
Recovery Time Considerations in Real-Time
Systems Employing Software Fault Tolerance
Anand Bhat
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
anandbha@andrew.cmu.edu

https://orcid.org/0000-0001-8703-7057

Soheil Samii
General Motors R&D, Warren, MI, USA and Linköping University, Sweden
soheil.samii@gm.com, soheil.samii@liu.se

Ragunathan (Raj) Rajkumar
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
rajkumar@andrew.cmu.edu

Abstract
Safety-critical real-time systems like modern automobiles with advanced driving-assist features
must employ redundancy for crucial software tasks to tolerate permanent crash faults. This
redundancy can be achieved by using techniques like active replication or the primary-backup
approach. In such systems, the recovery time which is the amount of time it takes for a redundant
task to take over execution on the failure of a primary task becomes a very important design para-
meter. The recovery time for a given task depends on various factors like task allocation, primary
and redundant task priorities, system load and the scheduling policy. Each task can also have a
different recovery time requirement (RTR). For example, in automobiles with automated driving
features, safety-critical tasks like perception and steering control have strict RTRs, whereas such
requirements are more relaxed in the case of tasks like heating control and mission planning. In
this paper, we analyze the recovery time for software tasks in a real-time system employing Rate-
Monotonic Scheduling (RMS). We derive bounds on the recovery times for different redundant
task options and propose techniques to determine the redundant-task type for a task to satisfy its
RTR. We also address the fault-tolerant task allocation problem, with the additional constraint
of satisfying the RTR of each task in the system. Given that the problem of assigning tasks to
processors is a well-known NP-hard bin-packing problem we propose computationally-efficient
heuristics to find a feasible allocation of tasks and their redundant copies. We also apply the
simulated annealing method to the fault-tolerant task allocation problem with RTR constraints
and compare against our heuristics.

2012 ACM Subject Classification Software and its engineering→ Software fault tolerance, Soft-
ware and its engineering→ Real-time systems software, Computer systems organization→ Real-
time systems

Keywords and phrases fault tolerance, real-time embedded systems, recovery time, real-time
schedulability

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.23

1 Introduction

Advances in sensing, machine learning and semiconductor technology have resulted in a
dramatic increase in the amount and complexity of computational resources used in real-
time systems. Many of these systems, such as industrial control, aviation and automobiles

© Anand Bhat, Soheil Samii, and Ragunathan (Raj) Rajkumar;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anandbha@andrew.cmu.edu
https://orcid.org/0000-0001-8703-7057
mailto:soheil.samii@gm.com, soheil.samii@liu.se
mailto:rajkumar@andrew.cmu.edu
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Recovery Time Considerations for Software Fault Tolerance

[35], are also safety-critical. The increasing complexity of these computational aspects has
compounded the need for these systems to remain dependable [9]. For such systems, the
ability to tolerate permanent crash faults is integral to their dependable operation.

Conventionally, fault tolerance is achieved by replicating hardware and often using a
voting mechanism to determine the output [32]. Unfortunately, this approach is extremely
inefficient in terms of cost, weight, space and energy needs for many applications. This is
especially true for the automotive industry, where the system reliability requirements can
be diverse and the cost constraints are stringent. For example, consider self-driving cars.
Several levels of automation (1 to 5) have been defined in [31] to characterize the spectrum of
self-driving features. To put such systems in context with redundancy requirements, consider
a Level 2 system active on highways only. In such a system, although the driver is not in
direct control of the vehicle motion, the driver still plays a supervisory role: the driver will
be requested to take over control in case of any subsystem or component failure. In such
a system, perhaps only a small subset of all software tasks need redundancy (e.g., braking
and steering control, but not propulsion). Now, consider a Level-4 system active in the same
operational domain (highways), where the vehicle itself is responsible to bring the system
to a safe state in case of failures. Such high levels of automation impose more stringent
fault-tolerance requirements in terms of the number of task replicas (or backups).

Similarly, other diverse needs are also evident from the fact that different tasks running
in an automobile have different levels of safety criticality. For example, the braking control
task is far more safety-critical than (say) a music playback task. This motivates the need
for adaptive cost-optimized fault-tolerance solutions to reduce overall resource utilization.
Hence, software fault-tolerance techniques like active replication [37, 16] or the primary-
backup approach [6, 2] using hot and cold standbys are more applicable to systems like
automobiles [19, 4].

The diversity in the reliability requirements for tasks in a system using software fault
tolerance is captured by the recovery time requirement (RTR) of each task. The RTR
specifies the number of consecutive deadlines of the primary task that a redundant task
can afford to miss without the system being considered to have failed. The recovery time
requirement for a task varies depending on its safety criticality. Tasks that are safety-critical
have a strict (and very low) upper bound on RTR, while others can afford more relaxed
values. The recovery time is the time a redundant task takes to successfully take over
execution on primary task failure. It is influenced by a number of factors like redundant-task
type, redundant task priority and network delays. The goal of this paper is to analyze
the recovery times achieved by different types of redundant tasks (active/passive) used in
software fault-tolerance techniques for real-time systems. The major contributions of this
paper are as follows:
1. We derive the bounds on the recovery time of different types of redundancies, i.e, active

or passive, used in software fault-tolerance techniques for real-time systems.
2. We derive conditions to map the recovery time requirements of a task to a redundant-

task-type assignment.
3. We propose heuristics to determine redundant-task-type assignments and allocate these

tasks to different nodes satisfying the recovery time requirements of all tasks while
attempting to optimize resource utilization.

4. We apply the Simulated Annealing method to the fault-tolerant task allocation problem
and compare its performance to the heuristics proposed.

The rest of this paper is organized as follows. In Section 2, we describe related work.
In Section 3, we define our system model and fault model, and describe different types
of redundant tasks we consider for our analysis. In Section 4, we quantify recovery time

A. Bhat, S. Samii, and R. Rajkumar 23:3

and derive bounds on the recovery time for each redundancy type. In Section 5, we derive
conditions to assign a redundancy type to a task given its recovery-time requirements.
In Section 6, we present heuristics to assign tasks to nodes satisfying the recovery time
requirements of each task. We also apply the simulated annealing method to the fault-tolerant
task allocation problem and compare its performance against the proposed heuristics. We
summarize and conclude our findings in Section 8.

