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—— Abstract

Let f be a uniformly random element of the set of all mappings from [n] = {1,...,n} to itself. Let
T(f) and B(f) denote, respectively, the least common multiple and the product of the lengths of
the cycles of f. Harris proved in 1973 that log T converges in distribution to a standard normal
distribution and, in 2011, Schmutz obtained an asymptotic estimate on the logarithm of the
expectation of T and B over all mappings on n nodes. We obtain analogous results for uniform
random mappings on n = kr nodes with preimage sizes restricted to a set of the form {0, k},
where k = k(r) > 2. This is motivated by the use of these classes of mappings as heuristic models
for the statistics of polynomials of the form z* + a over the integers modulo p, where k divides
p — 1. We exhibit and discuss our numerical results on this heuristic.
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1 Introduction

Let f : [n] — [n] be a mapping from a finite set to itself. The iterations of mappings has
attracted interest in recent years due to applications in areas such as physics, biology, coding
theory and cryptography. Every polynomial f over a finite field I, is a particular case
of a mapping, and there are a number of applications where one considers the iterations
of polynomials over finite fields. We highlight Pollard’s classical factorization method for
integers, which is based on iterations of quadratic polynomials; it allowed Brent and Pollard
to obtain the previously unknown factorization of the eighth Fermat number. The adaptation
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of Pollard’s method to the discrete logarithm problem also relies on iterations of mappings; it
is considered by some authors the best attack on the elliptic curve version of this problem [20].

Let f = f© be a mapping on n elements and consider the sequence of functional
compositions f(™) = fo f(™=1) m > 1. The least integer T = T(f) such that f(m+7) = f(m)
for all m > n equals the order of the permutation obtained by restricting the mapping f to
its cyclic vertices. Erdds and Turdn proved in [8] that the logarithm of the corresponding
random variable defined over the symmetric group S,, converges in distribution to a standard
normal distribution, when properly centered and normalized. By adapting Erdés and Turan’s
“statistical group theory approach”[8], Harris was able to prove an analogous result for the
space of mappings with uniform distribution [12]. The logarithm of the expected value of T
was estimated in [18].

The parameter T can be proven to be the least common multiple of the cycle lengths
of the components of the functional graph of f. If B(f) is the product of all cycle lengths
of f including multiplicities, then it is clear that B(f) represents an upper bound for T(f);
moreover, one might consider B as an approximation for T. For instance, Proposition
1.2 of [18] implies that, for any § > 0, the sequence of nonnegative random variables
X, = (logB—1logT)/ log! ™ n, n > 1, converges in probability to zero. However, it is proved
in [18] that the expectation of B deviates significantly from the expectation of T.

In this paper we derive similar results for the classes of {0, k}-mappings, k > 2, defined
as mappings f : [n] — [n] such that |f~(y)| € {0,k} for all y € [n]. In [1, 14] the authors
consider the case where k is a fixed integer. Although this case is arguably of the most
interest due to connections with polynomials over finite fields, we derive our results in a more
general context, as explained at the end of this section. This might be desirable, for example,
when modeling polynomials whose degree depends on the size of the prime p; see [6].

By now there is a rather large literature on the asymptotic distribution of random
variables defined on mappings, both with and without indegree restrictions. One motivation
is methodological. Random mappings are important examples that serve as benchmarks for
both probabilistic and analytic methods. On the analytic side, combinatorial methods can
be used to identify generating functions whose coefficients are the quantities of interest. In
many cases it is possible to estimate the coefficients asymptotically using complex analysis.
A standard reference is [10], which includes several applications to random mappings; see
also [7, 9, 13]. In another direction, random mappings correspond to a large class of random
graphs Gy for which the joint distribution of components sizes can be realized as independent
random variables, conditioned on the number of vertices that the graph has. Stein’s method
and couplings have been used to prove strong and general results [2, 3]. One application of this
theory is a generalization of the theorem of Harris [12] that was mentioned above. However
the proofs in our paper are elementary, and do not directly use any of these probabilistic
techniques (except indirectly by citing a theorem from [4]).

