
Fast Spherical Drawing of Triangulations: An
Experimental Study of Graph Drawing Tools
Luca Castelli Aleardi
LIX - École Polytechnique, Palaiseau, France
amturing@lix.polytechnique.fr

Gaspard Denis
LIX - École Polytechnique, Palaiseau, France
gaspard.denis@hotmail.fr

Éric Fusy
LIX - École Polytechnique, Palaiseau, France
fusy@lix.polytechnique.fr

Abstract
We consider the problem of computing a spherical crossing-free geodesic drawing of a planar
graph: this problem, as well as the closely related spherical parameterization problem, has at-
tracted a lot of attention in the last two decades both in theory and in practice, motivated
by a number of applications ranging from texture mapping to mesh remeshing and morphing.
Our main concern is to design and implement a linear time algorithm for the computation of
spherical drawings provided with theoretical guarantees. While not being aesthetically pleasing,
our method is extremely fast and can be used as initial placer for spherical iterative methods
and spring embedders. We provide experimental comparison with initial placers based on planar
Tutte parameterization. Finally we explore the use of spherical drawings as initial layouts for
(Euclidean) spring embedders: experimental evidence shows that this greatly helps to untangle
the layout and to reach better local minima.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Graph drawing, planar triangulations, spherical parameterizations

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.24

Funding This work was partially supported by the French ANR GATO (ANR-16-CE40-0009-01).

1 Introduction

In this work we consider the problem of computing in a fast and robust way a spherical layout
(crossing-free geodesic spherical drawing) of a genus 0 simple triangulation. Several solutions
have been developed in the computer graphics and geometry processing communities [1, 2, 3,
15, 18, 26, 29, 32] for this problem, and a few recent works [6, 7, 8, 11, 22] attempted to extend
standard tools from graph drawing to deal with graphs on surfaces. On one hand, force-
directed methods and iterative solvers are successful to obtain very nice layouts achieving
several desirable aesthetic criteria, such as uniform edge lengths, low angle distortion or
even the preservation of symmetries. Their main drawbacks rely on the lack of rigorous
theoretical guarantees and on their expensive runtime costs, since their implementation
requires linear solvers (for large sparse matrices) or sometimes non-linear optimization
methods, making these approaches slower and less robust than combinatorial graph drawing
tools. On the other hand, some well known combinatorial drawing tools (e.g. linear-time
grid embeddings [10, 27]) are provided with worst-case theoretical guarantees allowing us to

© Luca C. Aleardi, Gaspard Denis, and Éric Fusy;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amturing@lix.polytechnique.fr
mailto:gaspard.denis@hotmail.fr
mailto:fusy@lix.polytechnique.fr
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Fast Spherical Drawing of Triangulations

compute in a fast and robust way a crossing-free layout with bounded resolution: just observe
that their practical performances allow processing several millions of vertices per second on
a standard (single-core) CPU. Unfortunately, the resulting layouts are rather unpleasing and
fail to achieve some basic aesthetic criteria that help readability (they often have long edges
and large clusters of tiny triangles).

Motivation. It is commonly assumed that starting from a good initial layout (called initial
guess in [26]) is crucial for both iterative methods and spring embedders (we refer to [23]
for a more comprehensive discussion). A nice initial configuration, closer to the final result,
should help to obtain nicer layouts: this was explored in [13] for the planar case. This could
be even more relevant for the spherical case, where an initial layout with many edge-crossings
can be difficult to unfold in order to obtain a valid spherical drawing. Moreover, the absence
of boundary constraints on the sphere prevents in some cases from eliminating all crossings
before the layouts collapse to a degenerate configuration. One of the motivations of this work
is to get benefit of a prior knowledge of the graph structure: if its combinatorics is known
in advance, then one can make use of fast graph drawing tools and compute a crossing-free
layout to be used as starting point for running more expensive force-directed tools.

Related works. A first approach for computing a spherical drawing consists in projecting
a (convex) polyhedral representation of the input graph on the unit sphere: one of the
first works [28] provided a constructive version of Steinitz theorem (unfortunately its time
complexity was quadratic). Another very simple approach consists in planarizing the graph
and to apply well known tools from mesh parameterizations (see Section 2.1 for more details):
the main drawback is that, after spherical projection, the layout does not always remain
crossing-free. Along another line of research, several works proposed generalizations of the
barycentric Tutte parameterization to the sphere. Unlike the planar case, where boundary
constraints guarantee the existence of crossing-free layouts, in the spherical case both the
theoretical analysis and the practical implementations are much more challenging. Several
works in the geometry processing community [3, 15, 26, 32] expressed the layout problem
as an energy minimization problem (with non-linear constraints) and proposed a variety of
iterative or optimization methods to solve the spherical Tutte equations: while achieving nice
results on the tested 3D meshes, these methods lack rigorous theoretical guarantees on the
quality of the layout in the worst case (for a discussion on the existence of non degenerate
solutions of the spherical Tutte equations we refer to [18]). A very recent work [1] proposed an
adaptation of the approach based on the Euclidean orbifold Tutte parameterization [2] to the
spherical case: the experimental results are very promising and come with some theoretical
guarantees (a couple of weak assumptions are still necessary to guarantee the validity of the
drawing). However the layout computation becomes much more expensive since it involves
solving non-linear problems, as reported in [1]. A few papers in the graph drawing domain
also considered the spherical drawing problem. Fowler and Kobourov proposed a framework
to adapt force-directed methods [16] to spherical geometry, and a few recent works [6, 7, 8, 11]
extend some combinatorial tools to produce planar layouts of non-planar graphs: some of
these tools can be combined to deal with the spherical case, as we will show in this work (as
far as we know, there are not existing implementations of these algorithms).