2 Related Work

The problem of supporting fault tolerance at the level of task scheduling has been widely
studied in the literature. A number of real-time task allocation algorithms in order to
tackle this problem in a distributed real-time system [8, 13, 27] have been described in the
literature. In [26], Oh et al. present an online allocation heuristic to assign replicas to a
minimum number of processors such that all replicas guarantee that task deadlines are met.
They also derive the bound on the number of processors required to feasibly schedule a
task set using their heuristic. These approaches focus only on active replication, where the
redundant software executes regardless of failure modes. The resource consumption of such
approaches is impractical for resource-constrained systems like cars, especially as the level of
automation increases and multiple failures need to be tolerated. In contrast, we also focus on
the primary-backup approach which enables fault-tolerance solutions with optimized resource
usage by activating some backups only when failures occur.

Fault-tolerant task allocation using a combination of active replication and the primary-
backup approach has been studied in [15] and [3]. Both techniques introduce phasing delays to
support backup overlapping and backup deallocation techniques. Neither technique leverages
the lower run-time utilization of different types of passive backups to optimize the number
of processors used for deployment. Also, all techniques mentioned so far attempt to meet
immediate recovery-time requirements. In this paper, we allow each task to specify its own
configurable recovery time requirement.

In our previous work [4, 19], we discussed the fault-tolerant task allocation problem which
states that no task should be placed on the same node as its primary or another redundant
task. We proposed the Tiered Placement Constrained Decreasing (TPCD) and TPCD
with cold standby (TPCDC) heuristics to produce allocations respecting this fault-tolerant
placement constraint. Both these heuristics assume the type of redundant task to be used
as inputs. In this paper, we attempt to determine this parameter given the recovery time
requirement of each task. To this end, we present a recovery-time analysis framework, along
with an extension to the TPCDC heuristic, TPCDC+R, and two new heuristics to produce
a fault-tolerant allocation satisfying the recovery-time requirement of each task.

3 System Model and Problem Definition

3.1 Computation Model
In this paper, we consider a distributed system consisting of N computational nodes, where
each node can communicate with every other node in the system by sending messages. We
assume a set of n tasks, (τ1, τ2, ..., τn), where each task is assigned a unique priority based
on the Rate-Monotonic Scheduling (RMS) [23] Policy. We assume that the tasks are ordered
in non-increasing order of priorities. We assume that a higher-priority task can immediately
preempt a lower-priority task. Each task τi is assumed to have a worst-case execution time
(WCET) of Ci, a period of Ti and an implicit deadline Di = Ti. The analysis can be adapted

ECRTS 2018

23:4 Recovery Time Considerations for Software Fault Tolerance

to other scheduling policies and deadline models (e.g., D < T), as long as a response-time
analysis is available. Each task τi may be blocked by lower-priority tasks for at most Bi

units of time as a result of the operation of a concurrency control protocol like the Priority
Ceiling Protocol [33]. We assume that the worst-case release jitter, the worst-case time a
task τi can spend waiting to be released after arrival, is Ji [36].

The schedulability of a task can be evaluated using the response-time analysis presented
in [36].

rn+1
i = Ci +Bi +

i−1∑
j=1
d(rn

i + Jj)/TjeCj

r0
i =

i∑
j=1

Cj

(1)

Equation (1) represents an iterative solution which starts at r0
i and terminates when

either Ri = rn+1
i = rn or rn+1

i > Di. We refer to Ri as the worst-case response time for task
τi. Ri is measured from the instant the task is released to its completion. The worst-case
time from arrival to completion of task i [36], also known as the worst-case completion time
(WCCT), is given by,

WCCTi = ri + Ji (2)

A task is said to be schedulable if its WCCTi ≤ Di.

3.2 Fault Model
In our model, we are primarily concerned about permanent crash faults [9]. Hardware failures,
operating system crashes and process crashes are some examples of crash faults. We assume
that these crash faults are fail-silent [5]. In order to tolerate these crash faults, we employ
fault tolerance by replication [14]. We consider three types of redundancies:
1. Active Replica: In active replication, all redundant copies are identical and treated

uniformly. Each replica performs all operations, like accepting and processing application
inputs, performing state calculations, performing application calculations and producing
output. This implies that, under normal operation, the system needs to support duplicate
suppression to filter out duplicate outputs.

2. Hot Standby: A hot standby is based on the primary-backup approach. It performs all
the operations of the primary task except for producing outputs. On detection of primary
failure, the hot standby is promoted to become a primary and begins to produce outputs.
Unlike an active replica, a hot standby can run a degraded version of the primary to
optimize resource consumption.

3. Cold Standby: A cold standby is also based on the primary-backup approach. It can be
of two types depending on the type of application. If an application is stateless, the cold
standby does not perform any operations until it detects primary failure. For applications
with state, the cold standby accepts and logs application inputs but does not perform any
other operations. It regularly accepts the state from the primary to maintain consistency.
On detection of primary failure, the cold standby primes its state first and then begins to
produce outputs.

Transient and intermittent faults can be overcome by techniques like simple re-execution,
forward recovery [7], and recovery blocks [17]. The impact of these solutions can be accounted
for by modifying the analysis of task response times to include additional fault-induced

A. Bhat, S. Samii, and R. Rajkumar 23:5

Time

Primary
Failure

HB

Primary

Backup

Backup
promoted to
primary and
produces
output

No HB

δ

Figure 1 Detecting Primary Failure.

Time

Primary
Failure

HB

Primary

Backup

Backup
promoted to
primary and
produces output

Recovery Time

No HB

Figure 2 Defining Recovery Time.

processing requirements [7]. In this paper, we focus on permanent faults, though the analysis
for transient faults from [7] can be incorporated into our framework. Similar fault models
have also been used in the automotive sector [19] and [22].

In our model, a task and its replicas have the same period and a task can be assigned
one or more replicas based on the application requirements. The system designer can decide
which tasks are considered critical for the application and which are considered non-critical.
In this paper, we assume that non-critical tasks do not have replicas and can be terminated
in order to allow a cold standby to execute when a primary fails. For fault detection, we
assume that the replicas monitor the status and health of the primary, for example, by using
heartbeats and producing outputs when necessary [19, 4]. This is illustrated in Figure 1. We
assume that the underlying communication framework is reliable1, i.e., it guarantees that a
message will either be delivered within a fixed message delivery bound δ or not be delivered
at all. Common communications protocols like CAN/CAN-FD [10], FlexRay [28] and many
variants of real-time Ethernet [1, 34] can support these guarantees. The successful reception
of a heartbeat indicates to the replica that the primary is operational.

3.3 Problem Statement

I Definition 1. Recovery time (RT) is the time elapsed from the instant of primary failure
to the instant when a redundant task is able to produce the desired output. This duration is
shown in Figure 2.

1 Safety-critical real-time systems must deal with communication failures. The communication layer can
utilize solutions like redundant CANbus links, dual FlexRay configurations with built-in support for
fault tolerance, and replicated ethernet switches. In the interests of brevity, we abstract away the details
of such solutions with our assumption of a reliable communication layer in this paper.

