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Abstract
We prove limit theorems describing the asymptotic behaviour of a typical vertex in random
simply generated trees as their sizes tends to infinity. In the standard case of a critical Galton–
Watson tree conditioned to be large, the limit is the invariant random sin-tree constructed by
Aldous (1991). Our main contribution lies in the condensation regime where vertices of macro-
scopic degree appear. Here we describe in complete generality the asymptotic local behaviour
from a random vertex up to its first ancestor with “large” degree. Beyond this distinguished
ancestor, different behaviours may occur, depending on the branching weights. In a subregime
of complete condensation, we obtain convergence toward a novel limit tree, that describes the
asymptotic shape of the vicinity of the full path from a random vertex to the root vertex. This
includes the important case where the offspring distribution follows a power law up to a factor
that varies slowly at infinity.
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1 Introduction

A Galton–Watson branching process is a classical stochastic model for population evolution.
The process starts with a single individual. All individuals reproduce asexually and inde-
pendently from each other according to the same offspring distribution. The genealogical
tree corresponding to such a process is called a Galton–Watson tree. We call such a tree
critical if the average number of children of a node equals 1, and subcritical if it is strictly
less than one. In this context we call the number of offspring of node its outdegree. The tree
obtained by conditioning the total population size to be equal to an integer n is a special
case of a simply generated tree Tn. That is, there is a fixed sequence (ωk)k≥0 of so-called
branching weights and the tree Tn assumes a plane tree T with n vertices with probability
proportional to the product

∏
v∈T ωd+

T
(v) of weights corresponding to the vertex outdegrees

d+
T (v). The present work aims to describe the vicinity of a typical vertex in Tn as n tends to

infinity. We refer the reader to Section 3 for a brief introduction of this model of random
trees and to Drmota’s book [7, Sec. 1.2.7] for a more detailed discussion.

The asymptotic shape of the vicinity of the fixed root vertex in random trees has
received considerable attention in recent literature. Jonsson and Stefánsson [11] described
a phase transition between an infinite spine case and a condensation setting for large
Galton–Watson trees with a power-law offspring distribution. A third regime for random
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34:2 Local Limits of Large Galton–Watson Trees Rerooted at a Random Vertex

simply generated trees with superexponential branching weights was studied by Janson,
Jonsson and Stefánsson [10]. The asymptotic shape of simply generated trees as their size
tends to infinity was later described in complete generality by Janson [9]. Abraham and
Delmas [3, 4] classified the limits of conditioned Galton–Watson trees as the total number
of vertices with outdegree in a given fixed set tends to infinity. Limits of Galton–Watson
trees having a large number of protected nodes were established by Abraham, Bouaziz,
and Delmas [1]. The asymptotic shape of conditioned multi-type Galton–Watson trees was
studied by Stephenson [14], Abraham, Delmas, and Guo [2], and Pénisson [13].

Clearly considerable effort and progress is being made in understanding local limits
of random trees that describe the asymptotic behaviour near the fixed root vertex, and
for random simply generated trees even a complete classification is available. As for the
question of the asymptotic shape of the vicinity of a random vertex, Aldous [5] studied
in his pioneering work asymptotic fringe distributions for general families of random trees.
For the case of critical Galton–Watson trees, he established, at least when the offspring
distribution has finite variance, convergence of the tree obtained by rerooting at a random
vertex. Janson [9, Thm. 7.12] described the asymptotic behaviour of the fringe subtree
rooted at a random vertex of a simply generated tree. Here a fringe subtree at a vertex v
refers to the subtree formed by v and all its descendants. A fringe subtree of some ancestor
of v is also called an extended fringe subtree. A recent work by Holmgren and Janson [8]
studied fringe subtrees and extended fringe subtrees of models of random trees that may
be described by the family tree of a Crump–Mode–Jagers branching process stopped at a
suitable time, including random recursive trees, preferential attachment trees, fragmentation
trees and m-ary search trees.

