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Abstract
In this paper we study the problem of efficiently and effectively extracting induced planar sub-
graphs. Edwards and Farr proposed an algorithm with O(mn) time complexity to find an induced
planar subgraph of at least 3n/(d+ 1) vertices in a graph of maximum degree d. They also pro-
posed an alternative algorithm with O(mn) time complexity to find an induced planar subgraph
graph of at least 3n/(d̄+1) vertices, where d̄ is the average degree of the graph. These two meth-
ods appear to be best known when d and d̄ are small. Unfortunately, they sacrifice accuracy for
lower time complexity by using indirect indicators of planarity. A limitation of those approaches
is that the algorithms do not implicitly test for planarity, and the additional costs of this test
can be significant in large graphs. In contrast, we propose a linear-time algorithm that finds an
induced planar subgraph of n − ν vertices in a graph of n vertices, where ν denotes the total
number of vertices shared by the detected Kuratowski subdivisions. An added benefit of our
approach is that we are able to detect when a graph is planar, and terminate the reduction. The
resulting planar subgraphs also do not have any rigid constraints on the maximum degree of the
induced subgraph. The experiment results show that our method achieves better performance
than current methods on graphs with small skewness.
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1 Introduction

A graph is planar if it admits a planar drawing which means that the graph can be drawn
on the plane such that its edges only intersect at their endpoints. The goal of the graph
planarization problem is to find a planar subgraph by removing edges or vertices from an input
graph. It can be applied in many areas, such as facility layout design [8], circuit design [18],
graph drawing [15], and automated graphical display systems [28]. One popular reformulation
of the graph planarization problem, called the Maximum Induced Planar Subgraph (MIPS)
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problem, aims to find the largest number of vertices which induce a planar subgraph. This
problem is known to be NP-hard, and also surprisingly hard to approximate [19, 23, 26].
The MIPS problem can also be used to compute the coefficient of fragmentability of a class
of graphs, which is the proportion of vertices necessary to produce subgraphs of a bounded
size [11].

Related Work. In this paper, we study the MIPS problem and we assume that the reader
is familiar with basic graph theory (see for example [13, 30]). No graphs being considered
contain edge loops, n denotes the number of vertices, m denotes the number of edges, d
denotes the maximum degree, and d̄ denotes the average degree in a graph.

Halldórsson and Lau [14] proposed a linear-time algorithm (denoted as HL) for the MIPS
problem with a performance ratio of 1/d(d+ 1)/3e in a graph G. They presented several
practical algorithms for partitioning graphs into a fixed number of vertex-disjoint subgraphs
with degree constraints. In order to solve the problem, they capitalize on the Lovász [25]
Theorem: Let a1, a2, ..., ak be non-negative integers such that

∑k
i=1(ai + 1)− 1 = d. Then G

can be partitioned into k induced subgraphs G1, G2, . . . , Gk such that the maximum degree
of Gi is not greater than ai. With this theorem, a graph can be partitioned into at most
d(d+ 1)/3e induced subgraphs of degree at most 2, and the largest subgraph is the planarized
result. The approach of Halldórsson and Lau can induce such a partition in linear time.
However, the maximum degree of the planarization result is restricted to be at most 2.

Edwards and Farr [10] proposed an algorithm (denoted as Vertex Addition) to find
an induced planar subgraph of at least 3n/(d + 1) vertices in O(mn) time, which has a
performance ratio of at least 3/(d+ 1). Compared to the algorithm of Halldósson and Lau,
the performance ratio is improved when d 6≡ 2 (mod 3). The induced planar subgraphs
found by this algorithm is also not constrained to have maximum degree of 2. The algorithm
works as follows. Suppose that P is an initially empty set and R = V (G)\P , this algorithm
works by adding vertices from R one by one into P while maintaining the planarity of 〈P 〉.
In some instances, a vertex from R is swapped with one from P . The restrictions on the
swapping operations are stricter than that on maintaining planarity. By doing this, some
properties in the graph are maintained, which allows the performance of the algorithm to be
analyzed. For further information, please see [11, 10]. This leads to a fact that sometimes it
still swaps some vertices even if planarity could be maintained when all vertices involved in
the swapping operations are included in the planarization result.