ECRTS 2018

23:6 Recovery Time Considerations for Software Fault Tolerance

The choice of the type of redundant task to be used has a major impact on a task’s
recovery time. For example, an active replica can virtually provide seamless recovery since
it runs alongside the primary. The hot and cold standbys, on the other hand, have to first
detect primary failure. In addition, the cold standby needs to then prime its state, which
results in an even longer recovery time.

The number of redundant copies assigned to each task is also an important design
parameter. Every task can be assigned m (m ∈ N) redundant copies. It is important to
note that different tasks can utilize different redundancy types (i.e., active, hot or cold).
The number of replicas and their types are system parameters which are application-specific.
Their choice determines the number of failures a given task can tolerate and how quickly a
task can recover from a failure. The former is a system designer’s choice and the latter can
be captured by specifying a recovery-time requirement for each task.

I Definition 2. Recovery time requirement (RTR) is the maximum number of consecutive
deadlines of the primary task that the system can afford to miss before the redundant task
must recover in accordance with Definition 1.

We first determine which type of redundant task is appropriate for a given task to meet
its recovery-time requirement. The benefit of using replicas is maximal when a task and
any of its redundant copies obey the placement constraint of not being co-located on the
same node. To this end in [20], Kim et al. defined the Fault-tolerant Partitioned Scheduling
problem as one of assigning independent tasks to nodes where every member of a group, i.e.,
a primary task and its copies, would not be co-located on the same node. This ensures that,
when nodes fail independently, they do not result in application failures. The bin-packing
problem [25] of allocating fault-tolerant tasks is known to be NP-hard [18], and heuristics
were proposed in [4] to address this problem. In this paper, we extend these heuristics to
ensure that the recovery-time requirements of tasks are also satisfied.

We assume that task I/O dependencies2 and ensuring input consistency between a primary
and its redundant copies are considered by the system designer in assigning the RTR of each
task in the system.

To summarize, the goals of this paper are as follows. Given N nodes, and a task
set τ = {T1, T2, . . . , Tn}, where every task has an application-dependent recovery-time
requirement RTRi,
1. derive bounds on the recovery time for each redundant-task type,
2. decide a redundant-task type, i.e., active, hot or cold, and
3. find an allocation where all tasks satisfy their recovery-time requirements while minimizing

the number of nodes used for allocation.

4 Recovery Time Analysis for Passive Backups

In the previous section, we saw that an active replica can be seamlessly recovered from, since
other replicas are running in parallel. In this section, we derive the recovery time bounds for
hot and cold standbys.

2 Detailed task models capturing I/O dependencies are certainly needed, and will be part of our future
work. For example, task I/O dependencies can be factored into our analysis by constructing composite
(virtual) tasks formed by combining tasks with I/O dependencies.

A. Bhat, S. Samii, and R. Rajkumar 23:7

5 10

δ

HB No HB
Backup

20

δ

HB

15

No HB

Primary

Time

2 missed heartbeats

Backup arrivals

(a) Backup not following the Primary.

5 10

δ = w + C + QJ

HB

Primary

Backup
20

δ

15
HB Time

No missed
heartbeatsWCCTPRI δ

(b) Backup following the Primary.

Figure 3 Motivation for Backup following the Primary.

4.1 Backup Following the Primary
Previous work [4] has shown that the bounds on the recovery time for passive backups can
be reduced if the backup task execution follows the execution of the primary. The intuition
for this can be seen in Figures 3a and 3b. As seen in Figure 3a, if the backup can execute at
any time independent of its primary, it is possible for a backup to miss up to two heartbeats
without primary failure. Hence, the backup must wait for three consecutive missed heartbeats
to declare failure of the primary and initiate recovery, resulting in a longer recovery time. In
contrast, when the backup follows the execution of the primary, it needs only a single missed
heartbeat to detect primary failure.

For the backup to follow the primary, the following requirements must be satisfied:
1. Global Time Synchronization: To ensure that the backup follows the primary, the release

time of the backup w.r.t that of the primary must be explicitly controlled. Since fault-
tolerant task allocation requires primaries and replicas to run on distinct nodes, the nodes
must be time-synchronized. This constraint can be relaxed in a system which allows tasks
to be released with offsets at boot up and has negligible clock drift.

2. Network Schedulability Analysis: In order to calculate the optimal release instant for the
backup, network delays must be characterized. 3 The worst-case network response time
δm for message m can be represented as,

δm = wm +QJm + Cm (3)

where,
The queuing jitter QJm corresponds to the longest time between the initiating event
and the message being queued, ready to be transmitted on the network.
The queuing delay wm corresponds to the longest time that the message can remain
in the device queue, before commencing successful transmission on the network.
The transmission time Cm corresponds to the longest time that the message can take to
be transmitted. In the case of standbys, the transmission time depends on the standby
type. Cold standbys need to accept state, and normally require longer transmission
times than hot standbys.

4.2 Recovery Time Bounds for Hot Standbys
A hot standby produces an output immediately after it detects primary failure as described
in Section 3 and shown in Figure 4. Let WCCTpri be the WCCT for the primary. Let

3 Popular automotive network technologies, like CAN [10] and FlexRay [28], have response-time analyses
to bound the worst-case message delivery time.

ECRTS 2018

23:8 Recovery Time Considerations for Software Fault Tolerance

TimeHB

Primary

Backup

 τ1(2,5)

 τ2(1,10)

0 2 3 5 10

δ
WCCTPRI

Primary
Failure

WCCTPRI + δ

Recovery Time for τ2

Figure 4 Recovery Time Bounds for Hot Standby τ2.

HB

Primary

Backup

 τ1(2,5)

 τ2(1,10)

0 2 3 5 10

δ
WCCTPRI

Primary
Failure

WCCTPRI + δ

Recovery Time for τ2

Cold Standby p=1

State Priming

Time

Figure 5 Recovery Time Bounds for Cold Standby τ2.

WCCThot be the completion time of the backup corresponding to the failure of the primary.
The total time from the release of the primary to the execution of the backup would be
WCCTpri + δhot +WCCThot. Hence, the recovery time is

RTHot = WCCTpri + δhot +WCCThot (4)

4.3 Recovery Time Bounds for Cold Standbys
A cold standby takes longer to recover from a failed primary as described in Section 3, since
it does not produce any state of its own, but instead receives regular state updates from
the primary. This is illustrated in Figure 5. It only logs application inputs which it uses to
prime state for future use. These logs can be cleared once a primary state is applied. Let p
denote the number of periods the cold standby needs to prime state and produce output. A
cold standby for a stateless application does not need to prime any state, and hence, in this
case, p = 0. For applications with state, the value of p depends on two factors:
1. The frequency of state transfer from the primary to the standby: The higher the frequency

of state transfer, the fresher is the state of the cold standby and hence lower is the number
of periods required for state priming (i.e., a lower value for p).