The research on random mappings with such restrictions is also motivated by the Brent-
Pollard heuristic, where one uses these objects as a model for the statistics of polynomials.
It was introduced by Pollard in the analysis of his factorization method: he conjectured
that quadratic polynomials modulo large primes behave like random mappings with respect
to their average rho length [15]. However, the indegree distribution of a class of mappings
impacts the asymptotic distribution of a number of parameters [1, 11]. Since it is known
that the functional graph of a quadratic polynomial over F,, p odd, has just one node with
indegree 1 and the remaining nodes are split in half between indegrees 0 or 2, {0, 2}-mappings
could provide a better heuristic model for quadratic polynomials; see [14] for a discussion of
alternative models for the Brent-Pollard heuristic. Furthermore, the class of {0, k}-mappings
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provides a good heuristic model for polynomials of the form x* + a € F,[z] with p = 1
(mod k). This heuristic model was used in [5] to predict that Pollard’s method is sped up in
some cases if these polynomials are used, eventually leading to the factorization of the eighth
Fermat number.

It is discussed in [14] that unrestricted mappings and {0, 2}-mappings represent equally
accurate models for the expected rho length of quadratic polynomials. This is the case
because both classes of mappings present the same asymptotic average coalescence, defined
as the variance of its distribution of indegrees under uniform distribution; see [1, 14]. For
example, the coalescence A of a {0, k}-mapping f on n = kr nodes satisfies

|FD (y) 2 k?
P P L L R
veln "

It is curious that the knowledge of the indegree distribution of these polynomials does
not represent an improvement on the heuristic. Thus asymptotic estimates for a different
parameter, such as B or T, represents an interesting problem: it could provide a significant
deviation between polynomials over finite fields and their heuristic models, or reinforce the
similarities between these classes. We exhibit our numerical results on the behavior of T and
B over different classes of polynomials over finite fields and investigate different classes of

mappings as heuristic models for the behavior of T and B over these classes of polynomials.

Preliminaries and notation. For f a mapping, let Z = Z(f) be the set of cyclic nodes of
f and let Z = |Z|. To avoid confusion, we index probabilities and expected values by the set
of allowed indegrees of the class of mappings in question: N in the unrestricted case [18] or
{0, k} in our case. For example, the expected value of T over all mappings on n nodes is
denoted by EN(T), whereas E;{Lo’k}(T) denotes the expectation of T over {0, k}-mappings
on n nodes. In this work we consider {0, k}-mappings on n = kr elements, where r denotes

the size of their range and k = k(r) is a sequence of integers satisfying k& > 2 for all r > 1.

Although n(r) and k(r) are functions of r, we omit this dependence on our notation. We
emphasize that all asymptotic calculations and results in this work are taken as r approaches
infinity, unless said otherwise. We assume throughout the paper that, for some 0 < o < 1,
k = o(n'~®) as r approaches infinity, or equivalently, logn = O(log(%)) where A = k — 1.

» Remark. Due to the lack of space all proofs are given in https://arxiv.org/abs/1701.

09148

2 Expected Value of T and B

In this section we obtain asymptotic estimates for ELM (T) and ELH (B) following a similar
strategy as in [18] with some differences that we describe next. It is known that the restriction

of a random uniform mapping to its cyclic nodes represents a random uniform permutation.

Therefore, if we let M, be the expected order of a uniform random permutation of \S,,, then
the expected value of T over all {0, k}-mappings can be written as

ECHH(T) = 7 BN (Z = m) M, (1)
m=1

The author in [18] combines an exact result for PN'(Z = m) with Lemma 2 below to estimate
the expected value of T asymptotically in the case of unrestricted mappings. In our case we
use Lemma 1 for the distribution of Z over {0, k}-mappings.
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» Lemma 1 (Equation (3.17) of [17]). Letn=kr, A=k—1>1and1 <m <r. 4 random
uniform {0, k}-mapping on n nodes has exactly m cyclic nodes with probability

o em = () 0) M

» Lemma 2 ([19]). Let M,, be the expected order of a random permutation of Sp,. Let
Bo = V81, where

o e
1= log 1 dt. 2
/0 og og<1_et> (2)
Then, as m approaches infinity,
vmlogl
log M, = Bo, | —— 4 O [ VR08708T )
logm logm

It is clear from Equation (1) that, if m, is the integer that maximizes P,EO”“}(Z =m)M,,
for 1 < m < n and my is an integer in (1,n), then