Janson [9] distinguishes three types of simply generated trees, numbered I, II and III,
and for each the local limit exhibits a distinguishing characteristic. See Subsection 3.1 for
a brief review of this notation. We use this terminology in our study of the vicinity of a
random vertex. In the type I setting, the simply generated tree Tn is distributed like a critical
Galton–Watson tree conditioned on having n vertices. Thus the height of a random vertex
in Tn is typically large and extended fringe trees are typically small. In this regime, the limit
is given by the random sin-tree constructed by Aldous [5]. Here the word sin refers to the
fact that, like the Kesten tree, this tree has almost surely up to finite initial segments only a
single infinite path. When the offspring distribution has finite variance, we may even verify
total variational convergence of the extended fringe subtree up to o(

√
n)-distant ancestors.

While trees in the type I regime usually have small maximum degree, the types II and III
are characterized by the appearance of vertices with large degree, which may be viewed as a
form of condensation. Specifically, type II simply generated trees correspond to subcritical
Galton–Watson trees with a heavy-tailed offspring distribution, and type III simply generated
trees have superexponential branching weights such that no equivalent conditioned Galton–
Watson tree exists. Our main contribution is in this condensation setting, where contrary to
the type I regime a random vertex may be near to the root, and extended fringe trees may
have size comparable to the total number of vertices of Tn, as we are likely to encounter an
ancestor with large degree. This is also a major difference to the settings addressed in the
mentioned works by Aldous [5] and Holmgren and Janson [8].

We set up a compact space that encodes rooted plane trees that are centered around
a second distinguished vertex, and establish several limit theorems. For arbitrary weight-
sequences having type II or III, we establish a limit that describes the vicinity of a random
vertex up to and including its first ancestor with large degree. Here large means having
outdegree bigger than a deterministic sequence that tends to infinity sufficiently slowly. The
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asymptotic shape of what lies beyond this ancestor appears to depend on the branching
weights. In a way, the vertex with large degree obstructs the view to older generations.

We describe a novel limit object T ∗ given by a random pointed plane tree, in which the
pointed vertex has random distance from its first ancestor with infinite degree, and this
ancestor again has a random number of ancestors with finite degree before the construction
stops. For arbitrary weight-sequences, the asymptotic probability for the vicinity of a
random vertex of Tn to have a specific shape that admits at most one single ancestor of large
degree, but allows ancestors with small degrees afterwards, coincides with the corresponding
probability for the tree T ∗. Our approach is based on a heavily modified depth-first-search
to explore the tree Tn. This yields information on how parts of a limit tree for the complete
vicinity, that is not truncated at the first large ancestor, must look, if the simply generated
tree Tn pointed at a random vertex converges weakly (along a subsequence). Note also that
the compactness of the space, in which we formulate our limits, guarantees the existence of
such subsequences. Thus the obstruction by the ancestor with large degree, that prevents us
from seeing older generations, is not a complete blockage. However, this is not yet sufficient
to deduce convergence in the space of pointed plane trees. In general, the tip of the backwards
growing spine, where the construction of T ∗ breaks off, may correspond to the root vertex of
Tn, but just as well to a second ancestor with large degree.

If the branching weights belong to a general regime of complete condensation, we manage
to surpass the blockage and deduce weak convergence toward T ∗. There are two main
steps involved. First, we show that convergence toward T ∗ is in fact equivalent to weak
convergence of the height of a random vertex in Tn to the height of the pointed vertex in the
tree T ∗, which in the type II regime is distributed like 1 plus the sum of two independent
identically distributed geometric random variables, and in the type III regime equals 1. In
this case, the root of T ∗ really corresponds to the root of Tn. The second step verifies this
property in the case of complete condensation, where the maximum degree of Tn has the
correct order.

In particular, Kortchemski’s central limit theorem for the maximum degree [12, Theorem
1] allows us to deduce convergence toward T ∗ in the general case of a subcritical Galton–
Watson tree conditioned on having n vertices, if the offspring distribution ξ satisfies P(ξ =
k) = f(k)k−α for a constant α > 2 and a function f that varies slowly at infinity. In the type
III regime where branching weights grow superexponentially fast, we consider the specific
case where ωk = k!α for α > 0. It is known that for these weights the maximum degree of Tn
has order n+ op(n), which may also be seen as complete condensation, see Janson, Jonsson,
and Stefánsson [10] and Janson [9, Example 19.36]. Thus here the tree T ∗ is also the weak
limit of the simply generated tree Tn pointed at a random vertex. There are, however, also
examples of superexponential branching weights that exhibit a more irregular behaviour [9,
Example 19.38], in which weak convergence towards T ∗ does not hold.