2. Priming state is highly application-dependent. Some applications may make temporal
corrections of the most recent state using appropriate extrapolations. Other applications
may iterate through all the logged inputs between the last received state and the time
instant the failure is detected, and, in each iteration, re-calculate the state to finally
produce output based on fresh state. In this paper, we assume that, for applications with
state, the value of p is provided by the application designer.

A. Bhat, S. Samii, and R. Rajkumar 23:9

Thus, for a cold standby to recover from a primary failure, the recovery time would be

RTCold = WCCTpri + δcold + pT +WCCTcold (5)

5 Redundant-Task Type Assignment To Tasks

In this section, we identify the types of redundant task assignments that can satisfy a given
RTR constraint. As described in Section 3.3 an active replica can be seamlessly recovered
from, since other replicas are running in parallel, hence it can satisfy any RTR requirement.

5.1 Hot standby
5.1.1 RT R = 0
For a hot standby to recover from primary failure and maintain RTR = 0, the recovery time,
RThot, should be less than or equal to T , i.e., the redundant task must recover before the
deadline of its primary. Hence, from Equation (4) we have,

RTHot ≤ T ⇒ WCCTpri + δhot +WCCThot ≤ T (6)

With the worst-case values for the terms in Equation (6),

T + δhot + T � T

Hence, with the worst-case values for WCCT , a hot standby cannot satisfy RTR = 0.

5.1.2 RT R > 0
Consider the case where RTR = n and n ∈ N>0, allowing the task to tolerate up to n missed
deadlines when the primary fails.

In the case of a hot standby, RTR = n can be satisfied if RTHot < (n+ 1)T .
From Equation (4),

WCCTpri + δhot +WCCThot ≤ (n+ 1)T (7)

Considering n ≥ 2 and the worst-case values for the terms in the above equation,

WCCTpri + δ +WCCTbkp ≤ 3T
T + δ + T ≤ 3T (8)

Assuming δ < T , a hot standby can meet RTR ≥ 2 (if it is schedulable).

5.2 Cold standby
5.2.1 RT R = 0
For a cold standby to satisfy RTR = 0, the recovery time should be less than or equal to T .
From Equation (5),

WCCTpri + δcold + pT +WCCTcold ≤ T (9)

Equation (9) must be satisfied for a cold standby to meet RTR = 0. However, if p 6= 0, a
cold standby cannot satisfy RTR = 0.

ECRTS 2018

23:10 Recovery Time Considerations for Software Fault Tolerance

Table 1 Conditions for Redundant Task Selection.

Standby Selection
RTR(n) Condition Standby Assignment
0 WCCTpri + δcold +WCCTcold ≤ T Cold (p = 0)
0 WCCTpri + δhot +WCCThot ≤ T Hot
0 WCCTpri + δhot +WCCThot > T Active
> 0 WCCTpri + δ +WCCTbkp + pT ≤ (n+ 1)T Cold
> 0 WCCTpri + δhot +WCCThot ≤ (n+ 1)T Hot
> 0 WCCTpri + δhot +WCCThot > (n+ 1)T Active

Time

Time

PRIMARY

BACKUP 1

Time
BACKUP 2

RTR = 1, to the current primary

δ

(a) Multi-Level Backups.

Time

Time

PRIMARY

BACKUP 1

Time
BACKUP 2

RTR = 1, to the current primary

δ

δ

(b) Release Time Correction.

Figure 6 Support for Multi-Level Backups.

5.2.2 RT R > 0

In the case of a cold standby, RTR = n can be satisfied if RTCold < (n+ 1)T in the worst
case.

From Equation (5),

WCCTpri + δ +WCCTbkp + pT ≤ (n+ 1)T (10)

Table 1 summarizes all the conditions above for standby selection. We see that, for certain
conditions, multiple options are available for redundant-task type assignment. We describe
our approach to redundant task selection in case of multiple available options in Section 6.

5.3 Multi-Level Backups

As shown in Figure 6a, a single primary can have more than one backup. Both backups in the
figure are released such that they follow the primary to satisfy the primary’s recovery-time
requirement. We assume that the order of promotion to primary is statically configured
(which in practice is easily achieved by the use of configuration parameters, or using node
IDs). Suppose that the first backup in Figure 6a is designated to take over execution first
after primary failure. On primary failure, it is not guaranteed that the current second backup
would always satisfy the recovery time requirements of the first which would now become
the new primary. In order for the second-level backup to now satisfy the RTR of the new
primary, the release time of the task needs to be corrected and this is shown in Figure
6b. Also, since we are delaying the release time of the task, and deadlines are therefore
correspondingly postponed, the deferred start does not affect the overall schedulability of
the task set [30].

A. Bhat, S. Samii, and R. Rajkumar 23:11

Algorithm 1 TPCDC+R.
1: procedure TPCDC+R (Γ = {τ0

0 , τ
1
0 ,τ

0
1 ...τ

0
n, ...}) .

(τ i
j : j → TaskId, i→ TierOrder)

2: for each task τj in Γ do
3: Ψi ← τ i

j . Create tiers consisting of tasks with redundancies of the same order
4: for each tier Ψi in Ψ do
5: Sort tasks in descending order of their utilizations
6: for each task τi in Ψi do
7: Check recovery time to primary and assign redundant-task type
8: Task Assignment(α) ← BFD-P(τi)
9: Apply lower run-time utilizations for cold standbys
10: Allocate the tasks that do not have redundancies
11: return α . Return the task set assignment

6 Task partitioning with Recovery Time Constraints

In Section 3, we presented the fault-tolerant task allocation problem. We now extend
this problem to include the constraint that every backup task satisfies the recovery-time
requirement of the primary. Given our focus on resource-constrained environments, we
present heuristics to address this problem while trying to minimize the number of processors
used for allocation. Based on the recovery-time bounds of Section 4.2, we derived conditions
to determine the standby type in Section 5. In this section, we look at how the redundant-task
type assignment can be incorporated in the task allocation scheme to satisfy the recovery
time requirement of each primary.

The TPCD heuristic [4] produces an allocation satisfying the fault-tolerant placement
constraint while attempting to minimize the number of nodes used. TPCD breaks the task
set into tiers based on the backup order to place members of a replica group as far away from
each other in the task order as possible. This reduces the chances of a task facing a placement
conflict. In each tier, TPCD arranges tasks in descending order of utilization values, since,
members of larger groups have a greater probability of running into a placement conflict.
TPCD then allocates the tiers from the highest-order tier to the lowest-order tier. The
TPCDC heuristic extends TPCD to leverage lower cold-standby utilizations. Any non-critical
task can be terminated in order to allow a cold standby to execute when a primary fails.
TPCDC initially treats all standbys as hot standbys from a utilization standpoint.