Our contributions. Our first main contribution is to design and implement a fast algorithm
for the computation of spherical drawings. We make use of several ingredients [6, 7, 11]
involving the well-known canonical orderings and exploit an adaptation of the shift paradigm

L. C. Aleardi, G. Denis, and É. Fusy 24:3

Tutte 2D layout ofseparating cycle Spherical parameterization
the south hemisphere

Polar-to-cartesian mapping

inverse stereo projection

Projected Gauss-Seidel(x0, λ, ε)
r = 0; // iteration counter
do {

} while (‖xr − xr−1‖ > ε))

for(i = 1; i ≤ n; i++) {
s = (1− λ)xr(vi) + λ

∑
j wijx

r(vj)
xr+1(vi) =

s
‖s‖

}
r++;

Figure 1 (left) Two spherical parameterizations of the gourd graph obtained via Tutte’s planar
parameterization. (right) The pseudo-code of the Projected Gauss-Seidel method.

proposed by de Fraysseix, Pach and Pollack [10]. As illustrated by our experiments, our
procedure is extremely fast, with theoretical guarantees on both the runtime complexity and
the layout resolution.

While not being aesthetically pleasing (as in the planar case), our layouts can be used as
initial vertex placement for iterative parameterization methods [3, 26] or spherical spring
embedders [22]. Following the approach suggested by Fowler and Kobourov [13], we compare
our combinatorial algorithm with two standard initial placers used in previous existing
works [26, 32] relying on Tutte planar parameterizations: our experimental evaluations
involve runtime performances and statistics concerning edge lengths.

As an application, we show in Section 5 how spherical drawings can be used as initial
layouts for (Euclidean) spring embedders: as illustrated by our tests, starting from a spherical
drawing greatly helps to untangle the layout and to escape from bad local minima.

2 Preliminaries

Planar graphs and spherical drawings. In this work we deal with planar maps (graphs
endowed with a combinatorial planar embedding), and we consider in particular planar
triangulations which are simple genus 0 maps where all faces are triangles (they correspond
to the combinatorics underlying genus 0 3D triangle meshes). Given a graph G = (V,E) we
denote by n = |V | (resp. by |F (G)|) the number of its vertices (resp. faces) and by N(vi)
the set of neighbors of vertex vi; x(vi) will denote the Euclidean coordinates of vertex vi.

The notion of planar drawings can be naturally generalized to the spherical case: the
main difference is that edges are mapped to geodesic arcs on the unit sphere S2, which are
minor arcs of great circles (obtained as intersection of S2 with a hyperplane passing through
the origin). A geodesic drawing of a map should preserve the cyclic order of neighbors around
each vertex (such an embedding is unique for triangulations, up to reflexions of the sphere).
As in the planar case, we would aim to obtain crossing-free geodesic drawings, where geodesic
arcs do not intersect (except at their extremities). In the rest of this work we will make
use of the term spherical drawings when referring to drawings satisfying the requirements
above. Sometimes, the weaker notion of spherical parameterization (an homeomorphism
between an input mesh and S2) is considered for dealing with applications in the geometry
processing domain (such as mesh morphing): while the bijectivity between the mesh and S2 is
guaranteed, there are no guarantees that the triangle faces are mapped to spherical triangles
with no overlaps (obviously a spherical drawing leads to a spherical parameterization).

2.1 Initial Layouts
Part of this work will be devoted to comparing our drawing algorithm (Section 3) to two
spherical parameterization methods involving Tutte planar parameterization: both methods
have been used as initial placers for more sophisticated iterative spherical layout algorithms.

SEA 2018

24:4 Fast Spherical Drawing of Triangulations

Inverse Stereo Projection layout (ISP). For the first initial placer, we follow the approach
suggested in [26] (see Fig. 1). The faces of the input graph G are partitioned into two
components homeomorphic to a disk: this is achieved by computing a vertex separator
defining a simple cycle of small size (having O(

√
n) vertices) whose removal produces a

balanced partition (GS , GN) of the faces of G. The two graphs GS and GN are then drawn
in the plane using Tutte’s barycentric method: boundary vertices lying on the separator are
mapped on the unit disk. Combining a Moebius inversion with the inverse of a stereographic
projection we obtain a spherical parameterization of the input graph: while preserving some
of the aesthetic appeal of Tutte’s planar drawings, this map is bijective but cannot produce in
general a crossing-free spherical drawing (straight-line segments in the plane are not mapped
to geodesics by inverse stereographic projection). In our experiments we adopt a growing-
region heuristic to compute a simple separating cycle: while not having theoretical guarantees,
our approach is simple to implement and very fast, achieving balanced partitions in practice
(separators are of size roughly Θ(

√
n) and the balance ratio % = min(|F (GS)|,|F (GN)|)

|F (G)| is always
between 0.39 and 0.49 for the tested data)1.

Polar-to-Cartesian layout (PC). The approach adopted in [32] consists in planarizing the
graph by cutting the edges along a simple path from a south pole vS to a north pole vN . A
planar rectangular layout is computed by applying Tutte parameterization with respect to the
azimuthal angle θ ∈ (0, 2π) and to the polar angle φ ∈ [0, π]: the spherical layout, obtained
by the polar-to-cartesian projection, is bijective but not guaranteed to be crossing-free.

