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Abstract
The notions of bounded expansion and nowhere denseness not only offer robust and general
definitions of uniform sparseness of graphs, they also describe the tractability boundary for
several important algorithmic questions. In this paper we study two structural properties of
these graph classes that are of particular importance in this context, namely the property of
having bounded generalized coloring numbers and the property of being uniformly quasi-wide.
We provide experimental evaluations of several algorithms that approximate these parameters on
real-world graphs. On the theoretical side, we provide a new algorithm for uniform quasi-wideness
with polynomial size guarantees in graph classes of bounded expansion and show a lower bound
indicating that the guarantees of this algorithm are close to optimal in graph classes with fixed
excluded minor.
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1 Introduction

The exploitation of structural properties found in sparse graphs has a long and fruitful history
in the design of efficient algorithms. Besides the long list of results on planar graphs and
graphs of bounded degree (which are too numerous to fairly represent here), the celebrated
structure theory of graphs with excluded minors, developed by Robertson and Seymour [57]
falls into this category. It not only had an immense influence on the design of efficient
algorithms (see e.g. [18, 19]) it further introduced the now widely used notion of treewidth
(see e.g. [8]) and gave rise to the field of parameterized complexity: “In the beginning, all
we did was graph minors” (M. Fellows, pers. comm.). As such, the impact of the theory of
sparse graphs on algorithmic research cannot be overstated.

Many of the algorithmic results concerning classes excluding a minor or a topological
minor are in some way based on topological arguments, depending on the structure theorems
(e.g. decompositions) for the class under consideration. A complete paradigm shift was
initiated by Nešetřil and Ossona de Mendez with their foundational work and introduction of
the notions of bounded expansion [42, 43, 44] and nowhere denseness [46]. These graph classes
extend and properly contain all the aforementioned sparse classes and many arguments based
on topology can be replaced by more general, and surprisingly often much simpler, arguments
based on density. We refer to the textbook [47] for extensive background on the theory of
sparse graph classes.

The rich structural theory for bounded expansion and nowhere dense graph classes has
been successfully applied to design efficient algorithms for hard computational problems
on specific sparse classes of graphs, see e.g. [6, 16, 21, 22, 23, 24, 25, 28, 30, 63]. On the
other hand, several results indicate that nowhere dense graph classes form a natural limit for
algorithmic methods based on sparseness arguments, see e.g. [21, 23].

One core strength of the bounded expansion/nowhere dense framework is that there
exists a multitude of equivalent definitions that provide complementing perspectives. Here,
we study two structural properties of these classes that are of particular importance in the
algorithmic context, namely the property of having bounded generalized coloring numbers
and the property of being uniformly quasi-wide. The generalized coloring numbers intuitively
measure reachability properties in a linear vertex ordering of a given graph. Such an
ordering yields a very weak and local form of a graph decomposition which can be exploited
combinatorially [24, 54] and algorithmically [6, 21, 22, 30]. Uniform quasi-wideness was
originally introduced in finite model theory [15], and soon found combinatorial and algorithmic
applications on nowhere dense classes [16, 24, 28, 35, 45, 52, 60].

Even though the above results render many problems tractable in theory, many of the
known algorithms have worst-case running times that involve huge constant factors and
combinatorial explosions with respect to the discussed parameters. The central question
of our work here is to investigate how the generalized coloring numbers and uniform quasi-
wideness behave on real-world graphs, an endeavor which so far has only been conducted
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for a single notion of bounded expansion and on a smaller scale [20]. Controllable numbers
would be a prerequisite for practical implementations of these algorithms based on such
structural approaches. We provide an experimental evaluation of several algorithms that
approximate these parameters on real world graphs.

On the theoretical side, we provide a new algorithm for uniform quasi-wideness with
polynomial size guarantees in graph classes of bounded expansion and show a lower bound
indicating that the guarantees of this algorithm are close to optimal in graph classes with
fixed excluded minor.