The present work is an extended abstract of [15], where detailed justifications of all results
are provided.

2 The space of pointed plane trees

2.1 Centering at a specified vertex
A plane tree is a rooted tree in which the offspring set of each vertex is endowed with a
linear order. (Such trees are also sometimes referred to as planted plane trees or corner
rooted plane trees, in order to distinguish them from related planar structures [7].) In the
present work we will also encounter plane trees that have no root, but whose vertex sets are
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34:4 Local Limits of Large Galton–Watson Trees Rerooted at a Random Vertex

endowed with a partial order that specifies the ancestry relations, and whose offspring sets
are endowed with a linear order that is not required to have a smallest element.

Given a plane tree T and a vertex v ∈ T we let d+
T (v) denote its outdegree, that is, the

number of offspring. Its height hT (v) is its distance from the root-vertex. Traditionally,
plane trees are encoded as subtrees of the Ulam–Harris tree. The Ulam–Harris tree U∞
is an infinite plane tree with vertex set V∞ = N(N) given by the space of finite sequences
of non-negative integers. Its root vertex is the unique sequence with length zero, and the
ordered offspring of a vertex v are the concatenations (v, i) for i ≥ 1. Thus a plane tree
is a subtree of the Ulam–Harris tree that contains its root, such that the offspring set of
each vertex is an initial segment of the offspring of the corresponding vertex in U∞. Here
we explicitly allow trees with infinitely many vertices, and vertices with countably infinite
outdegree. If all outdegrees of a plane tree are finite, we say that it is locally finite. The tree
is finite, if its total number of vertices is. We will usually let o denote the root-vertex of a
plane tree.

Subtrees of the Ulam–Harris tree are however not an adequate form to represent the
vicinity of a specified vertex in a plane tree. If this vertex does not coincide with the root of
the tree, then it has an ordered sequence of ancestors and possibly also siblings that lie to
the left and right of it. If we look at a random vertex of the simply generated Tn, then it
may happen that the number of siblings to the left and/or right of it is asymptotically large,
or that its distance from the root vertex is large. A sensible space in which we may describe
the limit of the vicinity of the random vertex in Tn must hence contain trees with a center
that may have infinitely many ancestors, such that each may have infinitely many siblings to
the left and/or right of it, including the center vertex itself.

For this reason, we describe the construction of an infinite tree U•∞ that is embedded in
the plane and has a spine (ui)i≥0 that grows "backwards". That is, we construct the tree
U•∞ by starting with an infinite path u0, u1, . . . ui of abstract vertices and define ui to be
a parent of ui−1 for all i ≥ 1. Additionally, any vertex ui with i ≥ 1 receives an infinite
number of vertices to the left and to the right of its distinguished offspring ui−1, and each of
these "non-centered" offspring vertices is the root of a copy of the Ulam–Harris tree U∞. To
conclude the construction, the start-vertex u0 of the spine also gets identified with the root
of a copy of U∞. We let V•∞ denote the vertex-set of the tree U•∞. The tree U•∞ is illustrated
in Figure 1.

Note that the vertex set V•∞ carries a natural partial order (given by the transitive hull
of the parent-child relations specified in the construction of U•∞), and the offspring set of
any given vertex carries a natural linear order. This allows us to continue using the terms
ancestor and offspring in this context.

A plane tree T together with a distinguished vertex v0 is called a pointed plane tree, and
may be interpreted in a canonical way as a subtree of U•∞. To do so, let v0, v1, . . . , vk denote
the path from v0 to the root of T . This way, any vertex vi for i ≥ 1 may have offspring
to the left and to the right of vi−1. Thus there is a unique order-preserving and outdegree
preserving embedding of T into U•∞ such that vi corresponds to ui for all 0 ≤ i ≤ k. Compare
with Figure 1.

2.2 Topological properties

Any plane tree T may be identified with its family of outdegrees (d+
T (v))v∈V∞ ∈ NV∞0 , where

we set N0 = N0 ∪ {∞}. Here we use the convention d+
T (v) = 0 if v ∈ V∞ is not a vertex of

the tree T . We endow N0 with the one-point compactification topology of the discrete space



B. Stufler 34:5

Figure 1 Embedding of a pointed plane tree into the tree U•∞. Each black blob represents a copy
of the Ulam–Harris tree.