6.1 The TPCDC+R Heuristic

We now extend TPCDC by introducing an explicit check for RTR. This TPCDC+R heuristic
is shown in Algorithm 1. Before assigning a task to a node, we ensure that every task (primary
or copy) on that node satisfies RTR constraints. In order to determine the recovery time
of a redundant task, we must first assign the redundant-task type using Table 1. Since
cold standbys at run-time have very low utilization values, it allows for an optimization
where non-safety critical tasks can be assigned to processors with cold standbys which can
be terminated in case the cold standby needs to take over primary execution. Hence, if
multiple redundant task options are available, we prioritize cold standbys over hot standbys
and active replicas because they are the most resource-efficient. Next, hot standbys do not
normally produce outputs. Hence, the overhead for duplicate suppression is avoided and hot

ECRTS 2018

23:12 Recovery Time Considerations for Software Fault Tolerance

Algorithm 2 TRTI.
1: procedure TRTI (Γ = {τ0

0 , τ
1
0 ,τ

0
1 ...τ

0
n, ...}) . (τ i

j : j → TaskId, i→ TierOrder)
2: for each task τj in Γ do
3: Ψi ← τ i

j . Create tiers consisting of tasks with redundancies of the same order
4: for each tier Ψi in Ψ do
5: Sort tasks in ascending order of RTR constraints
6: for each task τi in Ψi do
7: Check recovery time to primary and assign redundant-task type
8: Task Assignment(α) ← BFD-P(τi)
9: Apply lower run-time utilizations for cold standbys

10: Allocate the tasks that do not have redundancies
11: return α . Return the task set assignment

Algorithm 3 RTT.
1: procedure RTT(Γ = {τ0

0 , τ
1
0 ,τ

0
1 ...τ

0
n, ...})

2: for each task τj in Γ do
3: Ψi ← τ i

j . Create tiers consisting of tasks of same RTR
4: for each tier Ψi in Ψ do
5: TPCDC+R(Ψi)
6: return α . Return the task set assignment

standbys can potentially run a degraded version of the primary with lower utilization values.
However, they may have a scheduling penalty since they need to satisfy RTR constraints.
Therefore, the heuristic first checks if the hot standby satisfies the RTR constraint of the
task. If so, it assign a hot standby. Else, it chooses an active replica instead of opening a
new node for assignment.

It must be noted that the choices among three redundant-task types would be different if
the goal was different. For example, if communication bandwidth is constrained, the cold
standby overheads for state transfer need to be factored in.4

As stated before, we prioritize cold standbys over hot standbys or active replicas. Figure
8a shows the distribution of standby types produced by TPCDC+R. We plot the percentage
of active, hot or cold redundant task assignments against the number of primary tasks in
each task set. The results are averaged across 50,000 tasksets, where tasks are randomly
generated. Each task is randomly assigned 0,1 or 2 redundancies, an RTR constraint from 0
to 5, and a value for p (i.e., periods for cold standby priming) from 0 to 5.

TPCDC+R prioritizes tasks with higher utilization values by assigning them first in the
task allocation order for each tier. This introduces additional placement constraints for tasks
which have tight RTR requirements. An example occurs when a task with low utilization
with strict RTR requirements gets placed later in the allocation order. As a result, cold
standbys may become unschedulable forcing the use of active replicas, which in turn can
cause new nodes to be added.

4 We will consider this overall system resource optimization problem as part of our future work.

A. Bhat, S. Samii, and R. Rajkumar 23:13

Task 2
(0.3)

Task 3
(0.6)

Task 1
(0.4)

Task 2
(6,20)

(Ui = 0.3)
(2 copies)
(RTR = 1,

p=0)

Task 3
(3,5)

(Ui = 0.6)
(1 copy)
(RTR=3,

p=3)

Task 1
(4,10)

(Ui = 0.4)
(2 copies)
(RTR = 0,

p=0)

Task 4
(80,100)
(Ui = 0.8)
(0 copies)

Task 4
(0.8)

Task 5
(80,100)
(Ui = 0.8)
(0 copies)

Task 6
(30,100)
(Ui = 0.4)
(0 copies)

Task 5
(0.8)

Task 6
(0.4)

(a) Input Task Set.

Tier 0

Tier 1

Tier 2

Task 2’’
(0.3)

Task 3’
(0.6)

Task 1’’
(0.4)

Task 1’
(0.4)

Task 1
(0.4)

Task 2’
(0.3)

Task 2
(0.3)

Task 3
(0.6)

(b) TPCDC+R Tiering.

RTR Tier 3

RTR Tier 2

RTR Tier 1

Task 2’
(0.3)

Task 3
(0.6)

Task 1
(0.4)

Task 1’
(0.4)

Task 1’’
(0.4)

Task 2
(0.3)

Task 2’’
(0.3)

Task 3’
(0.6)

(c) RTT Tiering.

Node 1 Node 2 Node 3

Task 2’’
(0.3)

(Cold)

Task 3’
(0.6) (Hot)

Task 1’’
(0.4)

(Cold)

Task 1’
(0.4)

(Active)

Task 1
(0.4)

Task 2’
(0.3) (Cold)

Task 2
(0.3) Task 3

(0.6)

Node 4

(d) TPCDC-R+ critical task allocation.

Node 1 Node 2 Node 3

Task 2
(0.3)

Task 3
(0.6)

Task 1’’
(0.4)
(Cold)

Task 2’’
(0.3) (Cold)

Task 1
(0.4)

Task 3’
(0.6)
(Hot)

Task 1’
(0.4)

(Cold)

Task 2’
(0.3) (Cold)

Node 4 Node 5

(e) RTT critical task allocation.

Node 1 Node 2 Node 3

Task 2’’ (0.1)
(Cold)

Task 3’
(0.6)

Task 1’’ (0.1)
(Cold)

Task 1’
(0.4)

(Active)

Task 1
(0.4) Task 2’

(0.1) (Cold)

Task 2
(0.3) Task 3

(0.6)

Node 4

Task 4
(0.8)

Task 5
(0.8)

Task 6
(0.4)

Node 5 Node 6

(f) TPCDC-R+ non-critical task allocation.
Node 1 Node 2 Node 3

Task 2
(0.3)

Task 3
(0.6)

Task 1
(0.4)

Task 3’
(0.6)

 (Hot)

Task 4
(0.8)

Task 5
(0.8)

Task 6
(0.4)

Task 2’ (0.1)
(Cold)
Task 1’ (0.1)

(Cold)

Task 2’’ (0.1)
(Cold)

Task 1’’ (0.1)
(Cold)

Node 4 Node 5

(g) RTT non-critical task allocation.