2 Basic definitions

Graphs. All graphs in this paper are finite, undirected and simple, that is, they do not have
loops or multiple edges between the same pair of vertices. For a graph G, we denote by V (G)
the vertex set of G and by E(G) its edge set. The distance between a vertex v and a vertex w
is the length (that is, the number of edges) of a shortest path between v and w. For a vertex v
of G, we write NG(v) for the set of all neighbors of v, NG(v) = {u ∈ V (G) | {u, v} ∈ E(G) },
and for r ∈ N we denote by NG

r [v] the closed r-neighborhood of v, that is, the set of vertices
of G at distance at most r from v. Note that we always have v ∈ NG

r [v]. The radius of
a connected graph G is the minimum integer r such that there exists v ∈ V (G) with the
property that all vertices of G have distance at most r to v. A set A is r-independent if all
distinct vertices of A have distance greater than r.

Bounded expansion and nowhere denseness. A minor model of a graph H in a graph G
is a family (Iu)u∈V (H) of pairwise vertex-disjoint connected subgraphs of G, called branch
sets, such that whenever uv is an edge in H, there are u′ ∈ V (Iu) and v′ ∈ V (Iv) for which
u′v′ is an edge in G. The graph H is a depth-r minor of G, denoted H 4r G, if there is
a minor model (Iu)u∈V (H) of H in G such that each Iu has radius at most r. A class C of
graphs is nowhere dense if there is a function t : N→ N such that for all r ∈ N it holds that
Kt(r) 64r G for all G ∈ C, where Kt(r) denotes the clique on t(r) vertices. The class C has
bounded expansion if there is a function d : N→ N such that for all r ∈ N and all H 4r G

with G ∈ C, the edge density of H, i.e. |E(H)|/|V (H)|, is bounded by d(r).

Weak coloring numbers. The weak coloring numbers wcolr were introduced by Kierstead
and Yang [31] and intuitively measure reachability properties in a linear vertex ordering of a
given graph. Formally, they are a series of numbers, parameterized by a positive integer r,
which denotes the radius of the considered ordering. Let Π(G) be the set of all linear orders
of the vertices of the graph G, and let L ∈ Π(G). Let u, v ∈ V (G). For a positive integer r,
we say that u is weakly r-reachable from v with respect to L, if there exists a path P of
length `, 0 ≤ ` ≤ r, between u and v such that u is minimum among the vertices of P (with
respect to L). Let WReachr[G,L, v] be the set of vertices that are weakly r-reachable from v

with respect to L. Note that v ∈WReachr[G,L, v]. The weak r-coloring number wcolr(G)
of G is defined as

wcolr(G) := min
L∈Π(G)

max
v∈V (G)

∣∣WReachr[G,L, v]
∣∣ .

As proved by Zhu [67], the weak coloring numbers can be used to characterize bounded
expansion and nowhere dense classes of graphs.
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Uniform quasi-wideness. Intuitively, a class of graphs is wide if for every graph G from the
class, every radius r ∈ N and every large subset A ⊆ V (G) of vertices one can find a large
r-independent subset B ⊆ A. The notion of uniform quasi-wideness allows to additionally
delete a small number of vertices to make B r-independent. The following definition formalizes
the meaning of “large” and “small”.

I Definition 2.1. A class C of graphs is uniformly quasi-wide if for every m ∈ N and every
r ∈ N there exist numbers N(m, r) and s(r) such that the following holds.

Let G ∈ C and let A ⊆ V (G) with |A| ≥ N(m, r). Then there exists a set S ⊆ V (G)
with |S| ≤ s(r) and a set B ⊆ A\S of size at least m such that for all distinct u, v ∈ B
we have distG−S(u, v) > r.

Uniform quasi-wideness was introduced by Dawar in [15] and it was proved by Nešetřil and
Ossona de Mendez in [45] that uniform quasi-wideness is equivalent to nowhere denseness.

3 Weak coloring numbers

We experiment with the following approximation algorithms of weak coloring numbers. We
here only briefly list them and give necessary definitions to discuss studied variants; a more
exhaustive presentation can be found in the full version of the paper.

Distance-constrained transitive fraternal augmentations. We can approximate the weak
coloring numbers by orienting the input graph G and iteratively inserting arcs according to
certain rules. Such transitive-fraternal augmentations (tf-augmentations) were studied first
in [43]. We work with an optimized version, called distance-constrained tf-augmentations
(dtf-augmentations) which were introduced in [53].

Flat decompositions. The following algorithm was introduced in [62]. It provides a way of
constructing an order with bounded wcolr numbers on class of graphs with excluded minors.

