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Abstract
An additive functional of a rooted tree is a functional that can be calculated recursively as the
sum of the values of the functional over the branches, plus a certain toll function. Janson recently
proved a central limit theorem for additive functionals of conditioned Galton-Watson trees under
the assumption that the toll function is local, i.e. only depends on a fixed neighbourhood of
the root. We extend his result to functionals that are almost local, thus covering a wider range
of functionals. Our main result is illustrated by two explicit examples: the (logarithm of) the
number of matchings, and a functional stemming from a tree reduction process that was studied
by Hackl, Heuberger, Kropf, and Prodinger.
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1 Introduction

A functional F that associates a value F (T ) with every rooted tree is said to be additive if it
satisfies a recursion of the form

F (T ) =
k∑
i=1

F (Ti) + f(T ), (1)

where T1, T2, . . . , Tk are the branches of T and f is a so-called “toll function”, another
function that assigns a value to every rooted tree. If T only consists of the root (so that
k = 0), we interpret the empty sum as 0 and set F (T ) = f(T ). Of course, every functional F
is additive in this sense (for a suitable choice of f), so the usefulness of the concept depends
on what is known about the toll function f .

1 The first author was partially supported by the Division for Research Development (DRD) of Stellenbosch
University.

2 The second author was supported by the Czech Science Foundation, grant number GJ16-07822Y.
3 The third author is supported by the National Research Foundation of South Africa under grant number

96236.

© Dimbinaina Ralaivaosaona, Matas Šileikis, and Stephan Wagner;
licensed under Creative Commons License CC-BY

29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2018).
Editors: James Allen Fill and Mark Daniel Ward; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:naina@sun.ac.za
mailto:matas.sileikis@gmail.com
mailto:swagner@sun.ac.za
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


33:2 Asymptotic Normality of Almost Local Func. in Conditioned Galton-Watson Trees

An important special case is the number of occurrences of a prescribed “fringe subtree”.
A fringe subtree is an induced subtree of a rooted tree that consists of one of the nodes and
all its descendants. Now fix a rooted tree S. We say that S occurs on the fringe of T if there
is a fringe subtree of T that is isomorphic to S. The number of occurrences of S as a fringe
subtree in T (i.e., the number of nodes v of T for which the fringe subtree rooted at v is
isomorphic to S) is an additive functional, which we shall denote by FS(T ). Indeed, one has

FS(T ) =
k∑
i=1

F (Ti) + fS(T ),

where

fS(T ) =
{

1 S is isomorphic to T,
0 otherwise.

This is because an occurrence of S in T is either an occurrence in one of the branches,
or comprises the entire tree T . Every additive functional can be expressed as a linear
combination of these elementary functionals: it is easy to see (e.g. by induction) that a
functional satisfying (1) can be expressed as

F (T ) =
∑
S

f(S)FS(T ).

Functionals of the form FS are known to be asymptotically normally distributed in different
classes of trees, notably simply generated trees/Galton-Watson trees [6, 14], which will
also be the topic of this paper, and classes of increasing trees [4, 10]. In view of this and
several other important examples of additive functionals that satisfy a central limit theorem,
general schemes have been devised that yield a central limit theorem under different technical
assumptions. This includes work on simply generated trees/Galton-Watson trees [6, 14]
(labelled trees, plane trees and d-ary trees are well-known special cases) as well as Pólya
trees [14] and increasing trees [10, 14] (specifically recursive trees, d-ary increasing trees and
generalised plane-oriented recursive trees). It is worth mentioning, however, that there are
also many instances of additive functionals that are not normally distributed in the limit,
since the toll functions can be quite arbitrary. A well-known example is the case of the path
length, i.e. the sum of the distances of all nodes to the root. It satisfies (1) with toll function

f(T ) = |T | − 1,

and, when suitably normalised, its limiting distribution for simply generated trees is the Airy
distribution (see [11]).

Previous results [4, 6, 10,14], while giving rather general conditions on the toll function
that imply normality, are unfortunately still insufficient to cover all possible examples one
might be interested in. This paper is essentially an extension of Janson’s work [6] on local
functionals. By weakening the conditions he makes on the toll functions, we arrive at a new
general central limit theorem that can be applied to a variety of examples that were not
previously covered. Two such examples are presented in detail in this extended abstract: one
is concerned with the number of matchings of a tree, the other settles an open problem from
a paper of Hackl, Heuberger, Kropf and Prodinger [3] on tree reductions.

A local functional (as considered in Janson’s paper [6]) is a functional for which the value
of the toll function can be determined from the knowledge of a fixed neighbourhood of the
root. A typical example is the number of nodes with a given outdegree: the corresponding
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toll function (whose value is either 0 or 1) is completely determined by the root degree.
We relax this condition somewhat (to what we call “almost local functionals”) in our main
theorem. Intuitively speaking, functionals that satisfy our conditions have toll functions
that can be approximated well from knowledge of a neighbourhood of the root, with the
approximation getting better the wider the neighbourhood is chosen.

The model of random trees that we consider here are conditioned Galton-Watson trees:
these are determined by an offspring distribution ξ, which we will assume to be normalised
to satisfy Eξ = 1. We also assume that Varξ is finite and nonzero (to avoid a degenerate
case). The Galton-Watson process starts from a single node, the root. At time t, all nodes
at level t (distance t from the root) generate a number of children according to the offspring
distribution ξ. The numbers of children of different nodes on the same level are mutually
independent. The outcome of this process, which ends when all nodes at level t generate 0
children, is a random tree T (almost surely finite). By conditioning the process to “die out”
when the total number of nodes is n, we obtain a conditioned Galton-Watson tree, which
will be denoted by Tn.

