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—— Abstract
We investigate the number of variables in two special subclasses of lambda-terms that are restric-
ted by a bound of the number of abstractions between a variable and its binding lambda, and by
a bound of the nesting levels of abstractions, respectively. These restrictions are on the one hand
very natural from a practical point of view, and on the other hand they simplify the counting
problem compared to that of unrestricted lambda-terms in such a way that the common methods
of analytic combinatorics are applicable.

We will show that the total number of variables is asymptotically normally distributed for
both subclasses of lambda-terms with mean and variance asymptotically equal to Cyn and Can,
respectively, where the constants C; and Cs depend on the bound that has been imposed. So
far we just derived closed formulas for the constants in case of the class of lambda-terms with a
bounded number of abstractions between each variable and its binding lambda. However, for the
other class of lambda-terms that we consider, namely lambda-terms with a bounded number of
nesting levels of abstractions, we investigate the number of variables in the different abstraction
levels and thereby exhibit very interesting results concerning the distribution of the variables
within those lambda-terms.
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1 Introduction

The lambda calculus was invented by Church and Kleene in the 30ies as a tool for the
investigation of decision problems. Today it still plays an important role in computability
theory and for automatic proof systems. Furthermore, it represents the basis for some
programming languages, such as LISP. For a thorough introduction to the lambda calculus
we refer to [1]. This paper does not require any preliminary knowledge of lambda calculus
in order to follow the proofs. Instead we will study the basic objects of lambda calculus,
namely lambda-terms, by considering them as combinatorial objects, or more precisely as a
special class of directed acyclic graphs (DAGs).

? Bernhard Gittenbe.rger and Isabell.a Larcher;

5v icensed under Creative Commons License CC-BY
29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of

Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 25; pp. 25:1-25:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:gittenberger@dmg.tuwien.ac.at
mailto:isabella.larcher@tuwien.ac.at
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2

On the Number of Variables in Special Classes of Random Lambda-Terms

» Definition 1 (lambda-terms, [9, Definition 3]). Let V be a countable set of variables. The
set A of lambda-terms is defined by the following grammar:

1. every variable in V is a lambda-term,

2. if T and S are lambda-terms then T'S is a lambda-term, (application)

3. if T is a lambda-term and x is a variable then A\x.T is a lambda-term. (abstraction)

The name application arises, since lambda-terms of the form T'S can be regarded as
functions T'(S), where the function T is applied to S, which in turn can be a function
itself. An abstraction can be considered as a quantifier that binds the respective variable
in the sub-lambda-term within its scope. Both application and repeated abstraction are
not commutative, i.e., in general the lambda-terms T'S and ST, as well as Az.\y.M and
Ay.Ax. M, are different (with the exceptions of T = S and none of the variables z or y
occurring in M, respectively). Each A binds exactly one variable (which may occur several
times in the terms), and since we will just focus on a special subclass of closed lambda-terms,
each variable is bound by exactly one A.

We will consider lambda-terms modulo a-equivalence, which means that we identify
two lambda-terms if they only differ by the names of their bound variables. For example
Az.(Ay.(zy)) = M\y.(Az.(yz)). There is a combinatorial interpretation of lambda-terms that
considers them as DAGs and thereby naturally identifies two a-equivalent terms to be equal.
Combinatorially, lambda-terms can be seen as rooted unary-binary trees containing special
additional directed edges. Note that in general the resulting structures are not trees in
the sense of graph theory, but due to their close relation to trees (see Definition 2) some
authors call them lambda-trees or enriched trees. We will call them lambda-DAGs in order
to emphasise that these structures are in fact DAGs, if we consider the undirected edges of
the underlying tree to be directed away from its root.

» Definition 2 (lambda-DAG, [9, Definition 5]). With every lambda-term T, the corresponding
lambda-DAG G(T') can be constructed in the following way:
1. If z is a variable then G(z) is a single node labeled with z. Note that z is unbound.
2. G(PQ) is a lambda-DAG with a binary node as root, having the two lambda-DAGs G(P)
(to the left) and G(Q) (to the right) as subgraphs.
3. The DAG G(Az.P) is obtained from G(P) in four steps:
a. Add a unary node as new root.
b. Connect the new root by an undirected edge with the root of G(P).
c. Connect all leaves of G(P) labelled with z by directed edges with the new root, where
the root is start vertex of these edges.
d. Remove all labels z from G(P). Note that now x is bound.