Consider the following procedure for computing a vertex ordering of G. At each step, we
maintain a family of blobs B1, B2, . . . , Bp ⊆ V (G), which are pairwise disjoint and connected,
and we let U := V (G) \

⋃p
i=1Bi be the vertices which are not yet contained in any blob. We

call vertices in U unprocessed and vertices in V (G) \ U processed. To create the next blob,
we let u be any vertex of U and let C be the connected component of G[U ] that contains u.
Create blob Bp+1 as follows: start with {u}, and for every blob Bi that is adjacent to C,
pick any vertex v ∈ C adjacent to Bi, and add to Bp+1 any shortest path from u to v within
C. Finally, when all vertices are subsumed in the blobs, order vertices from different blobs
according to the creation time of their blobs, and vertices from the same blob arbitrarily.

As shown in [62], if Kt 64 G, then the above procedure produces an order that certifies that
wcolr(G) ∈ O(r t−1). Note that this algorithm leaves a lot of room for heuristic optimizations:
we can first vary the order of vertices within the blobs and we can vary the choice of the
vertex u. As it is not clear which choices would be the best, we decided to create a few sets
of rules for both choices and evaluate every combination of them. Within one blob we can
order vertices (1) according to a BFS, (2) according to a DFS, (3) in the order of descending
degree (motivated by the results of another heuristic). In the tables presented in Section 6,
these rules will be abbreviated as BFS, DFS and SORT, respectively. Moreover, each of these
orders can be reversed; reversed orders are denoted with an overline over their acronym.

As the next unprocessed vertex u we can choose a vertex (1) with the largest number of
processed neighbours, (2) with the largest degree among all unprocessed vertices, (3) with
the largest degree among all unprocessed vertices with a processed neighbor. Later, we refer
to these rules by their numbers.
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Treedepth heuristic. Since the ‘limit’ of weak-coloring numbers is exactly the treedepth of a
graph, i.e. wcol∞(G) = td(G), we consider computing a treedepth decomposition and using an
ordering derived from the decomposition. Our algorithm of choice, developed by Sanchez [59]
and implemented by Oelschlägel [51], recursively extracts separators from the graph.

Treewidth heuristic. A well-known approach to compute a treewidth decomposition of a
graph is to find a linear order of the vertices, an elimination order, of possibly small maximum
so-called “back-degree”. There is a number of heuristics to produce good elimination orders.
We chose one that is simple, fast and that gives rather good results for treewidth: the
so-called minimum-degree heuristic [9].

Other simple heuristics. Apart from algorithms with theoretical guarantees we also com-
pared several naive heuristics.

For r = 1 an optimal order is a degeneracy order, which can be easily computed. We can
check if this order produces reasonable results for higher values of r as well.
Intuitively, it makes sense to sort vertices by descending degree (ties are broken arbitrarily)
because from vertices of high degree more vertices can be reached in one step.
A simple idea of generalizing the above heuristics to bigger values of r is to apply
them to the rth power Gr of G (Gr is defined as the graph with V (Gr) = V (G) and
uv ∈ E(Gr)⇔ distG(u, v) ≤ r).
As a baseline we also included random ordering of vertices.

The intuition behind using a degree-ordering is further supported by a popular network
model: Chung–Lu random graphs which sample graphs with a fixed degree distribution
and succesfully replicate several statistics exhibited by real-world networks [12, 13]. In this
model, vertices are assigned weights (corresponding to their expected degree) and edges are
sampled independently but biased according to the endpoints weights. Therefore vertices of
the same degree are exchangable and the one ordering we can choose to minimize the number
of r-reachable vertices is simply the descending degree ordering. It follows that if Chug–Lu
graphs are a resonable approximation of real-world networks, then the degree ordering should
a good choice.

3.1 Local search
In addition to all these approaches we can try to improve their results by local search, a
technique where we make small changes to a candidate solution. We applied the following
local changes and tested whether they caused improvements to the current order L.

Swap a vertex v that has biggest WReachr[G,L, v] with a random vertex that is smaller
with respect to L.
Swap a vertex v that has biggest WReachr[G,L, v] with its direct predecessor u in L.