Edwards and Farr [11] propose another algorithm (denoted as Vertex Removal) with time
complexity O(mn) for the MIPS problem in a graph of average degree d̄, which achieves a
performance ratio of at least 3/(d̄+ 1) when d̄ ≥ 4 or a graph is connected and d̄ ≥ 2. This
algorithm begins by removing any isolated vertex, any vertex of degree 1, and any vertex of
degree 2. For a vertex of degree 2, if its neighbours are not adjacent, they are joined by an
extra edge. Then a reduced graph is obtained by repeating the operations above until no
further changes are possible. Then, it proceeds to remove the vertex of the highest degree
in the reduced graph iteratively. In order to reduce complexity and improve efficiency, this
algorithm avoids the planarity test in each iteration. Instead, a loose upper bound of the
number of vertices to be removed is computed, which can result in the algorithm continuing
to remove vertices until the upper bound is reached, regardless of whether the current result
is already planar or not. Morgan and Farr [27] later proposed a modified algorithm (denoted
as Vertex Subset Removal) which instead iteratively removes a vertex v with the largest
number of neighbors with degree less than the degree of v in the reduced graph. There
is no known investigation of the impact of the different vertex removal strategies on the
planarization results [24].
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There is a simple example made by Morgan and Farr [27], which roughly summarizes a
limitation shared by all methods mentioned above — all previous methods fail to leave K4
minors in the induced planar subgraph even though K4 is already planar. For a K5 graph,
they can only find an induced planar subgraph of size at most degree 3.

Preliminaries. We now review key definitions before introducing our contributions. Accord-
ing to Kuratowski [21], a graph is planar if and only if it does not contain a Kuratowski
subdivision which can be any subdivision of K5 (a complete graph of size 5) or of K3,3 (a
complete bipartite graph of size 6). A subdivision of a graph G is a graph resulting from
the subdivision of edges in G. The subdivision of an edge e with endpoints (u, v) yields a
graph containing one new vertex w, with an edge set replacing e by two new edges, (u,w)
and (w, v). The skewness of a graph is the minimum number of edges whose removal results
in a planar graph [6].

A graph is a nearly planar graph if it is a k-graph (contains most k edge crossings) or
a k-skewness graph when k is small. Several previous studies have studied graphs with
similar properties in the context of straight-line drawing [17], visualization [12, 9, 7], and
edge intersection [5]. Applications may also require non-planar graphs to be drawn on a
plane even if edge crossings cannot be avoided [1, 8]. So it is naturally desirable to draw
graphs as close to planar as possible. We therefore focus on these cases in our experiments.

Contributions and Outline. We present an algorithm including planarity test to solve the
MIPS problem that does not remove any additional vertices once the graph becomes planar.
An additional benefit of our approach is that the maximum degree of the planarization result
is not constrained, which overcomes some of the limitations of previous work in this area.
The algorithm runs in O(n+m+ E(S)) time, with S being the set of detected Kuratowski
subdivisions, and E(S) being the sum of the number of edges in the subdivisions. The time
complexity is linear w.r.t. E(S), and graph size. The induced planar subgraph produced
by our algorithm is of size n− ν, with ν being the total number of vertices shared by the
Kuratowski subdivisions detected. We conduct several experiments to show that our method
outperforms all other methods for graphs with small skewness.

In Section 2, we first introduce a planarity test algorithm which is the basis of our
approach. Next, we describe our planarization algorithm and proofs of correctness. In
Section 3, we conduct intensive experiments on real-world graphs. Finally, we conclude this
paper in Section 4.

2 Motivation and Approach

Planarity Testing. Our work is based on one of the most efficient planarity test algorithms,
originally presented by Boyer and Myrvold [3]. For more detailed information, please refer
to the original work [3]. The algorithm, denoted as detect, works by checking if a graph
produces a planar drawing. detect begins by creating a depth first search tree (DFS tree)
of the graph. Each vertex is assigned to a depth first index (DFI), and edges are divided
into tree edges forming the DFS tree and backedges (the remaining edges). In this paper,
let v be the vertex currently being processed and Ḡ be the plane for embedding the graph.
Initially, the DFS tree is embedded in Ḡ. detect processes vertices in descending DFI order.
In each iteration of v, detect attempts to embed each backedge (u, v), where u has a larger
DFI than v, while maintaining planarity.
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Figure 1 An example illustrating the detect algorithm.