Obviously, applications correspond to binary nodes and abstractions correspond to unary
nodes of the underlying Motzkin-tree that is obtained by removing all directed edges. Of
course in the lambda-DAG some of the vertices that were former unary nodes might have
gained out-going edges, so they are no unary nodes in the lambda-DAG anymore. However,
when we speak of unary nodes in the following, we mean the unary nodes of the underlying
unary-binary tree, that forms the skeleton of the lambda-DAG.

Since the skeleton of a lambda-DAG is a tree, we sometimes call the variables leaves (i.e.,
the nodes with out-degree zero), and the path connecting the root with a leaf (consisting of
undirected edges) is called a branch. There are different approaches as to how one can define
the size of a lambda-term ([4], [11]), but within this paper the size will be defined as the
total number of nodes in the corresponding lambda-DAG.
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Figure 1 The lambda-DAGs representing the terms Az.((Ay.(zy))z) and
(- (w(Ay-9)) . (g-y).

Recently rising interest in the number and structural properties of lambda-terms can be
observed, due to the direct relationship between these random structures acting as computer
programs and mathematical proofs ([7]). At first sight lambda-terms appear to be very simple
structures, in the sense that their construction can easily be described, but so far no one has
yet accomplished to derive their asymptotic number. However, the asymptotic equivalent of
the logarithm of this number can be determined up to the second-order term (see [5]). The
difficulty of counting unrestricted lambda-terms arises due to the fact that their number
increases superexponentially with increasing size. Thus, if we translate the counting problem
into generating functions, then the resulting generating function has a radius of convergence

equal to zero, which makes the common methods of analytic combinatorics inapplicable.

This fast growth of the number of lambda-terms can be explained by the numerous possible
bindings of leaves by lambdas, i.e., by unary nodes. Consequently, lately some simpler
subclasses of lambda-terms, which reduce these multiple binding possibilities, have been
studied, e.g. lambda-terms with prescribed number of unary nodes ([4]), or lambda-terms
in which every lambda binds a prescribed ([5],[2],[9]) or a bounded ([6],[2],[9]) number of
leaves. In this paper we will investigate structural properties of lambda-terms with a bounded
number of abstractions between every variable and its binding lambda and lambda-terms
with a bounded number of nesting levels of abstractions, which both have been introduced
in [3] and [4]. From a practical point of view these restrictions appear to be very natural,
since the number of abstractions in lambda-terms which are used for computer programming
is in general assumed to be very low compared to their size.

Particular interest lies in the number and distribution of the variables within these special
subclasses of lambda-terms. We will show within this paper that the total number of leaves in
lambda-DAGs with bounded number of abstractions between the leaves and their respective
binding lambdas as well as in lambda-terms with bounded number of nested abstractions
is asymptotically normally distributed with mean and variance asymptotically Cn and Chn,
respectively, where the constants C' and C' depend on the bound that has been imposed. For
the latter class of lambda-terms we will also investigate the number of leaves on the different
abstraction levels (so called unary levels, ¢f. Definition 11), which shows a very interesting
behaviour. We will see that on the lower unary levels, i.e., near the root of the lambda-DAG,
there are very few leaves, while the majority of the leaves is located at the upper unary levels
and these two domains will turn out to be strictly separated.

For lambda-terms that are locally restricted by a bounded number of abstractions located
between the leaves and their binding lambdas the number of unary levels is not bounded and
will tend to infinity for increasing size. The expected number of unary levels is unknown,
which implies that the correct scaling cannot be determined. Thus, we have not been
able to establish results concerning the leaves in the different unary levels for this class of
lambda-terms so far. Nevertheless, further studies on this subject seem to be very interesting
already for the simpler combinatorial class of Motzkin-trees.
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1 3 3 73

Figure 2 The lambda-DAG of the term Az.((Ay.zy)(Az.(z(At.tx))z)), where left the unary length
of all bindings, and right the unary height of the leaves is depicted at the respective leaves.