2.2 Spherical drawings and parameterizations
The spherical layouts described above can be used as initial guess for more sophisticated
iterative schemes and force-directed methods for computing spherical drawings. For the sake
of completeness we provide an overview of the algorithms that will be tested in Section 4.

Iterative relaxation: projected Gauss-Seidel. The first method can be viewed as an ad-
aptation of the iterative scheme solving Tutte equations (see Fig. 1). This scheme consists in
moving points on the sphere in tangential direction in order to minimize the spring energy

E = 1
2

n∑
i=1

∑
j∈N(i)

wij‖x(vi)− x(vj)‖2 (1)

with the only constraint ‖x(vi)‖ = 1 for i = 1 . . . n (in this work we consider uniform weights
wij , as in Tutte’s work). As opposed to the planar case, there are no boundary constraints on
the sphere, which makes the resulting layouts collapse in many cases to degenerate solutions.
As observed in [18, 26] this method does not always converge to a valid spherical drawing,
and its practical performance strongly depends on the geometry of the starting initial layout
x0. While not having theoretical guarantees, this method is quite fast allowing to quickly
decrease the residual error: it thus can be used in a first phase and combined with more
stable iterative schemes leading in practice to better convergence results [26] (still lacking of
rigorous theoretical guarantees).

1 The computation of small cycle separators for planar triangulations is a very challenging task. This
work does not focus on this problem: we refer to recent results [14] providing the first practical
implementations with theoretical guarantees.

L. C. Aleardi, G. Denis, and É. Fusy 24:5

G

3 disjoint paths 3 rivers

M

GC
0

GC
1

GC
2

Figure 2 Computation of a spherical drawing based on a prism layout of the gourd graph (326
vertices). Three vertex-disjoint chord-free paths lead to the partition of the faces of G into three
regions which are each separated by one river (green faces). Our variant of the FPP algorithm
allows to produce three rectangular layouts, where boundary vertex locations do match on identified
(horizontal) sides. One can thus glue the planar layouts to obtain a 3D prism: its central projection
on the sphere produces a spherical drawing. Edge colors (blue, red and black) are assigned during
the incremental computation of a canonical labeling [11], according to the Schnyder wood local rule.

Alexa’s method. In order to avoid the collapse of the layout, without using artificial
constraints, Alexa [3] modified the iterative relaxation above by penalizing long edges (tending
to move vertices in a same hemisphere). More precisely, the vertex vi is moved according to
a displacement 4i = c 1

deg(vi)
∑

j(x(vi)− x(vj))‖x(vi)− x(vj)‖ and then reprojected on the
sphere. The parameter c regulates the step length, and can be chosen to be proportional to
the inverse of the longest edge incident to a vertex, improving the convergence speed.

(Spherical) Spring Embedders. While spring embedders are originally designed to produce
2D or 3D layouts, one can adapt them to non euclidean geometries. We have implemented
the standard spring-electrical model introduced in [16] (referred to as FR), and the spherical
version following the framework described by Kobourov and Wampler [22] (called Spherical
FR). As in [16] we compute attractive forces (between adjacent vertices) and repulsive forces
(for any pair of vertices) acting on vertex u, defined by:

Fa(u) =
∑

(u,v)∈E

‖x(u)− x(v)‖
K

(x(u)− x(v)), Fr(u) =
∑

v∈V,v 6=u

−CK2(x(v)− x(u))
‖x(u)− x(v)‖2

where the values C (the strength of the forces) and K (the optimal distance) are scale
parameters. In the spherical case, we shift the repulsive forces by a constant term, making
the force acting on pairs of antipodal vertices zero.

3 Fast spherical embedding with theoretical guarantees: SFPP layout

We now provide an overview of our algorithm for computing a spherical drawing of a planar
triangulation G in linear time, called SFPP layout (see Fig. 2 for an illustration). We make
use of an adaptation of the shift method used in the incremental algorithm of de Fraysseix,
Pach and Pollack [10] (referred to as FPP layout): our solution relies on the combination of
several ideas developed in [11, 6, 7]. A more detailed presentation can be found in [5].

Mesh segmentation. Assuming that there are two non-adjacent faces fN and fS , one can
find 3 disjoint and chord-free paths P0, P1 and P2 from fS to fN (planar triangulations are
3-connected). Denote by uN

0 , uN
1 and uN

2 the three vertices of fN on P0, P1 and P2 (define
similarly the three neighbors uS

0 , u
S
1 , u

S
2 of the face fS). We first compute a partition of the

SEA 2018

24:6 Fast Spherical Drawing of Triangulations

faces of G into 3 regions, cutting G along the paths above and removing fS and fN . We
thus have three quasi-triangulations GC

0 , GC
1 and GC

2 that are planar maps whose inner faces
are triangles, and where the edges on the outer boundary are partitioned into four sides.
The first pair of opposite sides only consist of an edge (drawn as vertical segment in Fig. 2),
while the remaining pair of opposite sides contains vertices lying on Pi and Pi+1 respectively
(indices being modulo 3): according to these definitions, GC

i and GC
i+1 share the vertices

lying on Pi+1 (drawn as a path of horizontal segments in Fig. 2).