Initially, each tree edge (z, v) is represented as an independent biconnected component
(z, vz) formed by the vertex with a largest DFI and a virtual vertex. The vertex z is a DFS
child of v, and we denote this virtual vertex as vz to distinguish it from other copies of v.
We use v′ to denote a virtual vertex whose child is not specified. We say that the vertex vz

is the root of this biconnected component. Biconnected components are merged to form a
larger subgraph as backedges are embedded.

Each iteration involves two processes: a Walkup and a Walkdown. A Walkup
identifies relevant biconnected components for a backedge embedding, and classifies vertices
as follows. A vertex w is pertinent if there is a backedge (w, v) to be embedded, or it
has a child biconnected component in Ḡ which contains a pertinent vertex. A backedge
(w, v) is pertinent if w is pertinent and w is marked with an EdgeFlag. A biconnected
component is pertinent if it contains a pertinent vertex. A vertex w is external if there is a
backedge (w, u) to be embedded later, where u has a smaller DFI than v, or it has a child
biconnected component in Ḡ which contains an external vertex. Each vertex is equipped
with a PertinentRoots list that stores the roots of its pertinent child components. For every
backedge (w, u), Walkup traverses from w to u along the paths on the external face of the
biconnected components.

A Walkdown then embeds pertinent backedges and merges relevant biconnected com-
ponents traversed by the Walkup. The process is initiated with two traversals for each
biconnected child component rooted by a virtual point v′: one in the clockwise direction
along the external faces of the biconnected child component, and a second one in the opposite
direction. When Walkdown reaches a pertinent vertex u with an EdgeFlag, the relevant
components are merged, and the backedge (u, v) is embedded. The process continues until
reaching an external but non-pertinent vertex (denoted as stopping vertex), or v′ is found
again. This is the halting condition for the algorithm, and is the only possible indicator of
non-embeddability of backedges. If a pertinent backedge cannot be embedded, the graph is
not planar, as detect has identified a Kuratowski subdivision.

A Linear Time Solution for The MIPS Problem. detect terminates when a pertinent
backedge exists that is not embedded due to a stopping vertex s – meaning the graph is
non-planar. The reason is that if the algorithm embedded an edge after passing s, then s
cannot remain on the outer face of the graph. The embedding of a backedge (s, u) in a later
iteration would result in intersecting edges, which cannot admit a planar drawing.

Let s be a stopping vertex, and the influenced region of s be the collection of paths which
can be visited by a Walkdown only after it has visited s. The vertex v being processed is
an obstruction vertex if there exists at least one pertinent unembedded backedge. We observe
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Algorithm 1: PlanarizationByRegionSkip(G).
Input :A graph G
Output :An induced planar subgraph P

1 Construct a DFS tree of G ;
2 Initialize the embedding structure Ḡ;
3 Initialize ObstructionsList ;
4 for each vertex v in descending DFI order do
5 foreach backedge (w, v) of G where w > v do
6 if w is not an obstruction then
7 Walkup(Ḡ, v, w);
8 foreach DFS child c of v in G do
9 WalkdownWithSkips(Ḡ, vc);

10 foreach back edge (w, v) of G where w > v do
11 if (w, v) not in Ḡ then
12 ObstructionsList[v.index]← v.DFI;
13 break;
14 graph P ← RemoveObstructions(ObstructionsList, G);
15 return P ;

that a stopping vertex s only influences the embedding of a backedge (w, v) when w is in the
influenced region of s. We therefore propose the algorithm PlanarizationByRegionSkip
which embeds all possible pertinent backedges in each iteration by skipping influenced regions
of stopping vertices encountered during the Walkdown. When the embedding process
is completed, all obstruction vertices are removed from the input graph, which produces
an induced planar subgraph. This observation produces an algorithm which can test for
planarity and produce a solution for the MIPS problem simultaneously.