Figure 7 Example: TPCDC-R+ vs RTT (Best Viewed In Color).

ECRTS 2018

23:14 Recovery Time Considerations for Software Fault Tolerance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

50

60
TPCDC+R - Standby Distribution

Active Replicas - TPCDC+R Hot Standbys - TPCDC+R
Cold Standbys - TPCDC+R

Number of PrimariesPe
rc

en
ta

ge
 o

f
re

du
n

d
an

cy
 t

yp
e

(a) TPCDC+R: Standby Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

50

60
TRTI - Standby Distribution

Active Replicas - TRTI Hot Standbys - TRTI
Cold Standbys - TRTI

Number of PrimariesPe
rc

en
ta

ge
 o

f r
ed

u
n

d
an

cy
 t

yp
e

(b) TRTI: Standby Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

50

60
RTT - Standby Distribution

Active Replicas - RTT Hot Standbys - RTT
Cold Standbys - RTT

Number of PrimariesPe
rc

en
ta

ge
 o

f
re

d
u

nd
an

cy
 t

yp
e

(c) RTT: Standby Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

15

20

25
RTT

TRTI

TPCDC+R

Number of Primaries

%
 o

f a
llo

ca
tio

ns
 w

it
h

fe
w

er
 n

od
es

(d) Comparative Evaluation

Figure 8 Evaluation: RTT vs TRTI vs TPCDC+R

To address this problem, we introduce two new heuristics based on TPCDC+R that
prioritize RTR constraints in the task allocation order.

1. In the first heuristic, we order tasks within each tier of TPCDC by their RTR requirements
instead of utilization values. We refer to this extension as the Tiered RTR constraint
Increasing (TRTI) heuristic. Algorithm 2 captures this TRTI heuristic.

2. In the second heuristic, we divide tasks into groups with different RTR requirements
and allocate each group using the TPCDC heuristic separately. We refer to this as the
RTR-tiered (RTT) heuristic. Algorithm 3 presents this heuristic.

Figure 7 depicts an example highlighting how prioritizing RTR constraints in the task
allocation order can improve resource utilization by comparing the outputs of the TPCDC+R
and the RTT heuristics for the input task set in Figure 7a. As shown in Figure 7b, TPCDC+R
breaks the critical tasks into tiers based on the number of backups and orders tasks within a
tier based on their utilization values. In contrast, RTT breaks the tasks into tiers based on
their RTR constraints. Figures 7e and 7d show that the RTT heuristic allocates a greater
number of cold standbys compared to the TPCDC-R heuristic. This, in turn, results in an
allocation with fewer nodes as seen in Figures 7f and 7e. Notice that, when allocating the
non-critical tasks, we consider the lower utilization values for the cold standbys.

Figures 8b and 8c show the standby distributions for TRTI and RTT heuristics. Both
the heuristics result in a larger number of cold standby allocations than for the TPCDC+R
heuristic.

A. Bhat, S. Samii, and R. Rajkumar 23:15

6.2 Evaluation and Discussion
In this section, we evaluate and compare the performance of the TPCDC+R, TRTI and
RTT heuristics. We also evaluate the impact of the increased cold standby allocation on the
number of nodes used for allocations using the new heuristics. We plot the percentage of task
sets for which a heuristic produces an allocation with fewer nodes, i.e., uses at least one node
less for allocation compared to the other two heuristics. Figure 8d presents the results for
50,000 randomly-generated tasksets generated using Stafford’s Randfixedsum algorithm [11]
for total utilization values ranging from 0.1 to number of primaries and random period values
ranging from 1 to 104. Each task is randomly assigned 0, 1 or 2 copies, an RTR constraint
from 0 to 5, and a value for p (i.e., periods for cold standby priming) from 0 to 5. As the
figure shows, RTT produces an allocation with fewer nodes on average when compared to the
TRTI and TPCDC+R. For task sets with 24 primaries, it produces an allocation with fewer
nodes than TRTI and TPCDC+R for almost 23% of the task sets. This is consistent with
the intuition that increasing the number of cold standbys reduces CPU resource utilization.
Also, as the number of primaries increase, this trend becomes more significant as we have
more cold standby assignments to leverage. Moreover, both heuristics that prioritize the
RTR constraints perform better than the TPCDC+R heuristic. It is important to note
that increasing the number of cold standbys will result in additional network latencies since
they need to have state information sent to them from their primaries. For the purpose of
these experiments, we assume that the delays incurred for state transfer are short. For a
network-constrained system, it may prove to be more advantageous to have a lower number
of cold standbys.

7 Applying Simulated Annealing to the Fault-Tolerant Task
Allocation Problem

In the previous section, we saw that the RTT heuristic on average produces a better solution
than TPCDC+R and TRTI. In this section, we look at further improving on the RTT
heuristic solution by utilizing the simulated annealing method to solve the fault-tolerant task
allocation problem instead.

Simulated annealing is a general-purpose combinatorial optimization technique first
proposed by Kirkpatrick et al. [21]. The fault-tolerant task assignment problem can be
stated as an optimization problem as follows,

Given n tasks (τ1, τ2, ..., τn), with utilization (u1, u2, ..., un), where ui ≤ 1, find the number
of nodes M of size 1 that are needed to pack all tasks such that a primary task and its
corresponding redundant copies obey the placement constraint of not being co-located on
the same node and optimizing the following cost function [12]

cf = Maximize
M∑

j=1
(
∑
i∈kj

ui)2 (11)

where, kj represents the set of tasks in bin j.
The simulated annealing algorithm for fault-tolerant task allocation is shown in Algorithm

4. The algorithm starts by using the RTT heuristic to create an initial allocation, α. We
use this as the initial state of the system. To obtain a new state α′ from the initial state
we randomly perform one of the two operations described in Section 7.1. While performing
either of these operations, we ensure that the placement constraints for all tasks remain
satisfied. We also ensure that the new allocation is schedulable. Here, we apply a greedy

ECRTS 2018

23:16 Recovery Time Considerations for Software Fault Tolerance

Algorithm 4 Simulated Annealing.
1: procedure anneal (Γ = {τ0

0 , τ
1
0 ,τ

0
1 ...τ

0
n, ...})

2: Task Assignment(α) = RTT(Γ)
3: T ← T∞
4: while T > T0 do
5: repeat
6: α’ = randomlyModifyCurrentSolution(α)
7: ∆C = cf(α)− cf(α′) . From Eqn 11
8: η = RANDOM(0, 1)
9: P (∆C) = e(−∆C/T)