PLOFHZ = mo) M, < ELFHT) < nPLOFHZ = m,)M,,.. (3)

Let n > 1 and € € (—1,1). Let 8. = By + . We define the following real function that
provides a tight upper or lower bound for the summand in Equation (1), according to the
value of e:

One(®) = Ak E(;)+ 1) F(g(;)m) xp (55 \/@) : (4)

» Proposition 3. Letn = kr, \=k—1> 1 and e € (—1,1). If, for some 0 < a < 1,
k = o(n'=®) as r approaches infinity, then there exists a constant ¢ > 0 such that, for
sufficiently large n, the function © — ¢y () assumes a unique mazimum . for x € (¢, ).

Moreover, if k. = {/3°82/8, then

()

log?/3(2)

10g $.c () = ke (1+0(1)).

The calculation of the maximum value that ¢, .(z) assumes for z € (1,n) is a main
ingredient in the proof of the asymptotic estimate on ]Eilo’k}(T). It allows us to obtain an
upper bound for the rightmost term in Equation (3). The maximum =z, also allows us to
select an integer mg that provides a lower bound in Equation (3) that is good enough for
our purposes.

» Theorem 4. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0<a<l, k=o(n'"%) asr approaches infinity. Let E%O’k}(T) be the expected value of T
over the class of mappings on n nodes with indegrees restricted to the set {0,k}. Then,

(3

log?/3 (%)

log Ef*™(T) = ko (140(1)),

as v approaches infinity, where A=k — 1, kg = %(3])2/3 and I is given in Equation (2). In
particular, the estimate above holds if k > 2 is a fixed integer.
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We obtain asymptotic estimates for the expectation of B over {0, k}-mappings using the
same arguments.

» Theorem 5. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0<a<l,k=o(n'"%) asr approaches infinity. Forr > 1, let Eio’k}(B) be the expected
value of B over the class of mappings on n nodes with indegrees restricted to the set {0,k}.
Then, as v approaches infinity,

n

log B (8) = 2 (M) (14 o(1),

where \ = k — 1. In particular, the estimate above holds if k > 2 is a fized integer.

3 Lognormality

Let
i = Slog(vVin), o} = = log®2 (i)
2 V3
and
1 1
pin = = log? (\/n/)\> . o = — log®/? (\/’I’L//\) .
2 V3
Harris proved that the sequence of random variables defined over the space of random
mappings on n nodes as X,, = (logT — p)/ok, n > 1, converges weakly to a standard
normal distribution [12]. In this section we prove an analogue of this result for {0,%}-
mappings:
logT — py, 1 r
lim POk} 08 T Hn <z|= —/ e 124t (5)
n— 00 On vV 2w —o0

The analogous result for the parameter B is proved from Equation (5) by showing that the
random variable y, = log B —log T, when properly normalized, converges in probability to
Zero.

We write the probability in Equation (5) using the law of total probability, where we
partition the space of {0, k}-mappings as follows. It is possible to prove that, for k& > 2,
r > 1 fixed integers and n = kr, there exists a positive real number my such that the
sequence z,, = IP;{lo’k}(Z =m), m > 1, is increasing for m < my and decreasing for m > m.
Furthermore, my = \/n/A + O(1). Let &, = log73/4(\/m), &= m;“ and & = my‘z".
We partition the interval [1,7] into three subintervals:

L={m:1<m<&},

L ={m:& <m <&}

Is={m:& <m <r}.

For k > 2 fixed, it is proved in [1] that E}{Lo’k}(Z) ~ y/mn/2\, hence the mode my has
the same order of growth as the expectation of Z.

» Lemma 6. Let &, = log~/*(\/n/X). If & = m;f” and & = m;jg", then Pio’k}(z <
&) =o(1), PLY"(Z > &) = 0o(1) and P (6, <Z < &) ~ 1.

It follows from the law of total probability that

PLO*} (log T < pi + 207) = C1 + G + G, ©

30:5
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where

G =Y Pz =mPPM (log T < pi + 2002 = m). (7)
mel;
Lemma 6 clearly implies that {; = o(1) and {5 = o(1). We prove next that {, provides the
asymptotic main term in (6). We use the special case § = 1 of Theorem 1.2 of [4], that
represents a stronger version of Erdds and Turdn’s famous result [8]. We denote by Q,,, the
uniform probability measure on the symmetric group S, and by ¢(z) = % / foo e~ /24t the
standard normal distribution.