Conditioned Galton-Watson trees are known to be essentially equivalent to so-called
simply generated trees [2, Section 3.1.4]. Classical examples include rooted labelled trees
(corresponding to a Poisson distribution for ξ), plane trees (corresponding to a geometric
distribution for ξ) and binary trees (with a distribution whose support is {0, 2}).

We conclude the introduction with some more notation: for a tree T , we let T (M) be its
restriction to the firstM levels, i.e. all nodes whose distance to the root is at mostM . A local
functional as defined above is thus a functional for which the value of f(T ) is determined by
T (M) for some fixed M (the “cut-off”). The conditioned Galton-Watson tree Tn is known
to converge in the local topology induced by these restrictions to the (infinite) size-biased
Galton-Watson tree T̂ as defined by Kesten [8]: one has

P(T̂ (M) = T ) = wM (T )P(T (M) = T )

for all trees T , where wM (T ) is the number of nodes of depth M in T .
For a rooted tree T (possibly infinite), we let deg(T ) denote the degree of the root of T .

Finally, it will be convenient for us to use the Vinogradov notation � interchangeably with
the O-notation, i.e. f(n)� g(n) and f(n) = O(g(n)) both mean that |f(n)| ≤ Kg(n) for a
fixed positive constant K and all sufficiently large n.

2 The general theorem

Let us now formulate our main result, which is a central limit theorem for additive functionals
under suitable technical conditions on the toll function f .

I Theorem 1. Let Tn be a conditioned Galton-Watson tree of order n with offspring distribu-
tion ξ, where ξ satisfies Eξ = 1 and 0 < σ2 := Varξ <∞. Assume further that Eξ2α+1 <∞
for some integer α ≥ 0. Consider a functional f of finite rooted ordered trees with the
property that there is an absolute constant C0 > 0 such that

|f(T )| ≤ C0 deg(T )α. (2)

Furthermore, let (pM )M≥1 be a sequence of positive real numbers with pM → 0, and assume
that f satisfies the following:

for every M ∈ {1, 2, . . . },

E
∣∣∣f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

)∣∣∣ ≤ pM (3)

uniformly in N, with N ≥M ,

AofA 2018
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there is a sequence of positive integers (Mn)n≥1 such that for large enough n,

E
∣∣∣f(Tn)− f

(
T (Mn)
n

)∣∣∣ ≤ pMn
. (4)

If an := n−1/2(nmax{α,1}pMn
+M2

n) satisfies

an → 0, and
∞∑
n=1

an
n
<∞, (5)

then
F (Tn)− nµ√

n

d→ N (0, γ2) (6)

where µ = Ef(T ), and 0 ≤ γ <∞.

I Remark. The proof of the above theorem is a generalisation of Janson’s proof of his theorem
for bounded and local functionals in [6]. By slightly weakening the condition on the offspring
distribution ξ, we are able to reduce the boundedness condition to (2). However, the main
difficulty to overcome is the fact that our toll function is no longer local. To give a simple
example, an essential part of the proof is the existence of the expectation Ef(T̂ ). When f is
local with a cut-off M , then f(T̂ ) := f(T̂ (M)). So, Ef(T̂ ) is simply defined to be Ef(T̂ (M)).
In our case, where f is not necessarily local, we can define

Ef(T̂ ) := lim
M→∞

Ef(T̂ (M)), (7)

which may not exist in general. However, if f satisfies (3), then we can show that Ef(T̂ )
exists. Indeed,

|Ef(T̂ (M))− Ef(T̂ (N))| =
∣∣∣E(f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

))∣∣∣
≤ E

∣∣∣f(T̂ (M))− E
(
f(T̂ (N)) | T̂ (M)

)∣∣∣ ≤ pM ,
which tends to zero as M →∞, uniformly for N ≥M . In other words, (Ef(T̂ (M)))M≥1 is a
Cauchy sequence, so the limit (7) exists.

Throughout the rest of the paper, the offspring distribution ξ is assumed to satisfy Eξ = 1,
P (ξ = 0) > 0, 0 < σ2 := Varξ < ∞, and Eξ2α+1 < ∞ for some fixed integer α ≥ 0. The
distribution of the number of nodes at level k, wk, for the three random trees T , T̂ , and
Tn will play an important role in our proof. This parameter has been studied in [5], and in
particular, the following results were proved there: for every positive integer r ≤ max{2α, 1},
we have

E (wk(T )r) = O(kr−1), E(wk(T̂ )r) = O(kr), and E (wk(Tn)r) = O(kr), (8)

where the constants in the O-terms depend on the offspring distribution ξ only. Moreover,
for a rooted tree T , we know that |T (M)| =

∑M
k=0 wk(T ). Hence, we can deduce from the

estimates in (8), for r = 1, that

E|T (M)| = O(M), E|T̂ (M)| = O(M2), and E|Tn(M)| = O(M2). (9)

In fact, it can be shown that E|T (M)| = M + 1. We are also going to make extensive use of
the higher moments of the root degree. By definition, the distribution of deg(T ) is ξ, so we
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know the higher moments of deg(T ). On the other hand, note that deg(T ) = w1(T ). So, as
particular cases of the estimates in (8), we have

E(deg(T̂ )r) <∞ and E (deg(Tn)r) = O(1), (10)

for every positive integer r ≤ max{2α, 1}, where the implied constant in the second estimate
is independent of n.

