is LW (the case of LS is similar). If FE and a LW form a double edge or SE and an EB
form a double edge (the case pictured), the mapping removes the double edge, cancelling the
excess energy. In the remaining case FE is an FS edge, SE is an FW edge, and the segment
LW-FE-SE forms three sides of a site. The mapping flips the sign of that site and places a
token. No two tokens are placed on adjacent sites. In the case considered in the previous
paragraph, SE is not an interior edge of any patch, because the site is on the exterior side of
FE. The first interior edge of a patch does not bound a site with a token.

References
1 M. Aizenman. Translation invariance and instability of phase coexistence in the two-

dimensional Ising system. Comm. Math. Phys., 73: 83-94, 1980.
2 F. Barahona. On the computational complexity of Ising spin glass models. Journal of

Physics A: Math. and Gen., 15: 3241–3253, 1982.
3 D. Chelkak and S. Smirnov. Universality in the 2D Ising model and conformal invariance

of fermionic observables Inventiones Mathematicae, 189: 1–66, 2009.
4 M. Ciucu. Dimer packings with gaps and electrostatics, Proc. Natl. Acad. Sci., 105: 2766–

2772, 2008.
5 L. Coquille and Y. Velenik. A finite-volume version of Aizenman-Higuchi Theorem for the

2D Ising model. Probab. Theory Relat. Fields, 153: 25–44, 2012.

AofA 2018



24:14 Slow Convergence of Spin Glass Models

6 R.L. Dobrushin, R. Kotecký and S. Shlosman. Wulff Construction: a Global Shape from
Local Interaction. AMS translations series, 104, Providence R.I.: AMS, 1992.

7 R. Fernandez, P.A. Ferrari, and N.L. Garcia. Loss network representation of Ising contours.
Annals of Probability 29: 902–937, 2001.

8 R. Fitzpatrick. Thermodynamics and Statistical Mechanics. Preprint at
https://farside.ph.utexas.edu/teaching/sm1/Thermal.pdf.

9 S. Friedli and Y. Velenik. Statistical Mechanics of Lattice Systems: a Con-
crete Mathematical Introduction. Cambridge University Press, 2017, to appear
(http://www.unige.ch/math/folks/velenik/smbook/).

10 H.O. Georgii. Gibbs measures and phase transitions. de Gruyter Studies in Mathematics,
Walter de Gruyter & Co., Berlin, 1988.

11 S. Greenberg and D. Randall. Slow mixing of Glauber dynamics on perfect matchings of
the square-octagon lattice. Preprint, 2006.

12 Y. Higuchi. On the absence of non-translation invariant Gibbs states for the two-
dimensional Ising model. Colloq. Math. Soc., J’anos Bolyai, 517–534, 1981.

13 M.R. Jerrum and A.J. Sinclair. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation 82: 93–133, 1989.

14 G. Lawler. Scaling limits and the Schramm-Loewner evolution. Probab. Surveys, 8: 442–
495, 2011.

15 E. Lubetzky, F. Martinelli, A. Sly and F. Toninelli. Quasi-polynomial mixing of the 2D
stochastic Ising model with “plus” boundary up to criticality. J. Eur. Math. Soc., 15:
339–386, 2013.

16 F. Martinelli. On the two-dimensional dynamical Ising model in the phase coexistence
region. Journal of Statistical Physics, 76: 1179–1246, 1994.

17 F. Martinelli. Lectures on Glauber dynamics for discrete spin models. Lectures on Probabil-
ity Theory and Statistics (Saint-Flour, 1997), Lecture notes in Mathematics 1717: 93–191,
Springer, Berlin, 1998.

18 F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one
phase region. I. The attractive case. Comm. Math. Phys., 161: 447–486, 1994.

19 F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one
phase region. II. The general case. Comm. Math. Phys., 161: 487–514, 1994.

20 F. Martinelli, A. Sinclair, D. Weitz, The Ising model on trees: Boundary conditions and
mixing time. Comm. Mathematical Physics 250: 301–334, 2004.