2 Main results

In this section we will introduce the basic definitions and summarize the main results that
will be presented in this paper.

First, we will investigate the total number of leaves in lambda-DAGs with bounded unary
length of their bindings, i.e., with a bounded number of abstractions between each leaf and
its binding lambda.

» Definition 3 (unary length of a binding, [4, Definition 1]). Consider a lambda-term 7" and
its associated lambda-DAG G(T). The unary length of the binding of a leaf e by some
abstraction v in T (directed edge from v to e in G(T)) is defined as the number of unary
nodes on the path connecting v and e in the underlying Motzkin tree (c¢f. Figure 2, left).

Our first main result is the asymptotic distribution of the number of variables in random
closed lambda-terms with bounded unary length of their bindings.

» Theorem 4. Let X, be the total number of leaves in lambda-DAGs of size n where the
unary length of each binding is at most k. Then X,, is asymptotically normally distributed
with

k k2

~ ——n, and VX, ~—m———n, as n — o0.
Vk + 2k 2Vk(VEk + 2k)?

» Remark 5. Note that the number of leaves equals the number of binary nodes plus one.

EX,

For k = 1 this implies that expections of the number of unary, the number of binary nodes,
and the number of leaves are all asymptotically equal. Since the subtree attached to a unary
node cannot contain further unary nodes, asymptotically almost all such trees are only a
single leaf. So, almost all unary nodes are on the fringe of the tree.

On the other hand, as k — oo, we have EX,, — %, and VX,, — 0 for £ — oco. So,
we can expect that a general lambda-term has o(n) unary nodes and looks therefore like a
slightly perturbed binary tree. So far, nothing isknown on the distribution of the locations

of the unary nodes.

Next we turn to lambda-terms of bounded unary height.

» Definition 6 (unary height, [4, Definition 1]). Consider a lambda-term 7" and its associated
lambda-DAG G(T'). The unary height h, (v) of a vertex v of G(T) is defined as the number
of unary nodes on the path from the root to v in the underlying Motzkin tree.

The unary height of the lambda-term 7' is defined as the maximum number of unary
nodes occurring in the separate branches of the underlying Motzkin tree (cf. Figure 2, right).
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Table 1 The coefficients occurring in the variance and the mean k = 1,...,12 and some larger
values close to 135, the next value of some special sequence (¢f. Definition 10), which is indicated
by the lines in bold. The second column tells the number of (nested) radicands which must be
considered for the determination of the dominant singularity.

bound k | j+1 | B”(1)+ B'(1) — B'(1)? B'(1)

1 2 0 0

2 2 0.0385234386 0.4381229337

3 2 0.0210625856 0.4414407371
4 2 0.0167136805 0.4463973717

5 2 0.0148700270 0.4504258849

6 2 0.0138224393 0.4536185043

7 2 0.0131157948 0.4561987871
8 3 0.048 0.4

9 3 0.0582322465 0.4566104777
10 3 0.0470481360 0.4560418340
11 3 0.0396601986 0.4560810348
12 3 0.0345090124 0.4564489368
133 3 0.0077469541 0.4821900098
134 3 0.0077234960 0.4822482745
135 4 0.0108490182 0.4782608696

» Theorem 7. Let pi(u) be the root of smallest modulus of the function z — Rji1 1(2,u),
where

Rjv1x(zu) = 1—4(k—j)z2u—2,z+2z\/1 — 4k —j+1)22u — 22 + \/ +22v/1 — 4k22u,

and let us define B(u) = pg(u)/pi(1).

If B"(1) + B'(1) — B'(1)? # 0, then the total number of leaves in lambda-DAGs with
bounded unary height at most k is asymptotically normally distributed with asymptotic mean
un and asymptotic variance o*n, where yu = B'(1) and 0% = B" (1) + B'(1) — B'(1)2.

» Remark 8. The requirement B”(1) + B’(1) — B'(1)? # 0 obviously results from the fact
that otherwise the variance would be equal to zero. However, this inequality seems to be very
difficult to verify, since B(u) = % and we do not know anything about the function py(u),
except for some crude bounds and its analyticity. In Table 1 we give inter alia the coefficients
B”(1) + B'(1) — B’(1)? and B’(1) for the variances and the mean values, respectively, for

the first few values for k.