Both heuristics try to place a vertex with many weakly reachable vertices earlier in the order
and thus to make them non-weakly reachable. The advantage of the second rule is that
WReachr[G,L, v] is trivial to recompute and the only computationally heavy update is for
the new WReachr[G,L, u]. For the first rule, recomputing WReach sets is more expensive.
However, the disadvantage of the second rule is that it does not lead to further improvements
quickly, hence applications of only the first rule give better results than applications of the
second rule only. In our implementation we did a few optimizations in order to improve the
results of second rule, but we refrain from describing them in detail. The final algorithm
conducting local search firstly performs a round of applications of the first rule and when
they no longer improve results it performs a round of applications of the second rule. Such
combination turned out to be empirically most effective.
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4 Uniform quasi-wideness

We experiment with the following algorithms for uniform quasi-wideness. We here only
briefly list them and give necessary definitions to discuss studied variants; more exhaustive
presentation can be found in the full version of the paper.

Distance trees. [52] introduced a method for showing uniform quasi-wideness of nowhere
dense graphs by iteratively building r-independent sets for increasing values of r. The critical
part is an algorithm that, given an (1-)independent set A in a graph G, finds a (small) set S
and a 2-independent set B ⊆ A in G− S. An involved combinatorial argument shows the
following: either such set B can be already found for the tentative S, or there exists a vertex
v ∈ V (G) with many neighbors in A; then one includes v in S and restrict A to N(v) ∩A.
The final restriction is critical for the proof of the bound on the final set S.

We have implemented three variants of this algorithm, denoted later tree1, tree2, and
ld_it. tree2 is the original algorithm of [52], while tree1 is a variant that, in the step
when the set A is restricted to N(v) ∩ A, tries to preserve some vertices of A \ N(v) for
future use. Finally, ld_it is a variant that replaces every execution of the method of [52]
with greedy approach to search for large 2-independent set B ⊆ A.

From weak coloring numbers to uniform quasi-wideness. First, we implemented an ap-
proach of [34] which is designed for classes of bounded expansion and combines the weak
coloring numbers with uniform quasi-wideness. This algorithms is later referred to as mfcs.

Second, motivated by the rather conservative character of the algorithm of [34], we
propose here a new algorithm (albeit inspired by [34]), proving the following.

I Theorem 4.1. Assume we are given a graph G, a set A ⊆ V (G), integers r ≥ 1 and
m ≥ 2, and an ordering L of V (G) with c = maxv∈V (G) |WReachr[G,L, v]|. Furthermore,
assume that |A| ≥ 4 · (2cm)c. Then in polynomial time, one can compute sets S ⊆ V (G) and
B ⊆ A \ S such that |S| ≤ c, |B| ≥ m, and B is r-independent in G− S.

We implemented three variants of the above algorithm, new1, new2, and new_ld. The first
two differ in some minor internal details, whereas new_ld extends new2 as follows: at every
step it attempts to complete the currently handled partial r-independent set in a greedy
manner, and at the end returns the best solution found during the entire execution.

Other naive approaches and heuristic optimizations. Since computing uniform quasi-
wideness for r = 1 is equivalent to finding independent sets, it is sensible to include
independent set heuristics as a baseline. Moreover, the approach based on distance trees
computes independent sets as a subroutine. We used a simple greedy algorithm to find
independent sets: As long as our graph is nonempty, take a vertex of minumun degree, add
it to the independent set and remove its closed neighborhood from the graph.

The following algorithm is what we came up with as a naive but reasonable heuristic for
larger values of r. For every number k ∈ {0, 1, . . . ,K} (where K is some hardcoded constant)
compute the biggest independent set in graph (G − Sk)r[A] using the greedy procedure
described above, where Sk is a set of k vertices with biggest degrees. This heuristic is based
on the fact that independent sets in Gr correspond to r-independent sets in G. Without any
further knowledge about the graph, vertices with the biggest degree seem to be the best
candidates to be removed. In the end, we output the best solution obtained in this manner.
In the following, we abbreviate this approach as ld (least degree on power graph).
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4.1 Score: Comparing different results
Uniform quasi-wideness is a two-dimensional measure: we have to measure both the size m
of the r-independent set B which we desire to find, as well as the size s(r) of vertices
to be deleted. In order to compare the performance of our studied methods we propose
the following approach that arises from applications of uniform quasi-wideness in several
algorithms [16, 21, 24, 52, 60].