N0. Thus plane trees are elements of the compact product space NV∞0 . It is not hard to see
that the subspace T ⊂ NV∞0 of all plane trees is closed.

Similarly, we may identify a pointed plane tree T • = (T, v0) with the corresponding
family of outdegrees (d+

T•(v))v∈V•∞ , such that d+
T•(v) ∈ N0 for v /∈ {u1, u2, . . .}, and d+

T•(ui) ∈
{∗} t (N0 × N0) for i ≥ 1. Here the two numbers represent the number of offspring vertices
to the left and right of the distinguished son ui−1, and the ∗-placeholder represents the fact
that the vertex does not belong to the tree.

Since N0 is a compact Polish space, so are the product N0 × N0 and the disjoint union
topology on {∗} t (N0 × N0). Hence the space of all families (d+(v))v∈V•∞ satisfying

d+(v) ∈
{
N0 for v /∈ {u1, u2, . . .}
{∗} t (N0 × N0) for v ∈ {u1, u2, . . .}

is the product of countably many compact Polish spaces, and hence also compact and Polish.
It is easy to verify that the subset T• of all elements that correspond to trees (that is,
connected acyclic graphs) is closed, and hence also a compact Polish space with respect to
the subspace topology.

3 Simply generated trees

We let w = (ωi)i≥0 denote a sequence of non-negative weights satisfying ω0 > 0 and ωk > 0
for at least one k ≥ 2. The weight of a plane tree T is defined by ω(T ) =

∏
v∈T ωd+

T
(v). The

simply generated tree Tn with n vertices gets drawn from the set of all n-vertex plane trees
with probability proportional to its weight. Galton–Watson trees conditioned on having a
fixed number of vertices are encompassed by this model of random plane trees. Of course,
the tree Tn is only well-defined if there is at least one plane tree with n vertices that has
positive weight. We set span(w) = gcd{i ≥ 0 | ωi > 0}. As argued in [9, Corollary 15.6],
n-sized trees with positive weight may only exist for n ≡ 1 mod span(w), and conversely,
they always exist if n is large enough and belongs to this congruence class. We tacitly only
consider such n throughout this paper.

3.1 Three types of weight-sequences
Janson [9, Chapter 8] distinguishes three types of weight-sequences. The classification is as
follows. Let ρφ denote the radius of convergence of the generating series φ(z) =

∑
k≥0 ωkz

k.

As argued in [9, Lemma 3.1], if ρφ > 0 then the function ψ(t) = φ′(t)t/φ(t) admits a limit
ν = limt↗ρφ ψ(t) ∈]0,∞] with the following properties. If ν ≥ 1, then there is a unique
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number τ with ψ(τ) = 1 and we say the weight sequence w has type I. If 0 < ν < 1, then
we set τ := ρφ <∞ and say w has type II. If ρφ = 0, we say w has type III and set ν = 0
and τ = 0. The constant ν has a natural interpretation as the supremum of the means of all
probability weight sequences equivalent to w. The inclined reader may see [9, Remark 4.3]
for details.

3.2 An associated Galton–Watson tree
We define the probability distribution (πk)k on N0 by πk = τkωk/φ(τ). The mean and
variance of the distribution (πk)k are given by µ = min(ν, 1) and σ2 = τψ′(τ) ≤ ∞. We let ξ
denote a random non-negative integer with density (πk)k, and T a Galton–Watson tree with
offspring distribution ξ. Note that if w has type III, then ξ = 0 almost surely and the tree T
consists of a single deterministic vertex. As detailed in [9, Section 4], if w has type I or II
then the simply generated tree Tn is distributed like the Galton–Watson tree T conditioned
on having n vertices.

4 The limit theorems

As discussed in Section 3 there is a probability distribution (πk)k associated with the weight
sequence w. Let ξ be distributed according to (πk)k and let T be a ξ-Galton–Watson tree.
Thus µ := E[ξ] ≤ 1. We may consider the size-biased random variable ξ̂ with values in N0
and distribution given by

P(ξ̂ = k) = kπk and P(ξ̂ =∞) = 1− µ.