» Remark 9. No clear conclusion can be inferred from the numerical values given in Table 1.
The mean seems to be slightly increasing, except for the special values belonging to the
sequence given in Definition 10. But & = 10 is another exception in the interval £ =9,...,134
(not listed completely). The variance seems decreasing in any interval between two special
values. If k belongs to the special sequence given in Definition 10 then we observe irregularities.

Lambda-terms of bounded unary height have been studied in [4], where a very unusual
behaviour has been discovered. The asymptotic behaviour of the number of lambda-terms
belonging to this subclass differs depending on whether the bound for the unary height is an
element of a certain sequence (N;);>0, which will be given in Definition 10, or not (in Table 1
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unary level 0

unary level 1
unary level 2

unary level 3

Figure 3 Underlying Motzkin tree of e.g. the lambda term Az.((Ay.yzx)(Az.(z(At.tx))z)), where
the different unary levels are encircled.

the rows belonging to elements of this sequence are therefore in bold). Though the behaviour
of the counting sequences differs for these two cases, the result in Theorem 7 concerning
lambda-terms of bounded unary height is the same after all. However, the method of proof
is different in the two cases. For our subsequent results the distinction of cases will have an
impact on the asymptotic behaviour of the investigated structures. Thus, we will have to
distinguish between these two cases.

» Definition 10 (auxiliary sequences (u;);>0 and (IV;);>o, [4, Definition 6]). Let (u;);>o and
(Ni)i>o be the integer sequence defined by ug = 0, u;41 = u? +i+ 1 for i > 0, and
N; = u? —u; + 1, for i > 0.

Finally, in the last section we investigate the number of leaves in lambda-DAGs with
bounded unary height that are located in the different unary levels throughout the tree.

» Definition 11 (unary level). A node is said to be in the i-th unary level, if there are exactly
i unary nodes on the branch from the root to that node (the node itself is not counted).
Thus, the i-th unary level contains all nodes with unary height i (¢f. Figure 3).

The following theorem includes the results that we will present in Section 5, where we
show that the number of leaves near the root of the lambda-DAG, i.e., in the lower unary
levels, is very low, while there are many leaves in the upper unary levels. Furthermore these
two domains are strictly separated and the “separating level”, i.e., the first level with many
leaves, depends on the bound of the unary height. We will show a very interesting behaviour,
namely that, with growing bound of the unary height, the number of leaves within the unary
level that is directly below the critical separating level increases, until the bound reaches a
certain number, which makes this adjacent leaf-filled level become the new separating level.

» Theorem 12. Let j ;(u) be the root of smallest modulus of the function z ~— Ry x(2,u),
where

Rix(z,u) = 1—4(k—j)22—22+\/... + 22\/1 —4(k = 1)z%u— 22 + 22\/ + 221 — 4k22,

i.e., the u is inserted only in the (I + 1)-th radicand, and let us define B;(u) = f;;i((lfg

1. If k € (N;,Nj41), then the average number of leaves in the first k — j unary levels is
0O(1), as n — oo, while it is O(n) for the last j + 1 unary levels.
In particular, if B)'(1) 4+ BJ(1) — Bj(1)? # 0, the number of leaves in each of the last j + 1

unary levels (i.e., 1 =0,...,7) is asymptotically normally distributed.
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l=k
O(1) leaves

=y unary level k — j
0(n) leaves,
number of leaves
normally distributed
=0 unary level k

Figure 4 Summary of the mean values of the number of leaves in the different unary levels for
the case k € (Nj, Nj+1) in lambda-terms of unary height at most k.

L=k ) } O(1) leaves
!
3\

0(y/n) leaves

l=j unary level k — j

l=5-1 unary level k —j + 1

f(n) leaves,

> number of leaves

normally distributed

=0 unary level k
/

Figure 5 Summary of the mean values of the number of leaves in the different unary levels for
the case k = N; in lambda-terms with unary height at most k.