21 A. Messager and S. Miracle-Sole. Equilibrium states of the two-dimensional Ising model
in the two-phase region. Comm. Math. Phys., 40:187–196, 1975.

22 E. Mossel and A. Sly. Exact thresholds for Ising – Gibbs samplers on general graphs. Ann.
Probab., 41:294-328, 2013.

23 L. Onsager. Crystal statistics: a two-dimensional model with an order- disorder transition.
Phys. Rev., 65: 117–149, 1944.

24 R. Peierls, On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc., 32: 477–481,
1936.

25 D. Randall. Slow mixing of Glauber dynamics via topological obstructions. 17th Sympo-
sium on Discrete Algorihtms (SODA), 2006.

26 D. Randall and D.B. Wilson. Sampling Spin Configurations of an Ising System. Proc.
10th ACM/SIAM Symposium on Discrete Algorithms, S959–960, 1999.

27 O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees.
Israel J. Math., 118: 221–288, 2000.

28 S. Smirnov. Critical percolation in the plane. Comptes Rendus de l’Académie des Sciences.
333: 239–244, 2001.



D. Gillman and D. Randall 24:15

29 S. Smirnov and H. Duminil-Copin. Conformal invariance in lattice models, in Lecture
notes of the 2010 Clay summer school, Buzios, 2010.

30 N. Sun. Conformally invariant scaling limits in planar critical percolation. Probability
Surveys, 11: 155–209, 2011.

31 L. Thomas. Bound on the mass gap for the finite volume stochastic Ising models at low
temperature. Comm. Mathematical Physics 126: 1–11, 1989.

A Appendix

Proof of Lemma 4.1. The minimal cross contains a path from v1 to v3 and a path from v2
to v4. First let’s assume that each of these is minimal. Then they each have length 4n− 4pn
and the total length of the cross is 8n− 8pn− |o|, where o is the length of the overlapping
segments. Orient the edges along each path from v1 to v3 so that the edges all go right or
down, and orient the path from v2 to v4 so that they go down or left. Then the overlapping
segments are oriented the same way in both paths if the edge is vertical and in opposite
directions if the edge is horizontal. But all horiztonal edges on the path from v2 to v4 after
this shared edge are left of the edge, and those on the path from v1 to v3 are to the right;
similarly, if they share a horizonal edge, all subsequent vertical edges must be to the left of
the edge on one path and to the right on the other. Therefore, the overlapping segment must
all be vertical or all horizontal. Furthermore, all the vertical edges that overlap have to lie
between v2 and v4 and have length at most 2n− 4pn; likewise if the horizontal edges that
overlap since they lie between v1 and v3. It follows that when the two paths are minimal
|o| ≤ 2n− 4pn and the length of the cross is at least 6n− 4pn.

If either of the paths from v1 to v3 and v2 to v4 is not minimal, then the overlap can
contain both horizontal and vertical edges. Notice that the overlapping segments must be
contignuous along either path or the cross would contain a cycle, contradicting minimality. If
this overlapping segment contains edges oriented both left and right (or down and up), then
it can be shortened, again violating minimality. Therefore the overlapping segment must go
down and left or down and right. If down and left, then the path from v1 to v3 has an extra
edge to the right for each horizontal edge in the overlapping segment; if down and right then
the path from v2 to v4 has an extra edge for each horiztonal edge in the overlap. Finally,
if the number of vertical edges in the overlap exceeds the vertical distance between v2 and
v4, then the path between them must contain at least that many additional vertical edges.
Summing all of these up, we find that if there are 2n− 4pn+ k edges in the overlap, then the
sum of the lengths of the two paths must be at least 8n− 8pn+ k. Subtracting the length of
the overlapping segment, we again find that the length of the cross is at least 6n− 4pn.