Let G,A ⊆ V (G), r ∈ N be an input to any of our algorithms (note that none of our
algorithms takes the target size m of the r-independent set as input, we rather try to
maximize its size) and let S ⊆ V (G) and B ⊆ A \ S such that B is r-independent in G− S
be its output. Let us define πr[v, S] – the r-distance profile of v on S – as the function
from S to {0, 1, . . . , r,∞} so that πr[v, S](a) = distG(v, a) if this distance is at most r, and
πr[v, S](a) =∞ otherwise. The performance of the algorithms [16, 21, 24, 52, 60] strongly
depends on the size of the largest equivalence class on B defined by u ∼ v if πr[u, S] = πr[v, S]
for u, v ∈ B.

We hence decided to use the size of the largest equivalence class in the above relation as
the scoring function to measure the performance of our algorithms. Note that number of
different r-distance profiles is bounded by (r + 2)|S|, so if r is fixed and |S| is bounded then
the number of different r-distance profiles is also bounded, so having a big r-independent set
implies having a big subset of this set with equal r-distance profiles on S.

This well defined scoring function makes it possible to compare the results of the algorithms.
Furthermore, in our code the implementation of the scoring function can be easily exchanged,
so if different scoring functions are preferred, re-evaluation is easily possible.

5 Experimental setup

5.1 Hard- and Software
The experiments on generalized coloring numbers has been performed on an Asus K53SC
laptop with Intel® Core™ i3-2330M CPU @ 2.20GHz x 2 processor and with 7.7GiB of
RAM. Weak coloring numbers of a larger number of graphs for the statistics in Section 6.4
(presented without running times) were produced on a cluster at the Logic and Semantics
Research Group, Technische Universität Berlin. The experiments on uniform quasi-wideness
have been performed on a cluster of 16 computers at the Institute of Informatics, University
of Warsaw. Each machine was equipped with Intel Xeon E3-1240v6 3.70GHz processor and
16 GB RAM. All machines shared the same NFS drive. Since the size of the inputs and
outputs to the programs is relatively small, the network communication was neglible for tests
with substantial running times. The dtf implementation has been done in Python, while all
other code in C++ or C. The code is available at [41, 3].

5.2 Test data
Our dataset consists of a number of graphs from different sources.
Real-world data. We collected appropriately-sized networks from several collections [1, 33,

39, 7, 58, 36]. Our selection contains classic social networks [66, 11], collaboration networks
[38, 49, 48] contact networks [61, 40], communication patterns [38, 56, 32, 37, 55, 4],
protein-protein interaction [10], gene expression [27], infrastructure [64], tournament data
[26], and neural networks [65]. We kept the names assigned to these files by the respective
source.
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PACE 2016 Feedback Vertex Set. The Parameterized Algorithms and Computational Ex-
periments Challenge is an annual programming challenge started in 2016 that aims at
investigate the applicability of algorithmic ideas studied and developed in the subfields of
multivariate, fine-grained, parameterized, or fixed-parameter tractable algorithms (from
the PACE webpage). In the first edition, one of the tracks focused on the Feedback
Vertex Set problem [17], providing 230 instances from various sources and of different
sizes. We have chosen a number of instances with small feedback vertex set number,
guaranteeing their very strong sparsity properties (in particular, low treewidth). In
our result tables, they are named fvs???, where ??? is the number in the PACE 2016
dataset.

Random planar graphs. In their seminal paper, Alber, Fellows, and Niedermeier [5] initiated
the very fruitful direction of developing of polynomial kernels (preprocessing routines
rigorously analyzed through the framework of parameterized complexity) in sparse graph
classes by providing a linear kernel for Dominating Set in planar graphs. In [5], an
experimental evaluation is conducted on random planar graphs generated by the LEDA
library [2]. We followed their setup and included a number of random planar graphs with
various size and average degree. In our result tables, they are named planarN, where N
stands for the number of vertices.