3 Mean and variance

We first look at the expectation Ef(Tn). As it is also the case in [6], one of the key observations
in the proof of Theorem 1 is the fact that Ef(Tn) is asymptotically equal to Ef(T̂ ) (which is
finite, cf. Remark 2) with an explicit bound on the error term. This is made precise in the
following lemma:

I Lemma 2. If f satisfies the conditions of Theorem 1, then

Ef(Tn) = Ef(T̂ ) +O(pMn
+ n−1/2 M2

n). (11)

Proof (sketch). We let Mn be defined as in Theorem 1, but write M = Mn for easy reading.
Notice first that

|Ef(Tn)− Ef(T̂ )|

≤ |Ef(Tn)− Ef(Tn(M))|+ |Ef(T̂ (M))− Ef(T̂ )|+ |Ef(Tn(M))− Ef(T̂ (M))|. (12)

The first term on the right side is at most pM by assumption (4). The second term is also
bounded above by pM in view of (3), using the same argument as in Remark 2: we have

|Ef(T̂ (N))− Ef(T̂ (M))| =
∣∣∣E(f(T̂ (M))− E

(
f(T̂ (N))|T̂ (M)

))∣∣∣
≤ E

∣∣∣f(T̂ (M))− E
(
f(T̂ (N))|T̂ (M)

)∣∣∣ ≤ pM ,
uniformly for N ≥M . Therefore,

|Ef(T̂ )− Ef(T̂ (M))| = lim
N→∞

|Ef(T̂ (N))− Ef(T̂ (M))| ≤ pM .

The estimate of the term |Ef(Tn(M))− Ef(T̂ (M))| is rather technical and therefore given in
the appendix. It can be shown, using the bound (2), that

|Ef(Tn(M))− Ef(T̂ (M))| = O
(
n−1/2M2E(deg(T̂ )α+1) + n−1M2E(deg(Tn)α+1)

)
. (13)

In view of (10), the moment E(deg(T̂ )α+1) is finite and E(deg(Tn)α+1) is O(1). Therefore,
we conclude that

|Ef(Tn)− Ef(T̂ )| � pM + n−1/2M2 = pMn
+ n−1/2Mn

2,

which is equivalent to the statement in the lemma. J

Lemma 2 is already enough to show that EF (Tn) = µn+ o(
√
n), where µ = Ef(T ), by

simply applying Part (i) of [6, Theorem 1.5] to the shifted toll function f(T )− Ef(T̂ ). Next,
we estimate the variance of F (Tn).

AofA 2018
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I Lemma 3. Assume that f satisfies the conditions of Theorem 1. Moreover, set ak =
k−1/2(kmax{α,1} pMk

+ M2
k ) (as in Theorem 1) and µk = Ef(Tk). Moreover, set N =

min{|T | : f(T ) 6= 0}. Then we have

n−1/2Var (F (Tn))1/2 �

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N
|µk|+

∞∑
k=N

|µk|
k
. (14)

Proof (sketch). We follow the proof of [6, Theorem 6.12]. We start with a decomposition
f(T ) = f ′(T ) + f ′′(T ), where f ′(T ) = f(T )− µ|T | and f ′′(T ) = µ|T |. In view of Minkowski’s
inequality Var(X + Y )1/2 ≤ Var(X)1/2 + Var(Y )1/2, it suffices to check that (14) holds for
the following cases:
(i) if f(T ) = µ|T |, that is, f depends on |T | only,
(ii) when Ef(Tk) = 0 for every k.
Case (i) works precisely as in [6, Theorem 6.7] and gives a bound

Var (F (Tn))1/2 � n1/2

(
sup
k≥N
|µk|+

∞∑
k=N

|µk|
k

)
. (15)

The contribution from k < N is zero, since µk = 0 for k < N . So we only consider Case (ii),
where Ef(Tk) = 0 for every k. By [6, (6.28)], we have

1
n

Var (F (Tn)) ≤ 2
n∑

k=N

P (Sn−k = n− k)
P (Sn = n− 1) πkE(f(Tk)F (Tk)), (16)

where πk = P (|T | = k), and Sk is the sum of k independent copies of ξ. From [6, Lemma
5.2], we know that

P (Sn−k = n− k)
P (Sn = n− 1) � n1/2

(n− k + 1)1/2 ,

uniformly for 1 ≤ k ≤ n. Recalling that πk = O(k−3/2), which can also be found in [6], we
obtain

1
n

Var (F (Tn))�
n∑

k=N

n1/2

(n− k + 1)1/2 k3/2E(f(Tk)F (Tk)). (17)

So it remains to estimate E(f(Tk)F (Tk)). It can be shown (see appendix) that

E(f(Tk)F (Tk))� kmax{α, 1} pMk
+ E(deg(Tk)2α) +M2

k E(deg(Tk)α+1). (18)

Once again, by means of the second estimate in (10), E(deg(Tk)2α) and E(deg(Tk)α+1) are
both bounded above by constants. Thus, we have