2. If k = N;, then the average number of leaves in the first k — j unary levels is O(1), as
n — oo, while the average number of leaves in the j-th unary level is 6(y/n). The last j
unary levels have asymptotically 6(n) leaves.

In particular, if By (1) + Bj(1) — B}(1)? # 0, the number of leaves in each of the last j
unary levels (i.e., 1 =0,...,j — 1) is asymptotically normally distributed.

3 Total number of leaves in lambda-terms with bounded unary
length of bindings

In this section we investigate the asymptotic number of all leaves in lambda-terms with
bounded unary length of their bindings (¢f. Definition 3). In order to get some quantitative
results on this restricted class of lambda-terms we will use the well-known symbolic method
(see [8]) and therefore we introduce certain combinatorial classes as it has been done in [4]: Z
denotes the class of atoms, A the class of application nodes (i.e., binary nodes), U the class
of abstraction nodes (4.e., unary nodes), and P(:F) the class of unary-binary trees such that
every leaf e can be labelled in min{h, (e) + i, k} ways. The classes P(“*) can be specified by

POR) — 2 4 (A x PER) 5 PED 4 (1 x Phb),

25:7
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and
PR = 2 4 (A x PO 5 PR 4 (¢ x POHLRY for i < E.

Translating into generating functions with z marking the size and u marking the number
of leaves, and solving for P(#F)(z u) yields

L 1= 1jpyz — \/Ri—iva(z,u)
P(l’k:) =
(2. al ,
with Ry (2, u) = (1 — 2)2 — 4kuz®, Ry p(z,u) = 1 — 4(k — 1)2%u — 22 + 222 + 221/ Ry 1 (2, u),
and Ry j(z,u) =1 —4(k — i+ 1)2%u — 22 + 224/ Ri_1 1 (z,u),for 3 <i <k +1.

Since the class PO ig isomorphic to the class G of lambda-terms where all bindings

have unary lengths not larger than k, we get for the corresponding bivariate generating
function

. 1-— \/R Z,U
Grlz,u) = POM (z,u) = bk )

2z

From [4] we know that the dominant singularity of G (z,1) comes from the innermost

radical and is of type % Due to continuity arguments this implies that in a sufficiently

small neighbourhood of u = 1 the dominant singularity py(u) of G (z,u) comes also from

%. By calculating the smallest positive root of

Ry (2, u) we get pr(u) = m Now we will determine the expansions of the radicands in

the innermost radical and is also of type

a neighbourhood of the dominant singularity g (u).

» Proposition 13. Let py(u) be the root of the innermost radicand Ry 1 (z,u), i.e., pr(u) =

1
W Then

By i(pr() (1 = ),) = (2p(u) = 203 (u) + 8kupi (u) ) + O(e2),

133 w) (k) + Vo)
[l va
for2<j<k+1, whereci(u) =1 and c;(u) =4(j —Du—14+24/cj_1(u) for2 <j <k+1.

Ry (pr(u)(1 = €),u) = ¢;pf (u) + Ve+ O(e?),

» Theorem 14. Let for any fized k, Gi(z,u) denote the bivariate generating function of
lambda-terms where all bindings have unary lengths not larger than k. Then

[2"]Gr(z,u) = %(1 + 2\/@)”717% (1 +0 (i)) ,  form — o0,

where ¢1(u) =1 and ¢j(u) =4(j — )u—14+2y/cj_1(u), for2<j <k+1.
From [4, Theorem 1] we know the following result.
k+ 2k , 1
#0etet) = | vyt (140 (1)) e )
a1, 25 (1) n

with ¢; defined as in Proposition 13.
Now we want to apply the well-known Quasi-Power Theorem.
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» Theorem 15 (Quasi-Power Theorem, [10]). Let X,, be a sequence of random variables with
the property that

EuXr = A(u)B(u)* (1 +0 (;))

holds uniformly in a complex neighbourhood of u =1, \,, — o0 and ¢,, — o0, and A(u)
and B(u) are analytic functions in a neighbourhood of u = 1 with A(1) = B(1) = 1. Set
w=B'(1) and 0> = B"(1) + B'(1) — B'(1)%. If 0® # 0, then

X, —EX,
=" — N(0,1),
T (0,1)

with EX,, = phn + A'(1) + O(1/60)) and VX, = 02X, + A”(1) + A'(1) — A'(1)2 + O(1/)).