Random graphs with bounded expansion. A number of random graph models has been
shown to produce almost surely graphs of bounded expansion [20]. We include a number
of graphs generated by O’Brien and Sullivan [50] using the following models: the stochastic
block model (sb-? in our dataset) [29] and the Chung-Lu model with households (clh-?)
and without households (cl-?) [14]. We refer to [20, 50] for more discussion on these
sources.

The graphs have been partitioned into four groups, depending on their size: the small group
gathers graphs up to 1 000 edges, medium between 1 000 and 10 000 edges, big between 10 000
and 48 000 edges, and huge above 48 000 edges. The random planar graphs in every test
group have respectively 900, 3 900, 21 000, and 150 000 edges. The whole dataset is available
for download at [3].

6 Weak coloring numbers: results

6.1 Fine-tuning flat decompositions
As discussed in Section 3, we have experimented with a number of variants of the flat
decompositions approach, with regards to the choice of the next root vertex and the internal
order of the vertices of the next Bi. The results for the big dataset are presented in Table 1.
They clearly indicate that (a) all reversed orders performed much worse, and (b) among
other options, the best is to sort the vertices of a new Bi nonincreasingly by degree and
choose as the next root the vertex of maximum degree. In the subsequent tests, we use this
best configuration for comparison with other approaches.

6.2 Comparison of all approaches
Table 2 presents the results of our experiments on all test instances and all approaches,
summarized as follows:
dtf dtf-augmentations with the respective radius r supplied as the distance bound;
flat the best configuration of the flat decompositions approach (see previous section);
treedepth the treedepth approximation heuristic;
treewidth the treewidth heuristic;
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Table 1 Comparison of different flat decomposition variants: sorting vertices of the new blobs
Bi by the BFS, DFS, by degree (nonincreasing), or these orders reversed; the second coordinate
refers to the choice of the root vertex: (1) maximizing the number of neighbors already processed,
(2) maximizing degree in U , (3) as previous, but only among neighbors of already processed vertices.
The value is the average of the approximation ratios to the best generalized coloring numbers found
by all versions of this algorithm.

option
average

appx. ratio option
average

appx. ratio option
average

appx. ratio
BFS/(1) 1.159 DFS/(1) 1.156 SORT/(1) 1.072
BFS/(2) 1.131 DFS/(2) 1.117 SORT/(2) 1.039
BFS/(3) 1.147 DFS/(3) 1.135 SORT/(3) 1.054

BFS/(1) 1.363 DFS/(1) 1.368 SORT/(1) 1.41
BFS/(2) 1.277 DFS/(2) 1.291 SORT/(2) 1.329
BFS/(3) 1.309 DFS/(3) 1.324 SORT/(3) 1.36

Table 2 Gray columns: Comparison of the main approaches and their average approximation
ratio to the best found coloring number. Some of the approaches did not finish in time on larger
graphs or ran out of memory. White columns: Total running time of the main approaches. Note
that for some approaches the ordering (and thus running time) is independent of the radius.

tests r dtf flat treedepth treewidth degree sort

small

2 1.19 0:04.20 1.2

0:00.16

1.408

0:08.97

1.12

0:00.34

1.179

0:00.093 1.439 0:05.08 1.239 1.438 1.124 1.211
4 1.558 0:05.74 1.288 1.384 1.135 1.213
5 1.718 0:06.55 1.353 1.414 1.167 1.263

medium

2 1.177 0:27.97 1.362

0:01.97

2.171

—

1.524

0:23.64

1.142

0:00.563 1.258 1:02.31 1.43 1.918 1.283 1.102
4 1.499 1:53.21 1.451 1.698 1.159 1.113
5 1.595 2:15.04 1.469 1.612 1.093 1.149

big

2 1.107 0:32.82 1.43

0:19.08

—

—

2.278

—

1.183

0:03.303 1.243 — 1.419 — 1.895 1.088
4 — — 1.414 — 1.434 1.079
5 — — 1.415 — 1.189 1.065