E(f(Tk)F (Tk))� kmax{α, 1} pMk
+M2

k = k1/2ak, (19)

where ak is defined as in Theorem 1. Applying (19) to (17), we get

1
n

VarF (Tn)�
n∑

k=N

n1/2 ak
(n− k + 1)1/2 k

�
n/2∑
k=N

ak
k

+ sup
k≥n/2

ak
∑

n/2≤k≤n

1
(n− k + 1)1/2 n1/2 (20)

Noting that the last sum on the right side is O(1), the result follows by applying Minkowski’s
inequality to combine the results from the two cases. J
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4 Central limit theorem

We use a truncation argument as in the proof of [6, Theorem 1.5]. This is formulated in the
following lemma:

I Lemma 4. Let (Xn)n≥1 and (WN,n)N,n≥1 be sequences of centred random variables. If
we have

WN,n
d→n WN , and WN

d→N W, for some random variables W, W1, W2, . . .
Var(Xn −WN,n) = O(σ2

N ) uniformly in n, and σ2
N →N 0,

then Xn
d→n W.

This lemma is a simple consequence of [7, Theorem 4.28] or [1, Theorem 4.2].

Proof of Theorem 1. We may assume, without loss of generality, that Ef(T̂ ) = 0, by
subtracting Ef(T̂ ) from f if it is not zero, because shifting f by a constant will only add a
deterministic term in F (Tn). For each k, let µk denote the expectation Ef(Tk). By Lemma 2,
we have

|µk| = |Ef(Tk)| � pMk
+ k−1/2M2

k ≤ ak. (21)

For a positive integer N , let f (N) be the truncated functional defined by f (N)(T ) =
f(T ) I{|T |<N} and F (N) be the additive functional associated to the toll function f (N).
It is important to notice that f (N) is local, for any fixed N . So, if f satisfies the conditions
of Theorem 1, then f (N) also satisfies the conditions of Theorem 1. Note further that
Ef (N)(Tk) = µk if k < N , and zero otherwise. Hence, we have |Ef (N)(Tk)| ≤ |µk| for every
positive integer N . Let

WN,n := F (N)(Tn)− EF (N)(Tn)√
n

, and Xn := F (Tn)− EF (Tn)√
n

.

Since f (N) has finite support, by [6, Theorem 1.5], we have

WN,n
d→n N (0, γ2

N ),

where

γ2
N = lim

n→∞
n−1Var(F (N)(Tn))

= 2E
(
f (N)(T ) (F (N)(T )− |T |µ(N))

)
−Varf (N)(T )− (µ(N))2

σ2 ,

and µ(N) = Ef (N)(T ).

Next we need to show that limN→∞ γN exists. To that end, we take an arbitrary integer
M ≥ N . We have

γM − γN = lim
n→∞

n−1/2
(

Var(F (M)(Tn))1/2 −Var(F (N)(Tn))1/2
)

If we apply Minkowski’s inequality to the random variables F (M)(Tn) − F (N)(Tn) and
F (N)(Tn), we obtain

Var(F (M)(Tn))1/2 ≤ Var
(
F (M)(Tn)− F (N)(Tn)

)1/2
+ Var(F (N)(Tn))1/2.

AofA 2018
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Consequently,

|γM − γN | = lim
n→∞

n−1/2|Var(F (M)(Tn))1/2 −Var(F (N)(Tn))1/2|

≤ lim sup
n→∞

n−1/2Var
(
F (M)(Tn)− F (N)(Tn)

)1/2
.

The toll function associated to the functional F (M) − F (N) is f (M) − f (N), which is zero for
all trees of order smaller than N . Hence, the idea of Lemma 3 can be used to estimate the
variance Var(F (M)(Tn)− F (N)(Tn))1/2, and we obtain

|γM − γN | �

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N
|µk|+

∞∑
k=N

|µk|
k

�

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N

ak +
∞∑
k=N

ak
k
.

The last line follows from (21). By the condition (5) of Theorem 1, we also deduce that
|γM − γN | →N 0 uniformly for M ≥ N . Hence, the sequence (γN )N is a Cauchy sequence,
which implies that γ := limN→∞ γN exists.

Similarly, we have

Var(Xn −WN,n)1/2 = n−1/2Var(F (Tn)− F (N)(Tn))1/2

�

(
sup
k≥N

ak +
∞∑
k=N

ak
k

)1/2

+ sup
k≥N

ak +
∞∑
k=N

ak
k
,

which tends to zero as N →∞ uniformly in n, so Lemma 4 applies and the proof of Theorem 1
is complete. J

5 Examples

In this section, we give two representative applications of our main theorem (further examples
will be provided in the full version). The absolute values of the toll functions in both examples
are not bounded by positive constants, but they are both bounded above by the root degree.
Hence, we need α to be at least 1, i.e. Eξ3 <∞.

5.1 The number of matchings
The number of matchings in random trees has been studied previously, and means and
variances have been determined for different classes of trees [9, 12, 13]. However, in order
to obtain a limiting distribution, one has to consider the logarithm of this quantity. For a
rooted tree T , let m(T ) be the total number of matchings of T and m0(T ) be the number of
matchings of T that do not cover the root (by this, we mean matchings that do not contain
an edge incident to the root). It is easy to see that these parameters can be determined
recursively in the following way:

m0(T ) =
∏
i

m(Ti), (22)

m(T ) = m0(T ) +
∑
i

m0(Ti)
∏
j 6=i

m(Tj). (23)
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Defining an additive functional F (T ) := logm(T ), we observe from (22) that the associated
toll function is

f(T ) = F (T )−
∑
i

F (Ti) = logm(T )−
∑
i

logm(Ti) = − log
(
m0(T )
m(T )

)
.