Grid drawing of rectangular frames. We apply the algorithm described in [11] to obtain
three rectangular layouts of GC

0 , GC
1 and GC

2 : this algorithm first separates each GC
i into two

sub-graphs by removing a so-called river : an outer-planar graph consisting of a face-connected
set of triangles which corresponds to a simple path in the dual graph, starting at fS and
going toward fN . The two-subgraphs are then processed making use of the canonical labeling
defined in [11]: the resulting layouts are stretched and then merged with the set of edges in
the river, in order to fit into a rectangular frame. Just observe that in our case a pair of
opposite sides only consists of two edges, which leads to an algorithm considerably simpler
to implement in practice. Finally, we apply the two-phases adaptation of the shift algorithm
described in [6] to obtain a planar grid drawing of each map GC

i , such that the positions
of vertices on the path Pi in GC

i do match the positions of corresponding vertices on Pi in
GC

i+1. The grid size of drawing of GC
i is O(n)×O(n) (using the fact that the two opposite

sides (uN
i , . . . , u

S
i) and (uN

i+1, . . . , u
S
i+1) of GC

i are at distance 1).

Spherical layout. To conclude, we glue together the drawings of GC
0 , GC

1 and GC
2 computed

above in order to obtain a drawing of G on a triangular prism. By a translation within the
3D ambient space we can make the origin coincides with the center of mass of the prism
(upon seeing it as a solid polyhedron). Then a central projection from the origin maps each
vertex onM to a point on the sphere: each edge (u, v) is mapped to a geodesic arc, obtained
by intersecting the sphere with the plane passing trough the origin and the segment relying
u and v on the prism (crossings are forbidden since the map is bijective).

I Theorem 1. Let G be a planar triangulation of size n, having two non-adjacent faces fS

and fN . Then one can compute in O(n) time a spherical drawing of G, where edges are
drawn as (non-crossing) geodesic arcs of length Ω(1

n).

Some heuristics. We use as last initial placer our combinatorial algorithm of Section 3.
For the computation of the three disjoint paths P0, P1 and P2, we adopt again a heuristic
based on a growing-region approach: while not having theoretical guarantees on the quality
of the partition and the length of the paths, our results suggest that well balanced partitions
are achieved for most tested graphs. A crucial point to obtain a nice layout resides in the
choice of the canonical labeling (its computation is performed with an incremental approach
based on vertex removal). A bad canonical labeling could lead to unpleasant configurations,
where a large number of vertices on the boundaries of the bottom and top sub-regions of
each graph Gi are drawn along the same direction: as side effects, a few triangles use a lot of
area, and the set of interior chordal edges in the river can be highly stretched, especially
those close to the south and north poles. To partially address this problem, we design a
few heuristics during the computation of the canonical labeling, in order to obtain more
balanced layouts. Firstly, we delay the conquest of the vertices which are close to the south
and north poles: this way these extremal vertices are assigned low labels (in the canonical
labeling), leading to smaller and thicker triangles close to the poles. Moreover the selection

L. C. Aleardi, G. Denis, and É. Fusy 24:7

of the vertices is done so as to keep the height of the triangle caps more balanced in the final
layout. Finally, we adjust the horizontal stretch of the edges, to get more equally spaced
vertices on the paths P0, P1 and P2.

4 Experimental results and comparison

Experimental settings and datasets. In order to obtain a fair comparison of runtime
performances, we have written pure Java implementations of all algorithms and drawing
methods presented in this work2. Our tests involve two dozen of graphs, including the
1-skeleton of 3D models (made available by the AIM@SHAPE repository) as well as random
planar triangulations obtained with an uniform random sampler [25]. In our tests we take as
an input the combinatorial structure of a planar map encoded in OFF format: nevertheless
we do not make any assumption on the geometric realization of the input triangulation in 2D
or 3D space. Observe that the fact of knowing the combinatorial embedding of a graph G
(the set of its faces) is a weak assumption, since such an embedding is essentially unique for
planar triangulations and it can be retrieved from the graph connectivity in linear time [24].
We run our experiments on a HP EliteBook, equipped with an Intel Core i7 2.60GHz (with
Ubuntu 16.04, Java 1.8 64-bit, using a single core, and 4GB of RAM for the JVM).

4.1 Quantitative evaluation of aesthetic criteria
In order to obtain a quantitative evaluation of the layout quality we compute the spring
energy E defined by Eq. 1 and two metrics measuring the edge lengths and the triangle areas.
As suggested in [13] we compute the average percent deviation of edge lengths, according to

el := 1 −
(

1
|E|

∑
e∈E

|lg(e)− lavg|
max(lavg, lmax − lavg)

)
where lg(e) denotes the geodesic distance of the edge e, and lavg (resp. lmax) is the average
geodesic edge length (resp. maximal geodesic edge length) in the layout. In a similar manner
we compute the average percent deviation of triangle areas, denoted by a. The metrics el and
a take values in [0 . . . 1], and higher values indicate more uniform edge lengths and triangle
areas 3.

4.2 Timing performances: comparison
The runtime performances reported in Table 1 clearly show that our SFPP algorithm has an
asymptotic linear-time behavior and in practice is much faster than ISP and PC. For instance
the ISP layout adopted in [26] requires to solve large linear systems: among the tested Java
libraries (MTJ, Colt, PColt, Jama), we found that the linear solvers of the MTJ have the best
runtime performances for the solution of large sparse linear systems (in our tests we run
the conjugate gradient solver, setting a numeric tolerance of 10−6). Observe that a slightly
better performance can be achieved with more sophisticated schemes or tools (e.g. Matlab
solvers) as done in [2, 26]. Nevertheless the timing cost still remains much larger than ours:
as reported in [2] the orbifold parameterization of the dragon graph requires 19 seconds (for
solving the linear systems, on a 3.5GHz Intel i7 CPU).