3/2m. Then there

» Theorem 7 ([4]). Let o, = %log2 m + log mloglogm and 3,, = % log

exists a constant K > 0 such that, for all real numbers x and all integers m > 1,
K

Viogm

» Lemma 8. Forn = kr and m € I, let
b2(m, ) = PR (10g T < i, + 20|12 = m) — 6(2),

and let Ay(n) = max{|d;(m,n)|,m € Is}. Then, for any firted © € R, Ay(n) = o(1)
as r approaches infinity. Moreover, if |x| < cv/logn, for some positive constant ¢, then
A (n) < Kylog™4(\/n/X), for some K4 > 0.

Sketch. Let a,, and f,, be as in Theorem 7 and define y = y(n, m, z) to be the real number
for which p,, + oy, = aum + YBm- Then, for any m € Iy,

Qm (log T < am +28n) — d(x)| <

logT — a,y,

atm] < | (ET2 <) = o) + 10t - st ®

We note that Theorem 7 implies that, for some constant K; > 0,
logT — ayy, K
Q[ 2= <) —g(y)| < . ()
Bm logm
Using Equations (8) and (9) and |¢(y) — ¢(z)| < |y — x| we obtain
K
|82 (m, )| < ——= + |y — l. (10)

~ Vlogm

We note that the definition of y implies

= (n — o) + 2(0n — Bm)

Bm
where o, — 8, = O(Bmen) and oy — pp = O (6m log_l/4 (m)) . Hence,

y—z=0 (1og*1/4 (\/n/)\)> + O(|z|en). (11)
The result follows from Equations (10) and (11) and m > & = O (log \/¥) <

With Lemma 8 in hand, it is straight-forward to deduce the following result.

» Theorem 9. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0<a<l,k=o(n'"%) asr approaches infinity. Let u, = %logQ(\/?), o2 = %logg(ﬁ).
Let T(f) denote the least common multiple of the length of the cycles of a mapping f. Then,
for any real number x, as r approaches infinity,

]P);{zo’k} (log T < pn + w0y,) = ¢(x) + 04(1),

where o4 (+) indicates that the error term depends on x. Moreover, if ¢ is a positive constant,
then the convergence is uniform for |x| < cy/logn.
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Comment. We observe that Z and log T are concentrated in the interval [£;, &]. However

this interval does mot contain the terms that contribute most to the expected value of T.
2/3

Most of the contribution for the sum in (1) is from mappings with © (%) cyclic

vertices.

In order to prove asymptotic lognormality for the parameter B, we use Theorem 10
below, where it is proved that the normalized difference between log B and log T converges
in probability to zero. We consider this result of independent interest. Lognormality for the
parameter B follows at once from Slutsky’s Theorem; see Theorem 15 in Section 6.2 of [16].

» Theorem 10. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some 0 <
a <1, k=o(n'=%) asr approaches infinity. Forr > 1, let x,, be the random variable defined
over {0, k}-mappings on n nodes as x, = (logB —logT)/o,, where o, = % logS/Q( %)
Then the sequence defined by x, converges in probability to zero. In other words, for all € > 0

we have
P (xp > €) = o(1),
as r approaches infinity.

» Theorem 11. Let k = k(r) and n = n(r) be sequences such that n = kr and, for some
0<a<l,k=o(n'"%) asr approaches infinity. Let p, = %10g2(\/7¥), o2 = %log?’(\/’g).
Let B(f) denote the product of the length of the cycles of a mapping f. Then, for any real
number x,

PO (log B < pin, + 20,) = d(2) + 04(1),

as v approaches infinity. Moreover, if ¢ is a positive constant, then the convergence is uniform

for |z| < ev/logn.