It is convenient to define ρ(T ) = m0(T )
m(T ) , which is the probability that a random matching

does not cover the root, when all matchings are equally likely. By (22) and (23), ρ(T ) also
satisfies a recursion

ρ(T ) = 1
1 +

∑
i ρ(Ti)

. (24)

It follows immediately that 0 ≤ f(T ) ≤ log(1 + deg(T )). Hence, the condition (2) of
Theorem 1 is satisfied by f with α = 1. Next, we measure the difference between f(T ) and
f(T (M)). Define the exact bounds on ρ given the first M levels:

ρMmin(T ) := inf{ρ(S) : S(M) = T (M)}, ρMmax(T ) := sup{ρ(S) : S(M) = T (M)}.

The functions ρMmin(T ) and ρMmax(T ), M = 0, 1, 2, . . . can also be determined recursively from
the root branches T1, T2, . . . by observing ρ0

min(T ) = 0 and ρ0
max(T ) = 1 for any T , and for

any M ≥ 1, we have

ρMmax(T ) = 1
1 +

∑
i ρ
M−1
min (Ti)

and ρMmin(T ) = 1
1 +

∑
i ρ
M−1
max (Ti)

. (25)

Since ρ(T ), ρ(T (M)) ∈ [ρMmin(T ), ρMmax(T )], we obtain

ρMmin(T )
ρMmax(T ) ≤

ρ(T )
ρ(T (M))

≤ ρMmax(T )
ρMmin(T )

. (26)

Writing τM (T ) := log(ρMmax(T )/ρMmin(T )) ≥ 0, (26) gives us

|f(T )− f(T (M))| ≤ τM (T ). (27)

Using (25), we get

τM (T ) = − log
(

1 +
∑
i ρ
M−1
min (Ti)

1 +
∑
i ρ
M−1
max (Ti)

)
= − log

(
1 +

∑
i ρ
M−1
max (Ti) exp(−τM−1(Ti))
1 +

∑
i ρ
M−1
max (Ti)

)
.

Since the term inside the logarithm on the right side can be regarded as an expectation (of
the expression exp(−τM−1(Ti))), applying Jensen’s inequality to the convex function − log x
yields

τM (T ) ≤ 1
1 +

∑
i ρ
M−1
max (Ti)

∑
i

ρM−1
max (Ti)τM−1(Ti)

≤ maxi ρM−1
max (Ti)

1 + maxi ρM−1
max (Ti)

∑
i

τM−1(Ti) ≤
1
2
∑
i

τM−1(Ti). (28)

From (25) it is clear that ρ1
max(T ) = 1 and ρ1

min(T ) = (1 + deg(T ))−1 for any T . Therefore

τ1(T ) = log(1 + deg(T )) ≤ deg(T ). (29)
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Let v1, v2, . . . , vwM−1(T ) be the nodes at level M − 1 of T . By iterating (28) M − 1 times
and applying (29), we arrive at the bound

τM (T ) ≤ 2−(M−1)
wM−1(T )∑
i=1

τ1(Tvi) ≤ 2−(M−1)
wM−1(T )∑
i=1

deg(Tvi) ≤ 2−(M−1)wM (T ). (30)

Combining (27) and (30), we obtain

|f(T )− f(T (M))| ≤ 2−M+1wM (T ). (31)

This is essentially enough to show that the remaining conditions of Theorem 1 are satisfied
by our toll function. Let us first check (3). Note that for any N ≥M , we have

E
∣∣∣f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

)∣∣∣ ≤ E
(
E
(
|f(T̂ (M))− f(T̂ (N))|

∣∣∣ T̂ (M)
))

.

Using (31), we deduce that for any N ≥M ,

E
(
|f(T̂ (M))− f(T̂ (N))|

∣∣∣ T̂ (M)
)
≤ 2−M+1E

(
wM (T̂ (N))

∣∣∣ T̂ (M)
)
.

By taking the expectations, and using wM (T̂ (N)) = wM (T̂ ) as well as the estimate EwM (T̂ ) =
O(M) (see (8)), we get

E
∣∣∣f(T̂ (M))− E

(
f(T̂ (N)) | T̂ (M)

)∣∣∣�M 2−M . (32)

To check (4) we use (31) and EwM (Tn) = O(M) (see (8)) and get

E|f(Tn)−f(Tn(M))| = E
(
E
(
|f(Tn)− f(Tn(M))|

∣∣∣ Tn(M)
))
≤ E

(
2−M+1wM (Tn)

)
�M2−M ,

(33)

where the implied constant is independent of n. To sum up, (32) and (33) show that the
conditions of Theorem 1 are satisfied for the choice pM := C1M2−M and Mn := bC2 lognc
with sufficiently large positive constants C1 and C2.