For any tree T and any vertex v ∈ T we let f(T, v) denote the fringe-subtree of T at v. That
is, the maximal subtree of T that is rooted at the vertex v.

Throughout the following, we let v0 denote a uniformly at random selected vertex of
the simply generated plane tree Tn, that in the type I and II regime is distributed like the
Galton–Watson tree T conditioned on having n vertices.

4.1 The type I regime
If the weight-sequence w has type I, then ξ̂ <∞ almost surely, and we define the random
pointed tree T ∗ as follows. Let u0 be the root of an independent copy of the Galton–Watson
tree T . For each i ≥ 1, we let ui receive offspring according to an independent copy of ξ̂.
The vertex ui−1 gets identified with an uniformly at random chosen offspring of ui. All other
offspring vertices of ui become the root of an independent copy of the Galton–Watson tree
T . Compare with Figure 2.

I Theorem 1. If the weight-sequence w has type I, then

(Tn, v0) d−→T ∗

in the space T•.

Let T be a plane tree, v ∈ T a vertex, and k ≥ 0 an integer. If the vertex v has a kth
ancestor vk, then we may define the pointed plane tree Hk(T, v) as the fringe tree f(T, vk)
that is rooted at the vertex vk and pointed at the vertex v. Here we use the term vertex in
the graph-theoretic sense, since the coordinates of the vertex v as node of the Ulam–Harris
tree depend on whether we talk about v ∈ T or v ∈ f(T, vk). If the vertex v has height
hT (v) < k, we set Hk(T, v) = � for some placeholder symbol �.
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Figure 2 The limit tree T ∗ in the type I regime. Each triangle represents an independent copy
of the Galton–Watson tree T . For each i ≥ 1 the vertex ui receives offspring according to an
independent copy of ξ̂, and the location of ui−1 within that offspring set is chosen uniformly at
random.

Figure 3 The limit tree T ∗ in the complete condensation regime. The vertex ui1 is the only one
having infinite degree, and each triangle represents an independent copy of the Galton–Watson tree
T .

I Theorem 2. Suppose that weight-sequence has type I and the offspring distribution ξ

has finite variance. Let kn be an arbitrary sequence of non-negative integers that satisfies
kn/
√
n→ 0. Then

dTV(Hkn(Tn, v0), Hkn(T ∗, u0))→ 0

as n becomes large.

Here we use the redundant notation (T ∗, u0) to emphasize that the tree T ∗ is marked at
the vertex u0.

4.2 Complete condensation in the type II regime
If the weight-sequence w has type II or III, then we construct T ∗ similarly as in the type I
case, letting u0 become the root of an independent copy of the Galton–Watson tree T , and
letting for i = 1, 2, . . . the vertex ui receives offspring according to an independent copy ξ̂i of
ξ̂, where a uniformly at random chosen son gets identified with ui−1 (specifying the number
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of siblings to the left and right of ui−1) and the rest become roots of independent copies of
T . We proceed in this way for i = 1, 2, . . . until it occurs for the first time i1 that ξ̂i1 =∞.
When ξ̂1, . . . , ξ̂i1−1 <∞ and ξ̂i1 =∞, then ui1 receives infinitely many offspring to the left
and right of its son ui1−1. Each of these vertices (except ui1−1 of course) gets identified
with an independent copy of the Galton–Watson tree T . We then proceed as before for
i = i1, i1 + 1, . . ., such that ui receives offspring according to an independent copy ξ̂i of ξ̂,
with a random son being identified with ui−1 and the rest becoming roots of independent
copies of T , until it happens for the second time i2 that ξ̂i2 =∞. When ξ̂i1 =∞ = ξ̂i2 for
i1 < i2 and ξ̂i < ∞ for all i < i2 with i 6= i1, then we stop the construction. The spine of
the resulting tree is then given by the ordered path u0, . . . , ui2−1. Compare with Figure 3.

Note that this construction also works in the type I regime and yields the tree T ∗ as
defined in Section 4.1, since w having type I implies that almost surely ξ̂i <∞ for all i ≥ 1.

I Theorem 3. Suppose that the weight-sequence w has type II. If the maximum degree ∆(Tn)
satisfies ∆(Tn) = (1− µ)n+ op(n), then it holds that

(Tn, v0) d−→T ∗

in the space T•. In particular, this is the case when there is a constant α > 2 and a slowly
varying function f such that for all k P(ξ = k) = f(k)k−α.