Using Theorem 14 and (1), we get

v, _ Gk (1+2vEu U Ve + 2ku B ei(1) 1
E [zn]Gk(z,1)<1+2\/E> 2k +Vk gcj(U) <1+O<N>>’

where ¢i(u) =1 and ¢j(u) = 4ju — 4u — 1+ 2\/c;_1(u).

Thus, all assumptions for the Quasi-Power Theorem are fulfilled, and we get that the num-
ber of leaves in lambda-DAGs with bounded unary length of their bindings is asymptotically
normally distributed with

2
~ Ln, and VX, ~ i
VEk + 2k 2

EX, _—
VEGWE + 2Kk)2
and therefore Theorem 4 is shown.

n, asn — oo,

4  Total number of leaves in lambda-terms with bounded unary height

This section is devoted to the enumeration of leaves in lambda-terms of bounded unary
height (¢f. Definition 6). As in [4] let us denote by P*) the class of unary-binary trees such
that the unary height h,(e) of each leaf e is at most k — i and every leaf can be colored with
one out of i + h,(e) colors. These classes can be specified by

P(k,k) =kZ+ (A % P(k,k‘) % z])(k,k))7
and
PR — 2 4 (A x PR 5 PR (1 x POFLRY  for 4 < k.

Their bivariate generating functions can be derived analogously as the univariate ones in
[4] and read as

PR (2, ) = 1—/ kaiJrl,k(Zﬁu),

2z

where Ry ;(z,u) =1 — 4kz?u, and R (z,u) =1 — 4(k — i + 1)2%u — 22 + 22/ Ri_1 (2, u),
for2<i<k+1.

25:9
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For the bivariate generating function of lambda-terms with bounded unary height this
implies

Rk-}-l,k(zau)

1—
Hk(zau) = P(07k)(zvu) = 2
z

(2)

Thus, the generating function consists again of k + 1 nested radicals, but as stated in
Section 2, the counting sequence of lambda-terms with bounded unary height has a very
unusual behaviour, namely the location and the type of the dominant singularity changes
with the bound k. More precisely, the following result has been shown in [4].

» Theorem 16 ([4, Theorem 3]). Let (u;)i>0 and (N;)i>o be the integer sequences defined in
Definition 10.
(i) If there exists j > 0 such that N; < k < Nj41, then there exists a constant hy, such that

(2" Hy(2) ~ hen™%/2pr(1)7", as n — oco.
(ii) If there exists j such that k = Nj, then the following asymptotic relation holds:
(2" Hy(2) ~ hen= >4 p (1) ™™ = hyn™>/*(2u;)™ as n — oco.

Thus, in order to investigate structural properties of this class of lambda-terms we perform
a distinction of cases whether the bound k is an element of the sequence (N;);>¢ or not.

4.1 The case N; < k < N,;1

From [4] we know that in this case the dominant singularity of the generating function
Hy(z,1) comes from the (j + 1)-th radicand Rj1 and is of type 3. As in the previous
section we can again use continuity arguments to guarantee that sufficiently close to u =1
the dominant singularity px(u) of Hy(z,u) comes from the (j + 1)-th radicand R;y1 1 (2, u)
and is of type % Now we will determine the expansions of the radicands in a neighbourhood
of the dominant singularity.

» Proposition 17. Let pi(u) be the dominant singularity of Hy(z,u). Then
(i) Vi <j+1 (inner radicands) : R; 1(pr(u)(1 — €),u) = R; i (pr(u), ) O(e)
(i) Rjsrn(pr(u)(1 =€) u) = prp(u)yji1(u)e + O(€%), with vji1(u) = Rg+1 k(Pk( ), u)
(iii) Vi > j+ 1 (outer radicands) : R; x(pr.(u)(1 — €),u) = a;(u) + bi(u )\f—l— O(e3), with
ait1(u) = 1—4(k—1i) p3 (u)u—2pk (u)+2px (u)\/a; (u), and b1 (u) = %\/%(;) forj+2 <
i <k, with az(u) = 1~ 4(k— )R (w)u—2pp(w) and by (u) = 2px(u)y/PR(E) T 11(8).
We know that for sufficiently large i the sequence wu; is given by u; = LXTJ, with
X ~ 1.36660956 . . . (see [4, Lemma 18]). Therefore we have N; ~ u? ~ x*'? and N; < k <
Njq1 = O(NjQ), which gives j < loglog k. This implies that j +1 < k + 1, i.e., that the
dominant singularity p;11 x(u) cannot come from the outermost radical.
» Remark 18. Obviously the same is true for the case k = N;. Thus, the dominant singularity
never comes from the outermost radical.