5.2 Tree reductions
An old leaf is a leaf that is the leftmost child of its parent node, and an old path is a maximal
path with the property that its lower endpoint is an old leaf, and its internal nodes are
all nodes of outdegree 1 that are leftmost children of their parents. As in [3], consider the
process of reducing a tree by cutting off all old paths from the tree at each step. This process
is called old path-reduction. For a given positive integer r, and for a tree T , let Xr(T ) be the
number of nodes in the reduced tree after the first r steps of the old path-reduction process.
The authors of [3] proved estimates for the mean and variance of Xr(Tn) for the special case
where Tn is the random plane (=ordered) tree on n nodes, but they did not derive a limiting
distribution. Theorem 1 can be applied to show asymptotic normality for this case. However,
we do not need to restrict ourselves to plane trees.

We let

Fr(T ) = |T | −Xr(T ),

which corresponds to the number of deleted nodes after r steps in T . The functional Fr is
additive with toll function fr, where

fr(T ) =
∑
j

ηT (Tj)
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and the sum is over all branches Tj , with

ηT (Tj) =
{

1 if the root of Tj is deleted within the first r steps,
0 otherwise.

We can immediately see that

0 ≤ fr(T ) ≤ deg(T ).

Next, we show that fr is almost local. For a tree T , let T ∗ be the planted tree where
the root of T is connected to a new node, which becomes the root of T ∗. Let κ = min{k ≥
2 : P (ξ = k) > 0} (this must exist under our current assumptions on ξ), and let T0 be the
complete κ-ary tree of depth r. It is clear that Fr(T ∗0 ) 6= 1, i.e. T ∗0 is not reduced to the root
in r steps, and

P (T = T0) > 0. (34)

For each positive integer M , let BM be the set of all trees T (not necessarily finite) of height
at least M − 1 such that Fr((T (M−1))∗) = 1 (i.e. the tree T (M−1) vanishes after the first r
steps of the reduction). It is important to notice here that a rooted tree T is not reduced to
a single node after the first r steps of the reduction if the fixed tree T0 appears as a subtree
of T (by subtree, we mean a subtree of the form T

(k)
v for some integer k ≥ 0 and some node

v of T ). This observation is key in the proof of the next lemma, which can be found in the
appendix.

I Lemma 5. There is a positive constant c < 1, that depends only on ξ and r, such that

P (T ∈ BM )� cM and P
(
T̂ ∈ BM

)
� cM .

For a finite tree T , the only possibility for which fr(T (M)) 6= fr(T ) is when there is a root
branch Tj of T such that T (M−1)

j vanishes after the first r steps of the reduction of T (M),
but Tj does not vanish after the first r steps of the reduction of T . This means that if
fr(T (M)) 6= fr(T ), then T must have a branch in BM . Therefore, we have

P
(
fr(T (M)) 6= fr(T )

)
≤
∞∑
k=1

kP (ξ = k)P (T ∈ BM )� cM .

The estimate on the right follows from Lemma 5. As an immediate consequence of this, we
have

P
(
fr(Tn(M)) 6= fr(Tn)

)
≤

P
(
fr(T (M)) 6= fr(T )

)
P (|T | = n) � n3/2 cM .

Hence,

E|fr(Tn(M))− fr(Tn)| � n3/2cM max
|T |=n

|fr(T (M))− fr(T )| � n5/2cM . (35)

Let EM be the event
⋃
N>M{fr(T̂ (M)) 6= E(fr(T̂ (N)) | T̂ (M))}. Then, for any N ≥ M ,

we have∣∣∣fr(T̂ (M))− E(fr(T̂ (N)) | T̂ (M))
∣∣∣� deg(T̂ (M))IEM

.
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For T̂ to be in EM , T̂ must have a root branch in BM . Therefore,

E
∣∣∣fr(T̂ (M))− E(fr(T̂ (N)) | T̂ (M))

∣∣∣
�

∞∑
k=1

kP
(

deg(T̂ ) = k
)(

(k − 1)P (T ∈ BM ) + P
(
T̂ ∈ BM

))
. (36)

In view of Lemma 5, we have

E
∣∣∣fr(T̂ (M))− E(fr(T̂ (N)) | T̂ (M))

∣∣∣� cM
∞∑
k=1

k2P
(

deg(T̂ ) = k
)
� cM , (37)

since E(deg(T̂ )2) <∞ if Eξ3 <∞. The estimates (35) and (37) confirm that fr is indeed
almost local where, for example, pM = cM2 , for some c2 with c < c2 < 1, and Mn = b(logn)2c.

I Remark. We only made very little use of the actual definition of the old path-reduction.
To be precise, we only used it when we argued that our constructed T0 does not vanish after
the first r steps of the reduction and that all trees that contain T0 as a subtree will not
be reduced after the first r steps. This means that the same proof will work for any tree
reduction with a similar property. This includes all tree reductions considered in [3].
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A Appendix

Proof of Estimate (13). From the proof of [6, Lemma 5.9] (see (5.42) there), we have, for T
with |T | ≤ n/2, that

P
(
Tn(M) = T

)
= P

(
T̂ (M) = T

)(
1 +O

(
|T |
n1/2

))
. (38)

Using (38), we infer

|Ef(Tn(M))−Ef(T̂ (M))|

=

∣∣∣∣∣∑
T

f(T )P
(
Tn(M) = T

)
−
∑
T

f(T )P
(
T̂ (M) = T

)∣∣∣∣∣
≤

∑
|T |≤n/2

|f(T )|
∣∣∣P(Tn(M) = T

)
− P

(
T̂ (M) = T

)∣∣∣+
∑
|T |>n/2

|f(T )|
(
P
(
Tn(M) = T

)
+ P

(
T̂ (M) = T

))
�
∑
T

P
(
T̂ (M) = T

) deg(T )α|T |
n1/2

+
∑
|T |>n/2

P
(
T̂ (M) = T

)
deg(T )α +

∑
|T |>n/2

P
(
Tn(M) = T

)
deg(T )α.