huge

2 — — 1.727

—

—

—

—

—

1.152

—3 — — 2.156 — — 1.031
4 — — 2.13 — — 1.032
5 — — 2.095 — — 1.029

degree sort the heuristic which sorts the vertices nonincreasing by degree.
Out of all simple heuristics (c.f. Section 3) the degree sorting was supreme and we skip
the results of inferior heuristics (see [41, 3] for full data). Interestingly, this heuristic also
outperformed all other (much more involved) approaches on larger graphs. On small graphs,
the treewidth heuristic takes the lead. An explanation why the treewidth heuristic is better on
smaller graphs G might be that tw(G) = col∞(G) and on small graphs the difference between
col∞(G) and colr(G) for the considered r is not that big. However, this does not explain
why treedepth does not perform better than treewidth. (Recall that td(G) = wcol∞(G).)
It is worth observing that on larger graphs (the big group) the performance of the flat
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Table 3 Gray columns: Comparison of average approximation ratio after local search. White
columns: Relative improvement of local search for ordering output by the studied approaches.

tests radius dtf flat treedepth treewidth degree sort

small

2 1.126

16.7%

1.032

16.9%

1.142

15.2%

1.059

7.0%

1.025

16.2%3 1.227 1.076 1.235 1.098 1.044
4 1.327 1.091 1.281 1.131 1.053
5 1.466 1.135 1.311 1.154 1.088

medium

2 1.192

13.9%

1.138

21.4%

1.206

30.9%

1.135

15.3%

1.011

17.1%3 1.204 1.115 1.303 1.121 1.023
4 1.444 1.28 1.349 1.139 1.017
5 1.482 1.325 1.401 1.134 1.034

big

2 1.12

—

1.142

24.4%

—

—

1.201

24.3%

1.045

18.3%3 1.218 1.14 — 1.29 1.015
4 — 1.223 — 1.27 1.017
5 — 1.257 — 1.212 1.022

decomposition matches or outperforms the one of the treewidth heuristic for radii r = 2, 3, 4.
However, the treewidth heuristic outperforms all approaches with proved guarantees for
r = 5 on test sets up to the big group.

Table 2 gathers total running time of our programs on discussed data sets. These results
clearly indicate large discrepancy between consumed resources for different approaches.
Out of the approaches with provable guarantees on the output coloring number, the flat
decompositions approach is clearly the most efficient.

Note that we applied different timeout policies for generating different data. For generating
time of execution and for applying local search we set timeout to be 1 minute, however for
generating orders and wcol numbers we set timeout to be 5 minutes, but for the sake of
completeness we sometimes allowed some programs to run longer.

In summary, on our data sets the simple heuristic is consistently the fastest and produces
the best results, save for the smallest graphs on which the treewidth heuristic won. We
remark here that it is simple to “fool” the degree-sorting heuristic by adding multiple pendant
vertices of degree one and thus forcing it to take arbitrarily bad ordering, but such adversarial
obstacles seem to be absent in real-world graphs. If one is to choose an algorithm with
provable guarantees, the discussed variant of the flat decompositions approach appears to be
the best choice.

6.3 Local search
In a second round of experiments we applied a simple local-search routine that, given an
ordering output by one of the approaches, tries to improve it by moving vertices with the
largest weakly reachable sets earlier in the ordering. The white columns in Table 3 show how
local search improved orderings output by discussed approaches, and the gray columns show
average approximation ratios of orderings improved by local search. Two remarks are in place.
First, regardless of how the ordering was computed, a local search step always significantly
improves the ordering (we have no good explanation on why local search is significantly less
effective on the orderings output by the treewidth heuristic for bigger radii). Second, the
local search step does not improve the orderings enough to change the relative order of the
performance of the base approaches except for one remarkable case. On medium group the
treewidth heuristic gave best results on r = 5, however degree sort regained the lead after
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Figure 1 Correlation of wcol (computed using the degree sort heuristic) with graph size, maximum
degree and average degree of 1675 real-world graphs. The background shade and number reflect the
correlation of the two respective measures, superimposed is a log-log plot of the measurements. The
yellow lines are linear regressions with dark shaded confidence intervals.

application of local search due to its low performance on larger radii for treewidth heuristic.
We therefore recommend the local search improvement as a relatively cheap post-processing
improvement to any existing algorithm.