Here we make use of a result by Kortchemski [12, Theorem 1] who established a central
limit theorem for the maximum degree, that ensures that ∆(Tn) has the correct order if
the offspring distribution ξ has a power law up to a slowly varying factor. There are also
examples of offspring distributions with a more irregular behaviour. Janson [9, Example
19.37] constructed a weight sequence such that along a subsequence n = nk it holds that
∆(Tn) = op(n), and along another subsequence several vertices with degree comparable to n
exist. This may be seen as incomplete condensation.

The proof idea of Theorem 3 is to deduce the asymptotic distribution of the height hTn(v0)
by localizing the vertex of Tn having maximum degree at a position, that was also given in
[12, Theorem 2] using results by Armendáriz and Loulakis [6] concerning conditioned random
walks having a subexponential jump distribution. To do so, we employ results of Janson [9,
Chapter 20] that (partially) use

∆(Tn) = (1− µ)n+ op(n),

but do not assume the offspring distribution to be subexponential. The following main
lemma, which characterizes convergence toward the tree T ∗ in terms of weak convergence of
the height hTn(v0), then finalizes the proof of Theorem 3.

I Lemma 4. If the weight-sequence w has type II or III, then the following three conditions
are equivalent.
1. (Tn, v0) d−→T ∗ in T•.
2. hTn(v0) d−→ hT ∗(u0).
3. lim supn→∞ P(hTn(v0) ≥ k) ≤ µk + k(1− µ)µk−1 for all k ≥ 1.
Note that hT ∗(u0) is distributed like 1 plus the sum of two independent identically distributed
geometric random variables that assume an integer i with probability µi(1− µ).

4.3 Complete condensation in the type III regime
If the weight-sequence w has type III, then it holds that µ = 0 and almost surely ξ = 0 and
ξ̂ =∞. Here the Galton–Watson tree T is always equal to a single point. Hence the tree
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T ∗ is obtained by letting u1 have infinitely many offspring to the left and right of u0, all of
which (including u0) are leaves.

I Proposition 5. If the weight-sequence w has type III, then the following claims are
equivalent.
1. (Tn, v0) d−→T ∗ in T•.
2. hTn(v0) p−→ 1.
3. The maximum degree ∆(Tn) satisfies ∆(Tn) = n+ op(n).
A general class of weight-sequences that demonstrate this behaviour is given by ωk = k!α with
α > 0 a constant.

Here we use that if ωk = k!α with α > 0 a constant, then it is known [9, page 226, Example
19.36], that the largest degree in Tn has size n+ op(n). But there are also other examples
that exhibit a more irregular behaviour. In [9, page 227, Example 19.38] a weight-sequence
is constructed such that along a subsequence n = nk, for each j ≥ 1 the jth largest degree
Y(j) in Tnk satisfies Y(j) = 2−jn with high probability. This may be seen as incomplete
condensation. It is clear that in this case the limit of (Tn, v0), if it exists at all, must have a
different shape than T ∗.

4.4 Large nodes and truncated limits
Suppose that the weight sequences w has type II or type III. The limit theorems in Subsec-
tions 4.2 and 4.3 work in settings of complete condensation, where the maximum degree of
the tree Tn satisfies

∆(Tn) = (1− µ)n+ op(n).

If we content ourselves with the vicinity of the vertex v0 up to and including the first vertex
having large degree, we may obtain a limit theorem in complete generality. We are also
going to construct a coupling to demonstrate how the vertex with infinite degree in the limit
corresponds to a vertex with large degree in the simply generated tree Tn.