2 Datasets, source codes and runnable Java applications are available http://www.lix.polytechnique.
fr/~amturing/software.html

3 Observe that one common metric considered in the geometric processing community is the (angle)
distortion: in our case this metric cannot be taken into account since our input is a combinatorial
structure (without any geometric embedding).

SEA 2018

http://www.lix.polytechnique.fr/~amturing/software.html
http://www.lix.polytechnique.fr/~amturing/software.html

24:8 Fast Spherical Drawing of Triangulations

Table 1 This table reports the runtime performance of all steps involved in the computation
of the SFPP layout obtained with the algorithm of Section 3. The overall cost (red chart) includes
the preprocessing phase (computing the three rivers and the canonical labeling) and the layout
computation (running the two-phases shift algorithm, constructing and projecting the prism). The
last two columns report the timing cost for solving the linear systems for the ISP and PC layouts
(see blue/green charts), using the MTJ conjugate gradient solver. All results are expressed in seconds.

preprocessing Layout computation PC ISP
mesh vertices faces rivers canonical shift prism linear linear

comput. labeling algorithm projection solver solver
Egea 8268 16K 0.015 0.017 0.005 0.017 0.24 0.16

Gargoyle 10002 20K 0.016 0.018 0.007 0.025 0.26 0.22
Bunny 26002 52K 0.017 0.031 0.019 0.036 1.14 0.75

Iphigenia 49922 99K 0.023 0.049 0.025 0.046 2.38 1.44
Camille’s hand 195557 391K 0.076 0.121 0.073 0.125 17.02 7.92

Eros 476596 950K 0.162 0.260 0.132 0.255 50.54 29.99
Chinese dragon 655980 1.3M 0.174 0.314 0.157 0.433 89.64 53.12

vertices
200k 400k 600k

vertices

1.2

1.0

0.8

0.6

0.4

0.2

SFPP layout (total cost)

80

60

40

20

se
co
n
d
s

200k 400k 600k

100

se
co
n
d
s

ISP layout
PC layout

4.3 Evaluation of the layout quality: interpretation and comparisons
All our tests confirm that starting with random vertex locations is almost always a bad choice,
since iterative methods lead in most cases to a collapse before reaching a valid spherical
drawing (spherical spring embedders do not have this problem, but cannot always eliminate
edge crossings, see Fig. 4). Our experiments (see Fig. 3 and 4) also confirm a well known fact:
Alexa’s method is more robust compared to the projected Gauss-Seidel relaxation, leading
almost always to a valid configuration without collapsing (more tests and statistics can be
found in the longer version [5]).

Layout of mesh-like graphs. For the case of mesh-like structures, the ISP and PC methods
always provide nicer initial layouts (Fig. 3 show the layout of the dog mesh). The drawings
are rather pleasing, capturing the structure of the input graph and being not too far from the
final spherical Tutte layout: we mention that the results obtained in our experiments strongly
depend on the quality of the separator cycle (or cutting path). Our SFPP initial layout clearly
fails to achieve similar aesthetic criteria: nevertheless, even not being pleasing in the first few
iterations, it is possible to reach very often a valid final configuration (crossing-free) without
collapsing, and whose quality is very close, in terms of energy and edge lengths and area
statistics, to the ones obtained starting from the ISP or PC layouts (this is illustrated by the
charts in Fig. 3). As we observed for many of the tested graphs, when starting from the SFPP
layout the number of iterations required to reach a spherical drawing with good aesthetics is
larger than starting from an ISP or PC layout. But the convergence speed can be slightly
better in a few cases: Fig. 3 shows a valid spherical layout computed after 1058 iterations of
the Gauss-Seidel relaxation (1190 iterations are required when starting from the ISP layout).
We also observed that when starting from a PC layout it is sometimes impossible to eliminate
all edge-crossings before collapsing (with Gauss-Seidel iteration): the layouts collapse more
seldom in the case of ISP and SFPP, as the vertices are likely to be distributed in a more
balanced way on the sphere.

The charts in Fig. 3 show that our SFPP has higher values of the edge lengths and
area statistics in the first iterations: this reflects the fact that our layout has a polynomial
resolution and thus triangles have a bounded aspect ratio and side lengths. When applying
methods based on planar parameterization (ISP or PC) there could be a large number of tiny
triangles clustered in some small regions (the size of coordinates could be exponentially small
as n grows).

L. C. Aleardi, G. Denis, and É. Fusy 24:9

Initial layout Projected Gauss-Seidel Alexa method

ρ = 0.42

E = 45.21 E = 47.82el = 0.926 el = 0.849

E = 45.02 el = 0.908 E = 48.02 el = 0.801

Random

PC

ISP

SFPP

Placer

50 iter. 1058 iter.

50 iter. 1190 iter.

E = 49.2 el = 0.89

E = 48.8 el = 0.89

50 iter. 636 iter.

50 iter. 1096 iter.

50 iter. 250 iter. 50 iter. 1200 iter.