If the cross is nearly minimal, with length 6n − 4pn + `, the picture is similar. The
paths from v1 to v3 and v2 to v4 must also be nearly minimal, each having length at most
4n− 4pn+ ` and the length of the overlapping segments must be at least 2n− 4pn− `. It
follows that the path from v1 to v3 lies in a 2n− 4pn+ `× 2n rectangle, the path from v2
to v4 lies in a 2n× 2n− 4pn+ ` rectangle, and the overlapping segments lie in the center
2n− 4pn+ `× 2n− 4pn+ ` square. The overlapping segments do not have to be contiguous,
but the distance between segments is at most `. We find, by a similar argument to before,
that all but ` edges on the overlap must have the same orientation, horiztonal or vertical. If
the overlap is mostly vertical, then the 2pn − ` × 2n − 2pn − ` rectangles adjacent to the
upper-left and lower-right corners of the region cannot contain any edges from the cross.
Similiarly, if the overlapping segments are mostly horizontal, then there cannot be any edges
from the cross in the 2n − 2pn − ` × 2pn − ` rectangles incident to the upper-right and
bottom-left corners of the region. J
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(a) (b)

Figure 5 (a) The map: blue edges are the patch boundary, black edges are the staircase, red
edges are the default path, and green edges are the final mapping. (b) Reconstruction steps: blue
edges are the patch boundary, green edges are the mapping, black edges are the staircase, and red
edges are the default path.

A.1 Map Steps
Given σ ∈ CC pick an upper staircase SU and a lower staircase SL. Remove C from σ. Along
the initial segment of ` edges and final segment of ` edges of SU , add each edge not in σ and
remove each edge in σ. Let S be the middle 2n− 2` edges of SU .
1. Add S. If this doubles an edge, label one copy on the staircase and the other above

(below) the staircase if it is on the boundary of an A-patch (B-patch).
2. Triple each interior edge of S. Label one copy on the staircase, the second above the

staircase, and the third below the staircase. (Figure 5(a) step (b).)
3. Shift every edge on or below the staircase one step east.
4. Shift every edge below the staircase one step south. (Figure 5(a) step (c).)
5. Remove every double edge. (After the two shifts there are no triple edges.) (Figure 5(a)

step (d).)
6. Traverse the default path twice from start to end (Figure 5(a) steps (e), (f)):

a. First traversal: if the current edge and the next edge are interior FW or FS edges,
then put a token on the site bounded by these two edges and flip its sign.

b. Second traversal: if the current edge is either an interior FS or FW edge that is part
of an FS-LW-IA or FW-LS-IB segment, or an SE edge that is FW or FS and is the
third leg of an LW-FS-FW or LS-FW-FS segment, then flip the site bounded on three
sides by the segment and place a token on it.

For SL, rotate the configuration 180°, repeat steps 1-6, and rotate back.

A.2 Reconstruction steps
Given σ′, the following steps reconstruct σ. For subpaths of the upper staircase that bound
a white region to the left,
1. Infer and traverse the edges of the default path from start to end, but do not add them

to the configuration. The first edge will be a west edge. Inductively, at a current edge,
the next edge will be one of two possible edges that we’ll call straight, for the edge that
continues in the current direction, and turning, for the other edge.
a. if there is a token by the next edge, flip the sign of the token site. (Figure 5(b) steps

(c), (d), (f).)
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b. if the turning edge exists in the configuration (possibly after flipping), it is the next
edge. (Figure 5(b) steps (b), (c), (d), (f).)

c. otherwise the straight edge is the next edge; add it to the configuration if it doesn’t
exist. (Figure 5(b) steps (b), (e).)

2. Shift every edge in the white region to the left one step north.
3. Shift every edge in the white region to the left one step west.
For subpaths of the upper staircase that bound a white region to the right, reflect σ across the
line y = x, apply steps 1-3, and reflect back. For the lower staircase, rotate the configuration
180 degrees, repeat the process, and rotate back.
4. Remove all double edges.
5. Add C to the configuration.
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