Solution Overview. Algorithm 1 presents our solution for finding an induced planar sub-
graph. It begins by building a DFS tree, and initializing the embedding structure Ḡ (line
1 to 2). Then we use an ObstructionsList to store the indexes of obstruction vertices in
an adjacency list. Each element is initialized to −1 (line 3). Next, the embedding loop is
initiated (line 4 to 12). Obstruction vertices identified in each iteration are excluded from
the Walkup process (line 7). Details of Walkup are described in previous work [3].

In the WalkDownWithSkips, traversals for each biconnected child component rooted
by the virtual point vc are initiated. This process embeds all of the pertinent backedges
which are not influenced by stopping vertices with skipping operations over the influenced
regions (line 9). Then, v is added into the ObstructionsList if there exists an unembedded
pertinent backedge. When the main loop finishes, all obstruction vertices are removed from
the graph.

The WalkdownWithSkips algorithm. As previously discussed, in order to embed backedges
that are not influenced by stopping vertices, we need to perform skipping operations. The
process WaldownWithSkips terminates when it reaches v′ or a stopping vertex on the
component whose root is v′. We denote such a component as a root component. If the stopping
vertex encountered is not on a root component, a skipping operation needs to be performed.
When a traversal descends from vertex r to root vertex r′ of a non-root component, it needs
to choose a direction to proceed. Boyer and Myrvold [3] proposed short circuit edges
which enable r′ to be directly connected to neighbors such that they are either pertinent or a
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Algorithm 2: WalkdownWithSkips(Ḡ, vc).
Input :The embedding structure Ḡ and a virtual vertex vc.

1 foreach traversal from vc do
2 w ←The successor along the external face;
3 while w is not vc do
4 if w has an EdgeFlag then
5 Merge involved components;
6 Embed the backedge (w, vc) and clear w′s EdgeFlag;
7 w ← The successor along the external faces;
8 if w.PertinentRoots is not empty then
9 r ←w.PertinentRoots[0];

10 Traverse down to the component rooted by r;
11 w ← The successor along the external faces;
12 if w is a stopping vertex then
13 if w is on the root component then
14 Embed the Short Circuit Edge (w, vc);
15 break;
16 else
17 x← Another neighbor of r, the root of the current component;
18 if x is a stopping vertex then
19 Skip the components rooted by r;
20 else w ← x;
21 else w ← The successor along the external faces;

stopping vertex. Each short circuit edge is embedded in a previous iteration p between
p′ and the stopping vertex. This forms a new face such that interceding inactive vertices
are removed from the external face. For more detailed information, please refer to Boyer
and Myrvold [3]. For our purposes, when the WalkdownWithSkips encounters a stopping
vertex, it checks if another neighbor of r′ is not a stopping vertex. If so, it skips to this
neighbor. Otherwise, it skips the components rooted by r′ which is then deleted from the
PertinentRoots of r, and returns to the parent component. The algorithm terminates on
the stopping vertex on the root component since there does not exist a parent component
for the process to ascend to.

Algorithm 2 describes the rationale of the WalkdownWithSkips. The algorithm begins
a single traversal in a clockwise or counterclockwise direction (line 2). Let w be the next
successor along the external face. If w has an EdgeFlag, the backedge (w, vc) is embedded
after the relevant components are merged (line 4 to 7). Then the traversal proceeds to the
successor. When it encounters a pertinent vertex whose PertinentRoots list is not empty,
it descends to the component rooted by the first element r in the list, and visits one of its
neighbors (line 8 to 11). If w is a stopping vertex in the root component, a short circuit
edge is embedded, and the traversal stops, after which another traversal is initiated from vc

in the opposite direction (line 13 to 15). Otherwise, the traversal performs a skip based on
whether another neighbour of r is a stopping vertex (line 17 to 20).

Example of the Embedding Process. It is instructive to see an example of the embedding
process on the pertinent subgraph in an iteration of c. The Walkup process is invoked
for each vertex with an EdgeFlags. Two parallel traversals are started from each vertex
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face1

face2

Figure 2 An example of the Walkup.

Figure 3 The WalkdownWithSkips in
the iteration of c.