E = 51.32 el = 0.859

E = 50.60 el = 0.868

0.88sec

1.10sec

1.13sec

1.04sec

1600 iter. 1.73sec 50 iter. 987 iter.

E = 12.26 el = 0.91 E = 51.37 el = 0.864 E = 48.02 el = 0.790E = 47.92 el = 0.89

50 iter. 1.06sec

Spherical FR

200 iterations

200 iterations

200 iterations

200 iterations

E ISP layout

SFPP layout

PC layout

160

80

100

60

40

20

el a
Projected Gauss-Seidel Alexa

800

120

140

iterations
1

160

80

100

60

40

20

120

140

iterations
8001

0.96

1

0.9

0.88

0.84

1600

iterations
800 1600

1

0.9

1

0.92

0.94

0.96

0.98

0.88

1600

0.95

0.9

0.85

0.8

0.75

iterations
800 16001

iterations
800 16001

iterations
800 1600

E el a0.98

0.96

0.94

0.92

0.88

0.90

0.86

0.84

1

1

Figure 3 These pictures illustrate the use of different initial placers as starting layouts for two
iterative schemes on the dog graph (1480 vertices). For each initial layout, we first run 50 iterations
of the projected Gauss-Seidel and Alexa method, and then we run the two methods until a valid
spherical drawing (crossing free) is reach. The charts below show the energy, area and edge length
statistics obtained running 1600 iterations of the projected Gauss-Seidel and Alexa methods.

Layout of random triangulations. When drawing random triangulations the behavior is
somehow different: the performances obtained starting from our SFPP layout are often better
than the ones achieved using the ISP layout (and similar to the ones of the PC layout). As
illustrated by the pictures in Fig. 4 and 6, Alexa’s method is able to reach a non-crossing
configuration requiring less iterations when using our SFPP layout instead of ISP layout: this
is observed in most of our experiments, and clearly confirmed by the plots of the energy and
statistics el and a that converge faster to the values of the final layout (see charts in Fig. 4).

5 Spherical preprocessing for Euclidean spring embedders

In this section we investigate the use of spherical drawings as initial placers for spring
embedders in 3D space. The fact of recovering the original topological shape of the graph, at
least in the case of graphs that have a clear underlying geometric structure, is an important
and well known ability of spring embedders. This occurs for the case of regular graphs used
in Geometry Processing (the pictures in Fig. 5 show a few force-directed layouts of the cow

SEA 2018

24:10 Fast Spherical Drawing of Triangulations

100 iterations 50 iterations 474 iter.

Gauss-Seidel relaxation Alexa method

50 iterations 356 iter.

ISP layout % = 0.49

SFPP layout 100 iterations

E = 61.86 el = 0.864

E = 61.85 el = 0.864

Spherical FR

Random layout 100 iterations 50 iterations 230 iterations 200 iterations

200 iterations

200 iterations

200 iterations100 iterations 50 iterationsPC layout
369 iter.

E = 61.82 el = 0.867

ISP layout

SFPP layout
PC layout

a

el

E

iterations

iterations

iterations
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92

400 8001

120

100

80

60

40

20

400 8001

400 8001

Alexa method

Figure 4 Spherical layouts of a random triangulation with 1K faces. While the projected Gauss-
Seidel relaxation always collapses, Alexa method is more robust, but also fails when starting from a
random initial layout. When using the ISP, PC or our SFPP layouts Alexa method converges toward
a crossing-free layout: starting from the SFPP layout allows getting the same aesthetic criteria as the
ISP or the PC layouts (with even less iterations). Spring embedders [13] (Spherical FR) prevent
from reaching a degenerate configuration, but have some difficulties to unfold the layout. The charts
on the right show the plot of the energy, edge lengths and areas statistics computed when running
800 iterations of Alexa method (we compute these statistics every 10 iterations).

graph), and also for many mesh-like complex networks involved in physical and real-world
applications (such as the networks made available by the Sparse Matrix Collection [9]).
In the case of uniformly random embedded graphs (called maps) of a large size n on a fixed
surface S, the spring embedding algorithms (applied in the 3D ambient space) yield graph
layouts that greatly capture the topological and structural features of the map (the genus of
the surface is visible, the "central charge" of the model is reflected by the presence of spikes,
etc.), a great variety of such representations can be seen at the very nice simulation gallery of
Jérémie Bettinelli (http://www.normalesup.org/~bettinel/simul.html). While common
software and libraries (e.g. GraphViz [12], Gephi [4], GraphStream) for graph visualization
provide implementations of many force-directed models, as far as we know they never try to
exploit the strong combinatorial structure of surface-like graphs.

Discussion of experimental results. Our main goal is to show empirically that starting
from a nice initial shape that captures the topological structure of the input graph greatly
improves the convergence speed and layout quality.

In our first experiments (see Figures 5 and 6) we run our 3D implementation of the
spring electrical model FR [16], where we make use of exact force computation and we adopt
the cooling system proposed in [31] (with repulsive strength C = 0.1). We also perform
some tests with the Gephi implementation of the Yifan Hu layout algorithm [20], which is a

http://www.normalesup.org/~bettinel/simul.html

L. C. Aleardi, G. Denis, and É. Fusy 24:11

100 iter.

Initial random layout 20 iter. 50 iter. 150 iter.
83.20 sec

Initial spherical drawing: ISP 51.57 sec

(in unit cube)
5 iter.

20 iter. 50 iter.