We can now estimate each of the three terms in the last two lines separately. First, we have∑
T

P
(
T̂ (M) = T

) deg(T )α|T |
n1/2 = n−1/2E(deg(T̂ (M))α|T̂ (M)|)

= n−1/2E
(

deg(T̂ (M))α E
(
|T̂ (M)|

∣∣∣ deg(T̂ (M))
))

.

Conditioning on deg(T̂ (M)) (which is the same as deg(T̂ ) for M ≥ 1), T̂ consists of a root, a
copy of T̂ and deg(T̂ )− 1 independent copies of T . Thus, by the estimates in (9), we have

E
(
|T̂ (M)|

∣∣∣ deg(T̂ (M))
)

= O(M2 deg(T̂ (M))).

Therefore,

E
(

deg(T̂ (M))α E
(
|T̂ (M)|

∣∣∣ deg(T̂ (M))
))
�M2E(deg(T̂ (M))α+1),

which yields∑
T

P
(
T̂ (M) = T

) deg(T )α |T |
n1/2 � n−1/2M2E(deg(T̂ (M))α+1). (39)

For the second term, we have∑
|T |>n/2

P
(
T̂ (M) = T

)
deg(T )α

=
∑
k≥1

kα P
(
|T̂ (M)| > n/2 and deg(T̂ ) = k

)
=
∑
k≥1

kα P
(

deg(T̂ ) = k
)
P
(
|T̂ (M)| > n/2

∣∣∣ deg(T̂ ) = k
)
.
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By Markov’s inequality and a similar argument as before, we obtain

P
(
|T̂ (M)| > n/2

∣∣∣ deg(T̂ ) = k
)
≤ 2E(|T̂ (M)| | deg(T̂ ) = k)

n
� kM2

n
.

Thus,∑
|T |>n/2

P
(
T̂ (M) = T

)
deg(T )α � n−1M2E(deg(T̂ )α+1). (40)

Finally, for the last term, we proceed in a similar fashion:∑
|T |>n/2

P
(
Tn(M) = T

)
deg(T )α

≤
∑
k≥1

kα P
(
|Tn(M)| > n/2 and deg(Tn) = k

)
≤
∑
k≥1

kα P (deg(Tn) = k)P
(
|Tn(M)| > n/2

∣∣∣ deg(Tn) = k
)
.

If Tn,1, Tn,2, . . . , Tn,k are the branches of Tn, given that deg(Tn) = k, then, condition-
ing on their sizes n1, n2, . . . , nk, they are k independent conditioned Galton-Watson trees
Tn1 , Tn2 , . . . , Tnk

. On the other hand, we have

|Tn(M)| = 1 +
k∑
i=1
|T (M−1)
n,i |.

Thus,

E
(
|T (M)
n | | deg(Tn) = k

)
= E

(
E
(
|T (M)
n |

∣∣∣n1, n2, · · · , nk
))

= 1 +
k∑
i=1

E
(
E
(
|T (M−1)
ni

|
∣∣∣n1, n2, · · · , nk

))
� kM2,

which again follows from the last estimate in (9). Now, Markov’s inequality yields

P
(
|Tn(M)| > n/2

∣∣∣ deg(Tn) = k
)
� n−1kM2.

Therefore, making use of (10) once again, we have∑
|T |>n/2

P
(
Tn(M) = T

)
deg(T )α

� n−1M2
∑
k≥1

kα+1 P (deg(Tn) = k) = n−1M2E(deg(Tn)α+1). (41)

Combining the estimates (39), (40), and (41), we finally arrive at the estimate

|Ef(Tn(M))− Ef(T̂ (M))| � n−1/2M2E(deg(T̂ )α+1) + n−1M2E(deg(Tn)α+1), (42)

which is exactly as we claimed in (13). J

Proof of Estimate (18). We decompose F (Tk) according to the depth d(v) of the nodes:

F (Tk) =
∑
v∈Tk

f(Tk,v) =
∑

d(v)<M

f(Tk,v) +
∑

d(v)≥M

f(Tk,v) =: S1 + S2. (43)
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We first observe that

E|f(Tk)S1| � E
(

deg(Tk)α
∑

d(v)<M

deg(Tk,v)α
)

= E
(

deg(Tk)α E
( ∑
d(v)<M

deg(Tk,v)α
∣∣∣ deg(Tk)

))
.

Next, for any positive integer m ≤M , we have

E
( ∑
d(v)<m

deg(Tk,v)α
∣∣∣ T (m−1)
k

)
=

∑
d(v)<m−1

deg(Tk,v)α +O (wm−1(Tk)) .

This is because the wm−1(Tk) fringe subtrees with roots at level m − 1, conditioned on
their sizes, are conditioned Galton-Watson trees and thus by (10) the root degrees are O(1).
Taking the expectation conditioned on deg(Tk), again by the same argument, and by the
estimate Ewm−1(Tk) = O(m) as in (8), we have

E
( ∑
d(v)<m

deg(Tk,v)α
∣∣∣ deg(Tk)

)
= E

( ∑
d(v)<m−1

deg(Tk,v)α
∣∣∣ deg(Tk)

)
+O(m deg(Tk)).