Janson [9, Lemma 19.32] showed that there is a deterministic sequence Ωn that tends to
infinity sufficiently slowly, such that for any sequence Kn →∞ with Kn ≤ Ωn it holds that
the numbers Nk of vertices with outdegree k in the tree Tn satisfy∑

k≤Kn

kNk = µn+ op(n) and
∑
k>Kn

kNk = (1− µ)n+ op(n) (1)

The sequence Ωn may be replaced by any sequence that tends to infinity more slowly. Hence
we may assume without loss of generality that Ωn additionally satisfies Ωn = o(n). Let D̃n

denote a random positive integer, that is independent from all previously considered random
variables, with distribution given by D̃n

d= (d+
Tn(o) | d+

Tn(o) > Ωn). Here we let o denote the
root-vertex of Tn. That is, D̃n is distributed like the root-degree conditioned to be "large".
We form the random tree T̄ ∗n in a similar manner as the random tree T ∗. The vertex u0
becomes the root of an independent copy of the Galton–Watson tree T . For i = 1, 2, . . .
the vertex ui receives offspring according to independent copy ξ̂i of ξ̂, where a randomly
chosen son gets identified with ui−1 and the rest become roots of independent copies of T .
We proceed in this way for i = 1, 2, . . . until it occurs that ξ̂i =∞. When ξ̂1, . . . , ξ̂i−1 <∞
and ξ̂i =∞, then ui receives D̃n offspring vertices, such that a uniformly at random chosen
one gets identified with ui−1, and the rest get identified with the roots of independent copies
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34:10 Local Limits of Large Galton–Watson Trees Rerooted at a Random Vertex

of T . Rather than continuing with the spine as in the construction of the tree T ∗, we stop
at this point, so that ui becomes the root of this tree.

Given a pointed tree T • = (T, v) and an ancestor a of v we may consider the fringe
subtree of T at a as pointed at the vertex v. Let v0 denote a uniformly at random selected
vertex of the simply generated tree Tn. Let H(Tn, v0,Ωn) denote the pointed fringe subtree
of (Tn, v0) at the youngest ancestor of v0 that has outdegree bigger than Ωn. If no such
vertex exists (which is unlikely to happen, as we are going to verify), set H(Tn, v0,Ωn) = �
for some fixed placeholder value �.

I Theorem 6. Suppose that the weight sequence w has type II or III. Let T̄ ∗ denote the
pointed fringe subtree of the tree T ∗ at its unique vertex with infinite degree. Then it holds
that

H(Tn, v0,Ωn) d−→T̄ ∗.

in the space T•.

The strength of this theorem is its generality, as we make no additional assumptions on
the weight-sequence at all. It is suitable for applications where it is not necessary to look
behind the large vertex.

We may still improve upon this. For each n, let T̄ ∗n be constructed from T̄ ∗ by pruning
at its root vertex such that its outdegree becomes D̃n. Of course we have to select one of the
D̃n ways of how much we prune from the left and right so that the total outdegree becomes
D̃n, and we choose an option uniformly at random.

For each integer m ≥ 0 we let V̄ [m] ⊂ V•∞ denote the vertex set of the tree obtained
from U•∞ by deleting all vertices with distance larger than m from the center vertex u0 and
pruning so that the vertices ui, 1 ≤ i ≤ m have outdegree (m,m) and the remaining vertices
all have outdegree equal to m. The topology on the subspace T•lf ⊂ T• of locally finite trees
is induced by the metric

dT•lf (T
•
1 , T

•
2 ) = 1/ sup{m ≥ 0 | d+

T•1
(v) = d+

T•2
(v) for all v ∈ V̄ [m]}.

This can be verified using the fact that a sequence (Tn)n in T• converges towards an element
T ∈ T• if and only if d+

Tn
(v) converges towards d+

T (v) for each v ∈ V•∞.

I Theorem 7. Suppose that the weight sequence w has type II or III. For any finite set of
vertices x1, . . . , xr ∈ V•∞ it holds that

dTV((d+
H(Tn,v0,Ωn)(xi))1≤i≤r, (d+

T̄ ∗n
(xi))1≤i≤r)→ 0.

Equivalently, there is a coupling of (Tn, v0) and T̄ ∗n such that dT•lf (H(Tn, v0,Ωn), T̄ ∗n ) p−→ 0.

In Equation (20.4) and the subsequent paragraph of [9], Janson also argues that if

∆(Tn) = (1− µ)n+ op(n), (2)

then dTV(∆(Tn), D̃n)→ 0. Hence in the complete condensation regime where (2) is assumed
to hold, we may choose D̃n in the coupling of Theorem 7 such that D̃n = ∆(Tn) with
probability tending to 1 as n becomes large. This yields the asymptotic location of the vertex
with maximum degree with respect to the random vertex v0.
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