#
co
ll
id
in
g
tr
ia
n
gl
es

#
co
ll
id
in
g
tr
ia
n
gl
es

7000

6000

5000

4000

3000

2000

1000

9060301
iterations

9060301

iterations

70

60

50

40

30

20

10

Figure 5 These pictures illustrate the use of spherical drawings as initial placers for force-
directed methods: we compute the layouts of the cow graph (2904 vertices, 5804 faces) using our 3D
implementation of the FR spring embedder [16]. In the charts on the right we plot the number of
colliding 3D triangles, over 100 iterations of the algorithm.

Random layout

5 iterations

20 iter. 50 iter. 80 iter.

ISP + Alexa (2934iter.)

Spherical drawing
50 iter.

50 iter.20 iter. 40 iter.

20 iter. 40 iter.

t = 20.31 sec

t = 34.26 sec

1.27sec

(in unit cube)

t = 20.35 sec

2.98sec

E =71.671
el = 0.934

E =71.697
el = 0.934

#
co
ll
id
in
g
tr
ia
n
g
le
s

#
co
ll
id
in
g
tr
ia
n
g
le
s

#
co
ll
id
in
g
tr
ia
n
g
le
s

colliding triangles=718

colliding triangles=330

colliding triangles=311

6000

5000

4000

3000

2000

1000

9060301
iterations

iterations
60 90301

iterations
1 30 60 90

800

600

400

200

800

600

400

200

SFFP + Alexa (1024 iter.)

Spherical drawing

Figure 6 These pictures illustrate the use of spherical drawings as initial placers for the 3D
version of the FR spring embedder [16], for a random planar triangulation with 5K faces.

more sophisticated spring-embedder with fast approximate calculation of repulsive forces
(see the layouts of Fig. 7). In order to quantify the layout quality, we evaluate the number of
self-intersections of the resulting 3D shape during the iterative computation process4. To
be more precise, we plot (over the first 100 iterations) the number of triangle faces that
have a collision with a non adjacent triangle in 3D space. The charts of Fig. 5 and 6 clearly
confirm the visual intuition suggested by pictures: when starting from a good initial shape
the force-directed layouts seem to evolve according to an inflating process, which leads to
better and faster untangle the graph layout. This phenomenon is observed in all our tests
(on several mesh-like graphs and synthetic data): experimental evidence shows that an
initial spherical drawing is a good starting point helping the spring embedder to reach nicer
layout aesthetics and also to improve the runtime performances. Finally observe that from
the computational point of view the computation of a spherical drawing has a negligible
cost: iterative schemes (e.g. Alexa method) require O(n) time per iteration, which must

4 We compute the intersections between all pairs of non adjacent triangles running a brute-force algorithm:
the runtimes reported in Fig. 5 and 6 do not count the cost of computing the triangle collisions.

SEA 2018

24:12 Fast Spherical Drawing of Triangulations

Initial layout: random locations

t = 1 sec t = 2 sec t = 5 sec t = 10 sec

t = 1 sec t = 2 sec t = 5 sec t = 10 sec

Initial layout: SFPP+Alexa

t = 2 sec t = 5 sec t = 10 sec

t = 10 sec

t = 1 sec

Initial layout: ISP

Initial layout: random locations

t = 1 sec t = 2 sec t = 5 sec

Figure 7 The spherical drawings of the graphs in Fig. 5 and 6 are used as initial placers for the
Yifan Hu algorithm [20]: we test the implementation provided by Gephi (after rescaling the layout
by a factor 1000, we set an optimal distance of 10.0 and a parameter ϑ = 2.0).

be compared to the complexity cost of force-directed methods, requiring between O(n2) or
O(n logn) time per iteration (depending on the repulsive force calculation scheme). This is
also confirmed in practice, according to the timing costs reported in Fig 5, 6 and 7.

6 Concluding remarks and future work

Our SFPP method is guaranteed to compute a crossing-free layout: unfortunately edge
crossings can appear during the beautification process, when running iterative algorithms. It
could be interesting to adapt to the spherical case existing methods [30] (which are designed
for the Euclidean case) whose goal is to dissuade edge-crossings: one could obtain a sequence
of layouts that converge to the final spherical drawing while always preserving the map. The
results of Section 5 would suggest that starting from an initial nice layout could lead to faster
algorithms and better results for mesh-like structures. It could be interesting to investigate
whether this phenomenon arises for other classes of graphs, such as quadrangulated or
3-connected planar graphs, or non planar (e.g. toroidal) graphs, for which fast drawing
methods also exist [6, 17]. We also plan to perform further tests in order to compare the 3D
layouts of Section 5 to the results of more sophisticated multi-scale algorithms [21, 19] that
are able to draw large graphs without requiring an initial vertex placement.

References
1 Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. Spherical orbifold tutte embed-

dings. ACM Trans. Graph., 36(4):90:1–90:13, 2017.
2 Noam Aigerman and Yaron Lipman. Orbifold tutte embeddings. ACM Trans. Graph.,

34(6):190:1–190:12, 2015.
3 Marc Alexa. Merging polyhedral shapes with scattered features. The Visual Computer,

16(1):26–37, 2000.
4 Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open source soft-

ware for exploring and manipulating networks. In Proc. of the Third Int. Conf. on Weblogs
and Social Media, ICWSM 2009, 2009, 2009.

5 Luca Castelli Aleardi, Gaspard Denis, and Eric Fusy. Fast spherical drawing of trian-
gulations: an experimental study of graph drawing tools, 2018. URL: https://hal.
archives-ouvertes.fr/hal-01761754.