Using Proposition 17 and (2) we can prove

n

_)(14—0(71)), as n — 00,

(2" Hi (2, u) = hie(w) pjn () ™"

N wjw

. _ b1,k (u)
with hy(u) = PRI e
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Taking a look at the recursive definitions of a;(u) and b;(u) (see Proposition 17), it can
easily be seen that these functions are not equal to zero in a neighbourhood of u = 1, which
implies that hy(u) # 0 and thus we can apply the Quasi-Power Theorem. What is still left to
show is, that 02 = B”(1) + B’(1) — B'(1)? # 0 with B(u) = Z’“(l) Unfortunately, as stated

k(u)”
in Section 2 this task appears to be quite difficult, since there is only very little known about

the function p(u). However, it seems very likely that this condition will be fulfilled for
arbitrary k € (N;, Nj+1), so that the Quasi-Power Theorem can be applied and we get that
the number of leaves in lambda-terms of bounded unary height is asymptotically normally
distributed with asymptotic mean and variance un and o?n, respectively, where u = B’(1)

and 0 = B"(1) + B'(1) — B'(1)2, with B(u) = 23

4.2 The case k = N;

We know from [4] that in the case k = N; both radicands R; x(z,1) and R;11 x(2,1) vanish
simultaneously and the dominant singularity is therefore of type %.

Now we will investigate how the radicands behave in a neighbourhood of the dominant
singularity pg(u) for u # 1.

» Lemma 19. Let z = pi(u) be the dominant singularity of the bivariate generating function
Hy(z,u). Then

(i) Rk (pk(u) (1+L),1+ %) = %(CM “t4cja- s) +0 (mz%sﬁ,) with c;1 = 4pr (1) —
2p1(1) = 8(k — j + 1)pe(1)?, and c;2 = 4p(1)p,, (1) — 4(k — j + 1)pr(1)* = 8(k — j +
Dpr(1)p}, (1) = 2p3,(1).

(i) Rjy1k (Pk(u) (1 + %) 1+ %) = %(Cjﬂ,l T+ Cjr12- 3) + 2Pk(1)\/m+ 0 (n*3/2) )
with ¢ji11 = =8(k — j)pr(1)® = 2p1(1), and ¢cjr12 = —2p;(1) — 4(k — j)pr(1)? —
8o1(1)p (1) (k — j).

(i) Rjip.n (Pk(u) (1+5),1+ %) = Cjap + Dy 3/ Ris + O (3pj1p(t,5)), for 2 < p <
k—j+1, where pj1,(t,s) is a polynomial that is linear in t and s, and C'j+p and ﬁjﬂ;
are constants.

» Proposition 20. Let Hi(z,u) be the bivariate generating function of the class of lambda-
terms with unary height at most k. Then the n-th coefficient of Hy(z,u) is given by

[2"Hy(z,u) = Bk(u)pk(u)_”n_% (1 +0 (n_%>> ,  as — 00,

with a constant hy(u) # 0.

Thus, we apply the Quasi-Power Theorem and like in the previous case (where k €
(Nj,Njt1)) what is left to show is that the variance 02 = B”(1) + B/(1) — B/(1)? with
B(u)=2 "EB is positive. Assuming this requirement is valid we get that the total number of

Pk
leaves in a lambda-term of bounded unary-height is asymptotically normally distributed for

arbitrary bounds k.