Figure 4 The status after the embedding.

and stops when either of them reaches the root of the current biconnected component.
Afterwards, Walkup starts another two parallel traversals on the parent components. The
process terminates when a traversal reaches c or a vertex that has been visited before is
encountered.

Figure 2 shows the process of the Walkup of an example set of biconnected components
(diamonds), external and pertinent vertices (dashed squares), stopping vertices (solid squares)
and pertinent vertices with EdgeFlags. Only the traversals that reach root vertices first are
shown. Walkup begins at f . When it reaches de, de is then added to the PertinentRoots
of d, and it starts traversals at d until reaching c. Then the Walkup traversals of i are
initiated. The vertex gh is added to the PertinentRoots of g after being visited. When
it reaches g, the traversal terminates since g has been visited before. The main purpose
of Walkup is to determine which components are involved in the embedding. Hence the
traversals initiated from i do not have to continue. This process is repeated until all vertices
with EdgeFlags have all done a Walkup.

The main purpose of the WalkdownWithSkips is to embed as many pertinent backedges
as possible by skipping the influenced regions of the stopping vertices, and identify if the
vertex being processed is an obstruction. Figure 3 describes WalkdownWithSkips on the
same example set of biconnected components as Walkup. A traversal starts in one direction
of the child component of c. Then it descends to the component rooted by de which is the
first element in the PertinentRoots of d. Which direction to go from de depends on the
types of the neighbors: a neighbor can be pertinent but not external, pertinent and external,
or a stopping vertex (external but non-pertinent). The direction towards the neighbor of
the first type is preferred, and the direction towards a stopping vertex will be chosen if no
neighbors of the first two types exist. Since both e and g are of the same type, a neighbor g
is randomly selected.
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Afterwards, the algorithm descends to the component rooted by gh which is deleted
from the PertinentRoots of g, and then returns to g because it cannot reach i without
passing a stopping vertex. Next a skip to another neighbor e of de is initiated, and the
process is repeated. Since external and pertinent vertices are stopping vertices once their
PertinentRoots lists become empty, the traversal cannot reach f . So the components
rooted by de are skipped and deleted from PertinentRoots of d, and processing returns
to d. Then the algorithm descends to the component rooted by the next element dk in
the PertinentRoots of d. The backedge (m, cd) is embedded and the relevant components
rooted by cd and dk respectively are merged. The traversal terminates at k after embedding
the short circuit edge (k, cd) since k is on the root component after merging operations.
Another traversal begins from cd, and the process is repeated until a termination condition
is reached.

Figure 4 shows the embedding for this example. The dashed edges refer to backedges
which will be embedded by the algorithm. The vertices which still have EdgeFlags correspond
to unembedded backedges in the last iteration. As we can see, the component rooted by
cd is larger after merging, and backedges (m, cd) and (n, cd) have been embedded. The
embeddings of any other backedges in this figure would result in an intersection with the
dashed edges. Thus, they cannot be embedded. Since there exist unembedded backedges,
the vertex c is added to the ObstructionsList.

Removing Obstruction Vertices. After the main loop of the embedding process, the ob-
struction vertices are collected, which need to be removed from the graph to induce the
planar subgraph (line 13 in Algorithm 1). The input graph is represented as an adjacency
list, which is a collection of vertex lists. The first vertex in each vertex list is adjacent to
the rest of the vertices. We denote a vertex list E as a list of e1 if the vertex e1 is the first
element in E.

As discussed in Section 2, each index of the ObstructionsList refers to the index of a
vertex in the adjacency list, and the its content is initialized to −1. Since we assume that
all index values are non-negative, after the main loop, we can identify which vertex is an
obstruction based on whether the content of the corresponding vertex is non-negative. For
each vertex list of e1 where ObstructionsList[e1] ≥ 0, we just remove them directly from
the adjacency list. For each vertex list of e1 where ObstructionsList[e1] ≤ 0, we process
each of the rest elements ei in the vertex list of e1 by checking ObstructionsList[ei]. If
ObstructionsList[ei] ≤ 0, we leave this element and process the next one. Otherwise,
this element is deleted from this vertex list and we continue processing. After all vertex
lists have been processed, the adjacency list is an induced graph where each obstruction
vertex o (ObstructionsList[o] ≥ 0) has been removed. The overall cost includes the O(n)
vertex lists, and the total number of elements in vertex lists are O(m). Since each element is
processed in O(1), the total time complexity is O(n+m).