4 Heuristics

In the analysis of his factorization method [15], Pollard conjectured that quadratic polynomials
modulo large primes behave like random mappings with respect to their average rho length.
However, it should be noted that the indegree distribution of a class of mappings impacts
the asymptotic distribution of a number of parameters [1]; the indegree distribution of a
mapping f on n nodes is defined as the sequence n; = #{y € [n]: |f~'(y)| = j}, j > 0. Since
a quadratic polynomial modulo an odd prime p has a very particular indegree distribution,
namely (ng,ni,ng) = (%, 1, %), one might wonder if {0, 2}-mappings do not represent
a better heuristic model. Furthermore, there are classes of polynomials from which one
might not expect the typical random mapping behavior, and it is possible to use different
classes of mappings as heuristic models. This is the case for the polynomials of the form
f(z) = 2% 4+ a € F,[z], where, as usual, F,, denotes the finite field on p elements. Their
indegree distribution satisfies

1 1
ng = <1k> (p—1), ni=1, nk:E(pfl). (12)
where k = ged(p — 1,d). We refer to the polynomials with indegree distribution (12) as
{0, k}-polynomials. As a particular case, we note that a polynomial of the form z* +a € F[z],
p=1 (mod k), is a {0, k}-polynomial.

30:7
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Algorithm 1: GENERATING A RANDOM UNIFORM {0, k}-MAPPING.

Input: Integers r > 1 and k£ > 2.
Output: {0, k}-mapping f on n = kr nodes.

1 Pick a permutation ¢ = o1 -+ - 0, € S, uniformly at random.

2 Pick a permutation 7 =7y --- 7, € S, uniformly at random.

3 fori=0,...,r—1do

4 for j=1,...,k do

5 ‘ f(rlik + 7)) = oli + 1] // T[f] denotes T¢, same for o[/].
6 end

7 end

8 return f.

In this section we consider classes of {0, k}-mappings, treated in the previous sections, as
heuristic models for {0, k}-polynomials. Our focus lies on polynomials of a certain degree
modulo large prime numbers, hence from this point on we restrict our attention to {0, k}-
mappings with & > 2 fixed, even though the results of the previous sections hold in a more
general setting. The asymptotic results in this section are taken as n approaches infinity.

The interest in the heuristic approximation mentioned above can be attributed at least in
part to the wealth of asymptotic results on the statistics of mappings with indegree restrictions,
when compared to the literature on the number theoretical setting; see for example [1, 7].
The main term of several asymptotic results on the statistics of a class F of mappings with
restrictions on the indegrees depends on its asymptotic average coalescence A = A\(F), defined
as in Section 1. This is the case for the rho length of a random node, a parameter involved
in the analysis of Pollard factorization algorithm. Since A = 1 for unrestricted mappings
and {0, 2}-mappings, these two classes represent equally accurate models for the average
rho length of quadratic polynomials [14]. Tt is curious that the knowledge of the indegree
distribution of these polynomials does not represent an improvement on the heuristic in this
case. It is worth noting that our asymptotic results on different classes of {0, k}-mappings are
determined by their coalescence A as well; compare Theorems 4 and 5 with Theorems 1.3 and
1.4 of [18]. Compare p, and p, with o, and o, as well, under the light of the fact that the
expected number of cyclic nodes over all unrestricted or {0, k}-mappings are asymptotically
equivalent to y/mn/2 and \/mn/2\, respectively. We note that if logk = o(logn), then
L ~ oy and o, ~ o as r approaches infinity.

4.1 Sampling {0, k}-Mappings

In our experiments, for each prime number p = 1 (mod k) considered, we select p {0, k}-
mappings on n = p — 1 nodes uniformly at random according to the following algorithm.
We determine the range of each random mapping f by selecting the first » = n/k elements
of a random uniform permutation o = oy ---0, € S,. The image f(z) of every element
x € [n] is defined by dividing a random uniform permutation 7 =7y --- 7, € S, in blocks of
k elements. We make this process precise in Algorithm 1. Assuming that o, 7 are random
uniform permutations, it is possible to prove that Algorithm 1 returns a random uniform
{0, k}-mapping on n nodes.

It should be stressed that our experimental results are based on sampling, so a number
of problems can occur in the numerical estimate of the expectation of a random variable.
Typically one must sample a very large number of {0, k}-mappings until a mapping with
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a substantial value of T or B is revealed (Theorems 12 and 13). To simplify notation, let
S = f1, fo, f3,... denote a sequence of independent random samples chosen uniformly at
random from the class of {0, k}-mappings on n nodes.