6 Luca Castelli-Aleardi, Olivier Devillers, and Éric Fusy. Canonical ordering for triangula-
tions on the cylinder, with applications to periodic straight-line drawings. InGraph Drawing
- 20th International Symposium, pages 376–387, 2012.

https://hal.archives-ouvertes.fr/hal-01761754
https://hal.archives-ouvertes.fr/hal-01761754

L. C. Aleardi, G. Denis, and É. Fusy 24:13

7 Luca Castelli-Aleardi, Éric Fusy, and Anatolii Kostrygin. Periodic planar straight-frame
drawings with polynomial resolution. In LATIN 2014: Theoretical Informatics - 11th Latin
American Symposium, pages 168–179, 2014.

8 Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing
graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms
Appl., 16(2):243–259, 2012.

9 Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, 2011.

10 Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990.

11 Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Planar drawings
of higher-genus graphs. J. Graph Algorithms Appl., 15(1):7–32, 2011.

12 John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon
Woodhull. Graphviz - open source graph drawing tools. In Proc. of Graph Drawing, pages
483–484, 2001.

13 J. Joseph Fowler and Stephen G. Kobourov. Planar preprocessing for spring embedders.
In Graph Drawing - 20th International Symposium, pages 388–399, 2012.

14 Eli Fox-Epstein, Shay Mozes, Phitchaya Mangpo Phothilimthana, and Christian Sommer.
Short and simple cycle separators in planar graphs. ACM Journal of Experimental Al-
gorithmics, 21(1):2.2:1–2.2:24, 2016.

15 Ilja Friedel, Peter Schröder, and Mathieu Desbrun. Unconstrained spherical parameteriza-
tion. J. Graphics Tools, 12(1):17–26, 2007.

16 Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Softw., Pract. Exper., 21(11):1129–1164, 1991.

17 Daniel Gonçalves and Benjamin Lévêque. Toroidal maps: Schnyder woods, orthogonal
surfaces and straight-line representations. Discrete & Computational Geometry, 51(1):67–
131, 2014. doi:10.1007/s00454-013-9552-7.

18 Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical parameterization
for 3d meshes. ACM Trans. Graph., 22(3):358–363, 2003.

19 Stefan Hachul and Michael Jünger. Large-graph layout algorithms at work: An experi-
mental study. J. Graph Algorithms Appl., 11(2):345–369, 2007.

20 Yifan Hu. Efficient, high-quality force-directed graph drawing. The Mathematica Journal,
10(1), 2006. URL: http://yifanhu.net/PUB/graph_draw_small.pdf.

21 Stephen G. Kobourov. Force-directed drawing algorithms. In Handbook on Graph Drawing
and Visualization, pages 383–408. Chapman and Hall/CRC, 2013.

22 Stephen G. Kobourov and Kevin Wampler. Non-euclidean spring embedders. IEEE Trans.
Vis. Comput. Graph., 11(6):757–767, 2005.

23 Chris Muelder and Kwan-Liu Ma. A treemap based method for rapid layout of large
graphs. In IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, pages
231–238, 2008.

24 Hiroshi Nagamochi, Takahisa Suzuki, and Toshimasa Ishii. A simple recognition of maximal
planar graphs. Inf. Process. Lett., 89(5):223–226, 2004.

25 Dominique Poulalhon and Gilles Schaeffer. Optimal coding and sampling of triangulations.
Algorithmica, 46(3-4):505–527, 2006. doi:10.1007/s00453-006-0114-8.

26 S. Saba, I. Yavneh, C. Gotsman, and A. Sheffer. Practical spherical embedding of manifold
triangle meshes. In (SMI2005), pages 258–267, 2005.

27 Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, volume 90, pages 138–148, 1990. URL:
http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf.

SEA 2018

http://dx.doi.org/10.1007/s00454-013-9552-7
http://yifanhu.net/PUB/graph_draw_small.pdf
http://dx.doi.org/10.1007/s00453-006-0114-8
http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf

24:14 Fast Spherical Drawing of Triangulations

28 Avner Shapiro and Ayellet Tal. Polyhedron realization for shape transformation. The Visual
Computer, 14(8/9):429–444, 1998.

29 Alla Sheffer, Craig Gotsman, and Nira Dyn. Robust spherical parameterization of triangular
meshes. Computing, 72(1-2):185–193, 2004.

30 Paolo Simonetto, Daniel W. Archambault, David Auber, and Romain Bourqui. Impred:
An improved force-directed algorithm that prevents nodes from crossing edges. Comput.
Graph. Forum, 30(3):1071–1080, 2011.

31 Chris Walshaw. A multilevel algorithm for force-directed graph-drawing. J. Graph Al-
gorithms Appl., 7(3):253–285, 2003.

32 Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel. Curvilinear spherical parameteriza-
tion. In Int. Conf. on Shape Modeling and Applications (SMI 2006), page 11, 2006.

	Introduction
	Preliminaries
	Initial Layouts
	Spherical drawings and parameterizations

	Fast spherical embedding with theoretical guarantees: SFPP layout
	Experimental results and comparison
	Quantitative evaluation of aesthetic criteria
	Timing performances: comparison
	Evaluation of the layout quality: interpretation and comparisons

	Spherical preprocessing for Euclidean spring embedders
	Concluding remarks and future work