Proof of Correctness. In this section, we prove that the induced subgraph found by our
algorithm is planar and has a linear time complexity.

I Lemma 1. Given a graph G, the main embedding loop finds a planar subgraph of G.

Proof. Boyer and Myrvold [3] have proved that, in the iteration of v, Kuratowski subdivisions
will occur if and only if the Walkdown passes stopping vertices to embed backedges. Since
the embedding process works by skipping the influenced regions of stopping vertices in each
iteration, any Kuratowski subdivision cannot exist in the graph. Kuratowski [21] proved that
a graph is not planar if and only if it contains a Kuratowski subdivision. The embedding
loop preserves planarity since no Kuratowski subdivisions exist in the graph. J
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I Theorem 2. Given a graph G, removal of obstruction vertices leads to an induced planar
subgraph of G.

Proof. Although the graph is already planar after the embedding process, it is not an induced
graph since we only remove certain edges. In order to have an induced planar subgraph, we
need to remove one of two endpoints of each removed edge. Since all removed edges were
connected to obstruction vertices, the removal of such vertices leads to an induced planar
subgraph. J

I Theorem 3. Given a graph G with n vertices and m edges, our algorithm is bounded by
O(n+m+ E(S)) and therefore linear.

Proof. The construction of the DFS tree can be accomplished in linear time with a well-known
algorithm [29]. The initialization of the embedding structure Ḡ and the ObstructionsList
is also a linear time process. During the main backedge embedding loop, embedding edges
runs in linear time since the cost of embedding each edge is O(1). If the input graph is
planar, the cost of Walkup is bounded by the faces formed by the embedded edges. The
faces formed by the embedded backedges and short circuit edges bound the cost of the
WalkdownWithSkips. Thus the cost of Walkup and Walkdown is linear since the
number of faces is at most twice the number of edges in the graph. So, each edge can only
be traversed at most two times throughout the entire embedding loop. However, if the
input graph is not planar, the cost of Walkup and Walkdown cannot be bounded by
the faces formed by backedges since some of the backedges are unembedded in order to
preserve planarity. This means that some edges along the external faces of the graph are
traversed multiple times before new external faces are formed, which then includes these
edges in the internal faces. Such an edge is traversed at most k times where k denotes
the number of Kuratowski Subdivisions which contain this edge. If S is a collection of all
Kuratowski Subdivisions detected in the entire embedding process, and E(S) denotes the
size of subdivisions in S, then our algorithm runs in O(n+m+E(S)) time, which is output
sensitive, and linear w.r.t. E(S) and the graph size. J

3 Experimental Evaluation

In this section, we compare our PlanarizationByRegionSkip algorithm (RS) with the
baselines described in Section 1: HL [14], Vertex Addition (VA) [10], Vertex Removal (VR) [11],
and Vertex Subset Removal (VSR) [27]. All baselines were implemented by Morgan and Farr
[27], and are publicly available. Morgan and Farr [27] also proposed additional algorithms for
the MIPS problem. We have selected the subset of algorithms listed above for the following
reasons: 1. VR is best known for average degree d, and it achieved second best accuracy in
the original work [27]. 2. VSR, as a modified algorithm of VR, has the same approximate
ratio as VR, and achieved the best accuracy previously. 3. VA is best known for maximum
degree d̄. 4. HL has linear-time complexity and was the most efficient. Note that we do not
include the EPS algorithm as it is a post-processing enhancement [27]. This operation can be
applied to the planarization result of any of the algorithms explored in this work to improve
the approximation ratio further.

All programs are implemented in C, compiled using GCC 4.2.1, and are available online1.
All experiments are performed on a machine with two Intel Core i5 (2.6 GHz) and 8 GB RAM.

1 https://github.com/rmitbggroup/GraphPlanarization
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Table 1 Basic properties of the test collections.