5 Number of leaves in the unary levels in lambda-terms with
bounded unary height

The aim of this section is the investigation of the distribution of the number of leaves in the
different unary levels in lambda-terms with bounded unary height (¢f. Definition 11). In
order to do so, let us consider that each unary level in such a lambda-term corresponds to
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one or more binary trees that contain different types of leaves, where the number of types
depends on the respective level (¢f. Figure 3). Let C be the class of binary trees. Using
the notation from the previous sections we can specify this class by C = Z + (A x C x C).
Translating into generating functions and solving for C(z,u), with z marking the size (i.e.,
the total number of nodes) and u marking the number of leaves, yields C(z,u) = 177”2;4“2.

Let —;Hi(z,u) be the generating function of lambda-terms with unary height at most
k, where z marks the size and u marks the number of leaves on the (k — [)-th unary level

(0 <1<k). Then
it Hi(z,u) = C(2,C(z,14+...+C(z, (k=) -u+...+C(z,(k—1) + C(z,k)))...)...),

which can be written as

1 —\/Rpy1(2,u)
r—tHp(z,u) =

2z ’

with Ry (z,u) = 1—422k, Ri(z,u) = 1—422(k—i+1) — 224221/ R;_1(z,u), for 2 < i < k+1,
i#1+1,and Ry i(z,u) =1 — 42%u(k — 1) — 22 + 224/ Ry_1 (2, u).

» Remark 21. Note that the radicands R; that are introduced above are very similar to the
radicands R; ; that were used in the previous section. The only difference is that now we
have a u only in the (I 4+ 1)-th radicand, while in the previous case u was occurring in all
radicands. Thus, we will have further distinction of cases now depending on the relative
position (w.r.t. ) of the radicand(s) where the dominant sigularity comes from.

We obtain the following result for the asymptotic mean values of the number of leaves in
the different unary levels.

» Proposition 22. Let X, denote the number of leaves in the (k — l)-th unary level in a
random lambda-term of unary height at most k with size n.
1. If k € (N;,Njt1), then we get for the asymptotic mean

in the case l > j:

and in the case l < j:

o, = EUE = = (1v0 (1))

with constants Cy; and C’W depending on |l and k.
2. If k = Nj, then the asymptotic mean reads as
in the case l > j:

Ex, = &1 (én}illﬁ((i,?)) et _ (1 o ( % )) |

in the case | = j:

2" (L k—iHi(2, 1)) |u=1

B = T L () :ﬁ’“'ﬁ(lwc))’
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and in the case l < j:

o, - EUE Ol b (1s0 (1)),

with constants Dy, , f)k’l and Dk,l depending on l and k.

Now that we derived the mean values for the number of leaves in the different unary
levels, we are interested in their distribution. Therefore we perform the same distinction of
cases as we did for the mean values. However, so far we only know the distribution of the
leaves in the all those levels, which contain many leaves.

» Proposition 23. Let z = py (u) denote the dominant singularity of _i1Hy(z,u).
1. Ifk € (N;,Nj41), then we get for 1 < j

[2"] k—tHi(z,u) _ hyo(u) <ﬁk,l(1))n <1+(9 (1>)
(2] k—1Hi(z,1) by \ pr(u) n))’
with constants hy(u) and hy that are not equal to zero.
2. If k = Nj, then it holds for 1 < j

Shen b () (1o ().

with constants hy(u) and hy that are not equal to zero.

Finally, by using the Quasi-Power Theorem the proof of Theorem 12 is finished. Therefore
we have to assume again that the variance is not equal to zero.

As stated before the generating function j_;Hy(z,u) consists of k + 1 nested radicals,
where a u is inserted in the (I + 1)-th radicand counted from the innermost. In the case
k € (Nj,Nj;1) we know that the dominant singularity py(u) comes from the (j + 1)-th
radicand. Thus, if [ > j then pi(u) is independent of u and we will not get a quasi-power.
The same holds for the case k = N; and | < j, since we showed that in this case the dominant
singularity comes from the j-th radicand. The (j + 1)-th unary level for k = N; is a special
case, because we do not know whether the dominant singularity comes from the j-th or the
(j + 1)-th radicand. However, it seems very unlikely that the number of leaves in this level
will be asymptotically normally distributed, but further studies on this subject might be very
interesting.
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