Thus, iterating from M , we obtain

E
( ∑
d(v)<M

deg(Tk,v)α
∣∣∣ deg(Tk)

)
� deg(Tk)α +M2 deg(Tk).

Therefore,

E|f(Tk)S1| � E(deg(Tk)2α) +M2E(deg(Tk)α+1). (44)

For S2, we condition on Tk(M) and the sizes of the fringe subtrees Tk,vi
, i = 1, . . . , wM (Tk),

induced by nodes at level M . Conditionally, each Tk,vi is distributed as Tni . From the
assumption that for every n we have Ef(Tn) = 0 it follows (see [6, (6.25)]) that EF (Tk,vi

) = 0
and therefore

E
(
S2 | Tk(M)

)
= 0. (45)

Let us define f̃M (Tk) := E(f(Tk) | Tk(M)). Note that

E(f̃M (Tk)S2) = E
(
E
(
f̃M (Tk)S2 | Tk(M)

))
= E

(
f̃M (Tk)E

(
S2 | Tk(M)

))
= 0.

Hence,

|E(f(Tk)S2)| = |E(S2(f(Tk)− f̃M (Tk)))| ≤ max |S2|E|f(Tk)− f̃M (Tk)|.

It is important to notice here that the expectation in the last term remains unchanged if f(T )
is shifted by µ|T | (this is the reason why we can assume that Ef(Tk) = 0 and f still satisfies
the conditions of Theorem 1). By the triangle inequality and the definition of f̃M (Tk), we
have

|f(Tk)− f̃M (Tk)| ≤ |f(Tk)− f(Tk(M))|+ |f(Tk(M))− f̃M (Tk)|

≤ |f(Tk)− f(Tk(M))|+ E(|f(Tk(M))− f(Tk)| | Tk(M)).
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Taking the expectation again, and using our condition (4), we obtain

E|f(Tk)− f̃M (Tk)| ≤ 2pM .

Here, we are assuming that M = Mk. On the other hand, we have

|S2| ≤
∑

d(v)≥M

|f(Tk,v)| ≤
∑
v∈Tk

deg(Tk,v)α.

Since α is a nonnegative integer, the last term is bounded above by (
∑
v∈Tk

deg(Tk,v))α
(which is equal to (k − 1)α) except for α = 0. Hence, we get

max |S2| ≤ kmax{α,1}.

Therefore,

E(f(Tk)F (Tk))� kmax{α,1}pM + E(deg(Tk)2α) +M2E(deg(Tk)α+1),

as claimed. J

Proof of Lemma 5. We start with the first estimate. We notice that for T to be in BM ,
T (r) must not be equal to T0. So

P (T ∈ BM ) =
∑
T 6=T0

P
(
T (r) = T

)
P
(
T ∈ BM | T (r) = T

)
.

Conditioning on the event {T (r) = T}, the rest of T is a forest consisting of wr(T ) independent
copies of T . Hence, by the union bound, we obtain

P (T ∈ BM ) ≤
∑
T 6=T0

P
(
T (r) = T

)
wr(T )P (T ∈ BM−r)

= P (T ∈ BM−r)
∑
T 6=T0

P
(
T (r) = T

)
wr(T )

≤ P (T ∈ BM−r)
∑
T 6=T0

P (T = T )wr(T ).

If we let q =
∑
T 6=T0

P (T = T )wr(T ), then

P (T ∈ BM ) ≤ q P (T ∈ BM−r) . (46)

On the other hand, we know that

q + wr(T0)P (T = T0) =
∑
T

P (T = T )wr(T ) = Ewr(T ) = 1.

In view of (34), we deduce that q < 1. Therefore, iterating (46) yields

P (T ∈ BM ) ≤ qbM/rc ≤ cM1 , (47)

where c1 := q1/r < 1, proving the first estimate.
For the second estimate, we also begin in a similar fashion, i.e. we have

P
(
T̂ ∈ BM

)
=
∑
T 6=T0

P
(
T̂ (r) = T

)
P
(
T̂ ∈ BM | T̂ (r) = T

)
.
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Here, when conditioning on the event {T̂ (r) = T}, the rest of T̂ is a forest consisting of
wr(T )− 1 independent copies of T and a copy of T̂ . Thus,

P
(
T̂ ∈ BM

)
≤
∑
T 6=T0

P
(
T̂ (r) = T

)(
(wr(T )− 1)P (T ∈ BM−r) + P

(
T̂ ∈ BM−r

))
.

Using (47), letting q2 =
∑
T 6=T0

P
(
T̂ (r) = T

)
(wr(T )− 1) (which is finite since it is bounded

above by Ewr(T̂ ) < ∞), and noting that q ≥
∑
T 6=T0

P
(
T̂ (r) = T

)
by the definition of T̂ ,

we obtain

P
(
T̂ ∈ BM

)
� q2 c

M−r
1 + q P

(
T̂ ∈ BM−r

)
.

Iterating this, we have

P
(
T̂ ∈ BM

)
� qbM/rc + q2

bM/rc∑
j=1

qj−1 cM−jr1 .

Since we set q = cr1, the latter estimate becomes

P
(
T̂ ∈ BM

)
�M cM1 .

The proof is completed by choosing any constant c > 0 such that c1 < c < 1. J
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