Dataset nnn mmm Description

RT 1,379,917 1,921,660 The planar road network of Texas.
RD 1,088,092 1,541,898 The planar road network of Pennsylvania.
IN 26,475 53,581 Non-planar network of autonomous systems in the CAIDA project.
PG 10,680 24,316 A non-planar social network of the Pretty Good Privacy algorithm.
UG 4,941 6,594 The non-planar power grid network of the Western States in US.
MP 212 244 A non-planar network of protein-protein interactions from PDZBase.
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Figure 5 Experiments on RT5000 with edge insertion. The left figure shows the percentage
achieved by different algorithms (HL achieves 35% on average, and is not shown on the graph). The
right figure shows the running time of different algorithms (VA requires 24,888 ms on average, and is
not shown).

In this section, we use the term Percentage to describe how many vertices from the input
graph are retained in the planarization result. We conduct experiments on real-world graphs
collected from KONECT [20] and SNAP [22]. Table 1 summarizes the basic properties of
the datasets. For detailed information about the chosen datasets, please refer to KONECT2.

Experiments on graphs with small skewness. In this section, we conduct experiments on
two datasets: RT5000 which contains 5,000 vertices from RT, and RD100000 which contains
100,000 vertices from RD. We construct the graphs of increased skewness by randomly
inserting edges between existing vertices. We insert edges up to 0.1% of the input graph
size. Figure 5 shows the experimental results on RT5000. As we can see, even if the graph
is already planar (no edge insertions), only RS achieves a percentage of 100%. All other
methods remove vertices based on the requirements of their corresponding indirect indicators
of planarity. With incremental edge insertions, the performance of RS can vary significantly
since each inserted edge may introduce multiple Kuratowski subdivisions. This behavior also
indicates that the performance of RS is related to the direct indicator of planarity. On the
other hand, the performance of other methods do not change much since a small number of
edge insertions do not change the size of graph in any meaningful way. VSR only achieves
around 0.2% percentage more than VR on average. In term of efficiency, the running time
of RS grows linearly, which indicates that its performance is linearly associated with the
Kuratowski subdivisions detected in the graph since the graph sizes are similar. Figure 6

2 http://konect.uni-koblenz.de/
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Figure 6 Experiments on RD100000 with edge insertion excluding VA. The left figure shows the
percentage achieved by the algorithms (HL achieves 34% on average, and is not shown). The right
figure shows the running time achieved by all of the algorithms.

Table 2 Experimental results on almost planar graphs using the RD dataset.

Vertex Increase (%) Percentage (%) Time (s)
RS VSR VR HL RS VSR VR HL

10 99.99 88.29 88.13 34.28 0.07 17.61 4.51 0.06
20 99.99 89.13 88.97 34.31 0.11 67.03 16.64 0.12
30 99.99 89.28 89.14 34.33 0.20 148.58 34.63 0.18
40 99.99 89.95 89.75 34.35 0.28 272.61 62.98 0.22

shows the experiment results on RD100000, and produces similar observations. As the graph
size increases, the superiority of the efficiency of HL becomes more pronounced.

We also perform experiments on almost planar graphs which belong to a special class of
graphs with skewness equal to one [16]. Previous studies working on almost planar graphs
have taken a similar approach [16, 2, 4]. We construct almost planar graphs based on the
RD dataset. The number of vertices of those graphs range from 10% to 40% of RD. As we
can see in Table 2, RS always achieves a percentage of 99.99%, which corresponds with the
definition of almost planar graphs. The percentage achieved by other methods are all below
90%, and are sensitive to graph size, which reflects the over-reliance on the indirect indicators
of planarity used by these methods. The average running time of HL and RS are 0.15 s and
0.17 s respectively. Performance of RS varies little since Kuratowski subdivisions are rarely
introduced, and this is the main property which affects its performance. On average, RS is
150 times faster than VR and 640 times faster than VSR.

Experiments on non-planar graphs. In this section, we explore the performance on real-
world non-planar graphs: MP, UG, PG and IN. Based on each graph, we construct graphs
by removing a certain percentage of vertices from the original graphs in descending order
of the maximum degree. When the skewness of the input graph is not small, VR and VSR
tend to perform well since they iteratively remove a vertex with the maximum degree, and
this has the same effect as removing multiple Kuratowski subdivisions at once. On the other
hand, RS consistently achieves a local optima by removing the obstruction vertex shared by
Kuratowski subdivisions detected in each iteration. Due to limited space, we use only MP
and IN to demonstrate this effect. Additional results are in the Appendix.