10: if ∆C < 0 or P (∆C) > η then
11: α = α′

12: until thermal equilibrium
13: T ← F (T)
14: return α . Return the task set assignment

optimization: if a valid operation results in an empty bin, we remove it from the allocation5.
The value of the objective function is calculated for this new state. Let ∆C represent the
change in the cost function, i.e, ∆C = cf(α)− cf(α′). This state is unconditionally accepted
if ∆C < 0. If not, the Metropolis condition [24] is applied and the state is accepted with a
probability according to the following acceptance function P = e(−∆C/T). We start with a
large value for initial temperature T = T∞. When there is no appreciable change in the value
of the cost function across a few chains of computation or a maximum number of iterations
is reached, we lower the temperature. The annealing terminates when the temperature T
reaches a low-enough value, To and the current best α is returned as the solution. We derive
the values for T∞ and To for the fault-tolerant task allocation problem in Section 7.2.

7.1 Generating Random Solutions
In order to create random solutions from a given solution, we apply the following two
operations [29].

1. We randomly move a single task from a randomly-selected node k to another randomly
selected node l.
I Lemma 3. The maximum reduction ∆Cmax for the cost function in Equation 11, for
a system of two nodes, k and l, by moving a task from node k to l occurs when Uk = 1
and Ul = 0, where Uk and Ul are the total utilization values of the respective nodes.

Proof. Let ut represent the utilization of the task that is moved from bin k to l. Let
U ′k and U ′l be the transformed utilization values after a task is moved from node k to l.
Hence, U ′k = Uk − ut and U ′l = Ul + ut and ∆C for this operation can be represented as,

∆C = Uk
2 + Ul

2 − U ′k
2 − U ′l

2 = Uk
2 + Ul

2 − (Uk − ut)2 − (U ′l + ut)2

= 2 ∗ Uk ∗ ut − 2 ∗ Ul ∗ ut − 2 ∗ u2
t

(12)

5 In our experiments, we found no significant improvement in the quality of solutions obtained by retaining
an empty bin

A. Bhat, S. Samii, and R. Rajkumar 23:17

From Equation (12), ∆C is maximum when the positive terms are maximized and the
negative terms are minimized. Ul only appears in the second term which is negative, and
Uk appears only in the first term which is positive. Hence ∆C is maximized when Uk = 1
and Ul = 0 corresponding to their maximum and minimum possible values. J

For the fault-tolerant task allocation problem, moving a task from one bin to another
can result in a different redundant-task-type assignment resulting in different run-time
utilizations. Let the factor s capture this utilization change. The associated change in
the cost function for this operation is given by,

∆C =U2
k + U2

l − [(Uk − ut)2 + (Ul + s ∗ ut)2]
=2 ∗ Uk ∗ ut − u2

t − 2 ∗ Ul ∗ s ∗ ut − (s ∗ ut)2 (13)

From Lemma 3, the maximum value of ∆C, which represents the largest reduction in
the cost function, occurs when a task is moved from a completely-packed node to a
completely-empty node. Since we apply a greedy optimization of removing empty bins,
we consider Ul = ε. Hence,

∆Cmax1 u2 ∗ ut − u2
t − (s ∗ ut)2 (14)

2. We randomly select two tasks currently located in two different bins and swap them.
I Lemma 4. The maximum reduction ∆Cmax for the cost function in Equation 11, for
a system of two nodes, k and l, by swapping two tasks occurs when one of the nodes has
U = 1 and the other has U = ε.

Proof. Let Uk and Ul be the total utilization values of the respective nodes. Let ut1
represent the utilization of the task that is moved from bin k to l and ut2 represent the
utilization of the task that is moved from bin l to k. Let U ′k and U ′l be the transformed
utilization values after the tasks are swapped. Hence, U ′k = Uk − ut1 + ut2, U ′l =
Ul + ut1 − ut2 and ∆C for this operation can be represented as,

∆C = Uk
2 + Ul

2 − U ′k
2 − U ′l

2

= Uk
2 + Ul

2 − (Uk − ut1 + ut2)2 − (Ul + ut1 − ut2)2

= 2 ∗ Uk ∗ ut1 − 2 ∗ Uk ∗ ut2 + 2 ∗ ut1 ∗ ut2 − ut1
2 − ut2

2

+ 2 ∗ Ul ∗ ut2 − 2 ∗ Ul ∗ ut1 + 2 ∗ ut1 ∗ ut2 − ut1
2 − ut2

2

= 2 ∗ Uk ∗ (ut1 − ut2)− 2 ∗ Ul ∗ (ut1 − ut2)− 2 ∗ (ut1 − ut2)2

= 2 ∗ (Uk − Ul) ∗ (ut1 − ut2)− 2 ∗ (ut1 − ut2)2

(15)

From Equation (15), ∆C is maximum when Uk − Ul u 1, since 0 < Uk, Ul ≤ 1. Since we
are swapping tasks between two nodes, a node cannot be empty. Hence, ∆C is maximized
when one node has U = 1 and the other U = ε. J

For our fault-tolerant task allocation problem, let the factors st1 and st2 capture the
utilization changes after the swap. The associated change in the cost function for this
operation is given by,

∆C =U2
k + U2

l − [(Uk − ut1 + st2 ∗ ut2)2 + (Ul + st1 ∗ ut1 − ut2)2]
=2 ∗ Uk ∗ ut1 − 2 ∗ Uk ∗ st2 ∗ ut2 + 2 ∗ ut1 ∗ st2 ∗ ut2 − u2

t1 − (st2 ∗ ut2)2+
2 ∗ Ul ∗ ut2 − 2 ∗ Ul ∗ st1 ∗ ut1 + 2 ∗ ut2 ∗ st1 ∗ ut1 − u2

t2 − (st1 ∗ ut1)2
(16)

ECRTS 2018

23:18 Recovery Time Considerations for Software Fault Tolerance

From Lemma 4, the cost function is maximized when one bin has U = 1 and the other
has U = ε. Hence,

∆Cmax2 u2 ∗ ut1 − 2 ∗ st2 ∗ ut2 + 2 ∗ ut1 ∗ st2 ∗ ut2 − u2
t1 − (st2 ∗ ut2)2+

+ 2 ∗ ut2 ∗ st1 ∗ ut1 − u2
t2 − (st1 ∗ ut1)2 → Uk = 1, Ul = ε

(17)

Given a task set, the value of ∆Cmax = max(∆Cmax1,∆Cmax2) can be easily calculated
by substituting actual values into Equations (14) and (17) for all combinations of tasks.