6.4 Correlation of weak coloring numbers with other parameters

While it is undeniable that weak coloring numbers have immense algorithmic power from a
theoretical perspective, the efficient computation of such weak coloring orders is only one
component to leverage them in practice: we also need these numbers to be reasonably low.
So far, this had only been established on a smaller scale [20, 53] for a related measure. Here,
we computed the weak coloring number for r ∈ {1, . . . , 5} for 1675 real-world networks from
various sources [36, 39, 58, 7, 1]. Figure 1 summarizes our findings: for r ∈ {1, . . . , 3} we
find a modest correlation with n and a significant correlation with m. The correlation with n
becomes quite pronounced for r = 5; the probable reason being that for all networks involved
logn ≤ 10. Still, even in the worst examples wcol5 is at least one order of magnitude smaller
than n or m. We further see a high correlation between wcol1 and the average degree d̄
which vanishes for larger radii. It is no big surprise that d̄ and the degeneracy wcol1 are
highly correlated since these values are only far apart in graphs with highly inhomogeneous
densities.

The low dependence on the maximum degree confirms the findings of [20]: the exact
shape of the degree distribution’s tail is much more relevant than the singular value of the
maximum degree. Finally, note that in our graphs the degeneracy wcol1 practically does not
grow with n.
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Table 4 Aggregated results of uniform quasi-wideness on medium set for r = 3 and r = 5 (values
for r = 2 and r = 4 can be found in the full version of the paper): total size of all deleted and
independent sets, total score (total size of largest equivalance classes w.r.t. deleted vertices), and
total running time.

r algorithm start with whole V (G) start with 20% of V (G)
deleted independent score time deleted independent score time

3

mfcs 5076 11471 2153 0:01.25 1922 3459 1135 0:00.48
new1 78 2345 2211 0:37.53 49 1192 1159 0:29.96
new2 84 3820 3673 0:34.34 49 2132 2096 0:23.36
new_ld — — — — 5 2926 2873 11:10.63
tree1 7 6072 5686 0:02.77 4 2652 2598 0:00.48
tree2 5 5645 5645 0:01.00 4 2603 2603 0:00.38
ld_it 7 6136 5748 0:01.71 4 2741 2688 0:00.39
ld 5 6471 6296 0:08.13 6 2972 2871 0:02.01

5

mfcs 7946 15773 1164 0:01.93 4057 4396 594 0:00.67
new1 115 1623 1445 4:38.57 84 709 676 3:20.15
new2 122 2079 1888 4:19.50 103 1036 982 3:07.82
new_ld — — — — — — — —
tree1 11 2988 2643 0:02.85 4 1325 1282 0:00.53
tree2 5 2603 2603 0:01.05 4 1284 1284 0:00.45
ld_it 12 3102 2752 0:01.84 5 1380 1336 0:00.64
ld 7 3192 3043 0:29.32 5 1517 1473 0:07.15

7 Uniform quasi wideness: results

Table 4 gathers aggregated data from our experiments on medium dataset. (Full data can be
downloaded from [41, 3].) Every tested algorithm has been run on every test with timeout
10 minutes and with radii r ∈ {2, 3, 4, 5} and with the starting set either A = V (G) or a
random subset of 20% of vertices of V (G).

Data indicate the simple heuristic, ld, as the best choice in most scenarios, as it has
always best or nearly-best total score and runs relatively quickly. The third variant of the
new algorithm new_ld has comparable results, but is inefficient and does not finish within
the timeout. Other variants new1 and new2 as well as mfcs are significantly outperformed
by other approaches. Out of other approaches with provable guarantees, the variants tree1,
tree2, and ld_it provide results in most cases less than 10% worse than the heuristic ld,
with tree2 being consistently worse.

To sum up, our experiments show that the simple heuristic ld gives best results, but if
one is interested in algorithm with provable guarantees, one should choose one of the variant
tree1 over mfcs or new1/new2.

8 Conclusions

We have conducted a thorough empirical evaluation of algorithms for computing generalized
coloring numbers and uniform quasi-wideness. In both cases, one of the simplest heuristics,
without any theoretical guarantees, outperformed the rest. In particular, our new algorithm
for uniform quasi-wideness, whose development was motivated by conservativeness of the
previous approach of [34], performed rather poorly in the experiments. From the algorithms
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with provable guarantees, the experiments indicated a variant of the algorithm of [62] as the
algorithm of choice for generalized coloring numbers and a variant of the algorithm of [52] as
the algorithm of choice for uniform quasi-wideness.
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