» Theorem 12. Let £ = &(n) = (]E;r&bo’k}(T)) , where a = a(n), and define N = min{t :
T(f) > €} Ifa?! log™3n = o(1), then for sufficiently large n, we have

)\nl/B
EIOFH(N) > ex ( > ,
n (N P 310g6n

and

1/3 1/3
IP’r{LO’k} (N < exp (/\n6>) < exp (_/\71(3) .
4log’n 12log’ n
> {0,k} b -~ S .
> Theorem 13. Let § = (En ’ (B)) , where b = b(n), and let N = N(n, §,b) = min{t :

B(f,) > &}, Ifblog 2 n = o(1), then there exist positive constants cy,cy such that, for
sufficiently large n,

_ n\1/3
E;{Lo’k}(N) > exp (Cl(>\)> ,

log® (%)
and
Piok} N < exp 762(?1/3 < exp _62(3%)1/3
log”(%) log”(%)

The proof of Theorem 12 relies on tail estimates for the number Z of cyclic vertices, and
bounds on the maximum order that a permutation can have. The proof of Theorem 13 is
based on tail estimates for the number C of cycles, together with the inequality B < (%)C

4.2 Numerical Results

We exhibit in Table 1 our numerical results on the behavior of T and B over different classes
of polynomials over finite fields and different classes of mappings. For each value of k, we
consider the first 100 primes greater than 10% of the form indicated in Table 1. For each such
prime, we select, according to Algorithm 1, p mappings on n = p — 1 nodes; we also consider
all p polynomials of the form indicated in Table 1. We compute the exact value of T for each
function and compute the corresponding average values T(p). We compute the ratio Rr(p)
between log T(p) and the quantity in Theorem 4. In Table 1 we exhibit the average value
Rt of Rr(p) over all primes considered; we stress the dependence of this calculation on the
coalescence \ of the corresponding class by adopting the notation Rt (\). The same is done
for the parameter B.

It is not surprising to have the ratio Ry distant from 1 even in the case of {0, k}-mappings,
where we have an asymptotic result proved on the logarithm of the expectation of T. It is
proved in Theorem 12 that most of the contribution to E}{lo’k}(T) comes from a relatively
small set of exceptional maps. Unless the number of samples is enormous, as stated in the
first part of the theorem, none of these exceptional maps is likely to be sampled, so our
empirical estimate for E;{lo’k}(T) is likely to be poor. The ratios Rt appear to decrease as A
grows large, but this agrees, in a way, with the fact that the upper bound in Theorem 12
decreases as k grows large.

30:9
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Table 1 Experimental results on mappings and polynomials according to their coalescence.

Class of functions Asymp. Coalescence E(x\) RiB(/\)
0.8090 0.7247
0.7929 0.7097
0.8031 2.4183
0.8033 3.9237
0.7700 0.7043
0.7631 2.5067
0.7436 0.7007
0.7391 2.6055
0.7465 0.7041
0.7435 3.3597
0.6986 0.6789
0.6989 1.3522

Unrestricted mappings

{0, 2}-mappings
22 +a € Fpla]

z* +a € Fplz], p=3 (mod 4)
{0, 3}-mappings

2® 4+ a € Fplz], p=1 (mod 3)
{0, 4}-mappings

zt +a eF,ylz], p=1 (mod 4)
{0, 5}-mappings

z° +a € Fplz], p=1 (mod 5)
{0, 6}-mappings

2% +a €Fylz], p=1 (mod 6)

U O s b W W NN~ = ==

Regardless of the sampling problem explained in Section 4.1, it is remarkable that the

ratio between any two entries in the table above for Rt with the same value of X lies in the
interval (0.97,1.03). This suggests that the behavior of a typical {0, k}-polynomial can be
approximated by the behavior of a typical {0, k}-mapping. However, one must be careful
when using the asymptotic estimate in Theorem 4 as a reference, due to the results in
Theorem 12. The numerical results for the parameter B, on the other hand, represent a
different scenario, where the ratio between numerical results for classes with the same value
of asymptotic coalescence were found to be as high as 4.8835. It is interesting but not clear
why the heuristic performs so poorly in the approximation of the statistics of polynomials by
mappings in the case of the parameter B.
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