Figure 7 shows the results on the dataset MP. RS always achieves the best percentage,
and reaches 100% when the vertex removal rate is 3.5%. Other methods cannot achieve
100% even though the graph is already planar. The performance of VR and VSR are almost

SEA 2018
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Figure 7 Experiments on MP with vertex removal. The left figure shows the percentages achieved
by different algorithms (HL achieves only 25% on average and is not shown). The right figure shows
the Efficiency / Effectiveness relationship (the running time of HL is 356 ms on average and not
shown).
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Figure 8 Experiments on IN with vertex removal. The left figure shows the percentages achieved
by different algorithms (HL achieves 9% on average and is not shown). The right figure shows the
Efficiency / Effectiveness relationship (the running time of HL is 10 ms on average and not shown).

the same. VSR achieves at most 0.001% more than VR. Methods such as VA and VR exhibit
higher efficiency than HL, and VA is more efficient than RS in many cases. The reason is
that the graph size is so small that these methods converge very quickly. For example, the
reduced graph mentioned in Section 1 is so small that VR only has to remove a few vertices
from the graph. On this dataset, RS and VSR outperforms all other approaches if both
accuracy and efficiency are considered.

Figure 8 shows experimental results on IN. Initially, RS achieves 1.2% less than VSR and
0.3% less than VA. As the percentage of vertex removals increases, the gap between RS and
VSR is narrowed and RS outperforms all other methods when 2% of vertices are removed. A
higher percentage indicates a higher vertex removal rate, which also indicates a smaller graph
size. From the right figure, it is worth noting that there is a rapid change of efficiency of
VR and VSR when the vertex removal rate increases to 0.2%. The increased cost in VR and
VSR are caused by the iterative removal of maximum degree vertices. Since, we have already
removed vertices of the maximum degree before the algorithms are initialized, their costs
are therefore greatly reduced. Another behavior needs worth noting is that VA runs slower
even though the graph size is smaller when the vertex removal rate increases to 0.2%. The
performance of VA cannot be predicted based on the graph size since it depends on finding
paths between vertices, which can vary significantly based on the connectivity in the graph.
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Small changes in the overall structure of the graph can lead to large changes in efficiency.
In summary, RS outperforms all other methods on nearly planar graphs. When the graph
is not ‘close to’ planar, RS provides a good option when a tradeoff between efficiency and
accuracy needs to be made since RS is more efficient than all previous methods, and its
accuracy is still competitive.

4 Conclusion

In this paper, we studied the Maximum Induced Planar Subgraph (MIPS) problem which
aims to find the largest size of vertices which induce a planar subgraph. As in many
related problems, there is a trade-off between the quality of the approximation and the
efficiency of the algorithm. By observing that both planarity testing and planarization can
be accomplished simultaneously, we were able to produce a linear time algorithm for the
MIPS problem, and the new approach is competitive in both efficiency and effectiveness.
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A Experiments on non-planar graphs

Figure 9 and Figure 10 show experimental results for UG and PG respectively. As in the
experiments on MP and IN, when the vertex removal rate increases, the gaps between the
percentages achieved by VA and VSR are reduced, and VA outperforms the other methods
once the vertex removal rate is high. Even though the graph size of UG is smaller than IN,
VA runs around five times slower on UG than on IN. The efficiency of VA is remarkably
unstable on PG as the vertex removal rate increases.
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Figure 9 Vertex Removal experiments on the UG dataset. The left figure shows the percentage
achieved by different algorithms (HL achieves 28% on average and is not shown). The right figure
shows the Effectiveness / Efficiency trade-off (the running time of HL is 4 ms, and VA is 1,526 ms
on average – neither are shown to maintain the graph scale).
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Figure 10 Vertex removal experiments on the PG dataset. The left figure shows the percentage
achieved by the algorithms (HL achieves 12% on average and is not shown). The right figure shows
the Effectiveness / Efficiency trade-off (the running time of HL is 10 ms on average and not shown).
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