7.2 Selecting an Annealing Schedule
The annealing schedule is described by quantitative choices for the three parameters: the
starting value of the temperature, T∞, the stopping value of the temperature To, and the
decrement function F (T) which determines the profile of the temperature from the beginning
till the end of the annealing process.

The starting temperature, T∞, for a good annealing schedule, is usually determined by
monitoring the acceptance ratio at each temperature. The upper bound for acceptance ratio
ah (the fraction of generated states that are accepted), is arbitrarily fixed at some high
value such as 0.9 and the temperature is increased to a value where this acceptance ratio is
achieved [29]. Given that we can calculate ∆Cmax for a given task set, we can calculate the
value T∞, which can accommodate even the largest reduction in the cost function at high
temperatures, as follows.

ah = e(−∆Cmax/T∞) ⇒ ln(1/ah) = ∆Cmax/T∞ ⇒ T∞ = ∆Cmax/ln(1/ah) (18)

Similarly, To can be calculated for the lower bound of the acceptance ratio al.

To = ∆Cmax/ln(1/al) (19)

In our experiments, we also found that F (T) = 0.9 ∗ T works well for the problem at
hand.

7.3 Evaluation
In this section, we compare the performance of the simulated annealing approach with that
of the RTT heuristic. We plot the execution time of the simulation annealing approach and
the RTT heuristic against the number of the primaries in the task set. Figure 9 presents the
results averaged across 5000 randomly-generated task sets. Each task is randomly assigned
0, 1 or 2 redundancies, an RTR constraint from 0 to 5, and a value for p (i.e., periods for
cold standby priming) from 0 to 5. Note that the Y-axis is in log scale. Our heuristics are
faster than the simulated annealing approach by more than 2 orders of magnitude. We also
plot the number of nodes utilized by each technique per iteration against the number of
primaries in the task set. Figure 10 presents the results for 5,000 randomly-generated tasksets
generated using Stafford’s Randfixedsum algorithm [11] for total utilization values ranging
from 0.1 to number of primaries and random period ranges from 1 to 104. As Figures 9 and
10 show, though the simulated annealing algorithm takes longer to complete, it produces an
allocation with fewer nodes on average when compared to RTT. This approach can be used
for generating offline static allocations and in other non-time-sensitive contexts. In contrast,
our heuristics can be used for run-time admission control and other environments that are
time-sensitive.

A. Bhat, S. Samii, and R. Rajkumar 23:19

Figure 9 Execution-Time Evaluation.

Figure 10 Resource Utilization Evaluation.

8 Concluding Remarks

In this paper, we considered software fault-tolerance techniques for safety-critical real-time
systems and derived the bounds on the recovery time of different types of redundant tasks:
active replication and primary backups with hot and cold standbys. We also derived
conditions to map the recovery time requirements (RTR) of a task to a specific assignment
of a redundant-task type. We extended the fault-tolerant task allocation problem to include
these RTR constraints, and proposed the TPCDC+R heuristic to satisfy these constraints.
Finding a core weakness in TPCDC+R, we then presented two additional heuristics called
Recovery-Time Tiered (RTT) and Tiered Recovery-Time Constraint Increasing (TRTI) which

ECRTS 2018

23:20 Recovery Time Considerations for Software Fault Tolerance

prioritize the RTR constraints in the task allocation sequence. These two heuristics on
average produce allocations with fewer nodes than the TPCDC+R heuristic because they
yield more assignments of resource-efficient cold standbys. Overall, the RTT heuristic, which
tiers tasks based on their RTR values to prioritize the allocation of tasks with strict RTR
requirements first, performs the best. Finally, we used the simulated annealing method to
solve the fault-tolerant task allocation optimization problem and showed that it produces
allocations utilizing fewer computing resources than the proposed heuristics, at the cost of
substantial run-time.

References

1 IEEE802.1cb-frame replication and elimination for reliability, howpublished = http://www.
ieee802.org/1/pages/802.1cb.html, note = Accessed: 2018-01-12.

2 KapDae Ahn, Jong Kim, and SungJe Hong. Fault-tolerant real-time scheduling using
passive replicas. In Proceedings Pacific Rim International Symposium on Fault-Tolerant
Systems, pages 98–103, Dec 1997. doi:10.1109/PRFTS.1997.640132.

3 A. A. Bertossi, L. V. Mancini, and A. Menapace. Scheduling hard-real-time tasks with
backup phasing delay. In 2006 Tenth IEEE International Symposium on Distributed Simula-
tion and Real-Time Applications, pages 107–118, Oct 2006. doi:10.1109/DS-RT.2006.33.

4 A. Bhat, S. Samii, and R. Rajkumar. Practical task allocation for software fault-tolerance
and its implementation in embedded automotive systems. In 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 87–98, April 2017. doi:
10.1109/RTAS.2017.33.

5 F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava, N. A. Speirs, and S. Tao. Im-
plementing fail-silent nodes for distributed systems. IEEE Transactions on Computers,
45(11):1226–1238, Nov 1996. doi:10.1109/12.544479.

6 Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The primary-backup
approach. In Sape Mullender, editor, Distributed Systems (2Nd Ed.), pages 199–216. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993. URL: http://dl.acm.
org/citation.cfm?id=302430.302438.

7 A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of fault-tolerant real-time task
sets. In Proceedings of the Eighth Euromicro Workshop on Real-Time Systems, pages 29–33,
Jun 1996. doi:10.1109/EMWRTS.1996.557785.

8 J. J. Chen, C. Y. Yang, T. W. Kuo, and S. Y. Tseng. Real-time task replication for fault
tolerance in identical multiprocessor systems. In 13th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS’07), pages 249–258, April 2007. doi:10.
1109/RTAS.2007.30.

9 Jean claude Laprie and Brian Randell. Fundamental concepts of computer systems depend-
ability. In In Proceedings of the 3rd IEEE Information Survivability, Boston, Massachusetts,
USA, October 2000, pages 24–26, 2001.

10 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area
network (can) schedulability analysis: Refuted, revisited and revised. Real-Time Systems,
35(3):239–272, Apr 2007. doi:10.1007/s11241-007-9012-7.

11 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of mul-
tiprocessor tasksets. In proceedings 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010.

12 Krzysztof Fleszar and Khalil S. Hindi. New heuristics for one-dimensional bin-packing.
Comput. Oper. Res., 29(7):821–839, 2002. doi:10.1016/S0305-0548(00)00082-4.

http://www.ieee802.org/1/pages/802.1cb.html
http://www.ieee802.org/1/pages/802.1cb.html
http://dx.doi.org/10.1109/PRFTS.1997.640132
http://dx.doi.org/10.1109/DS-RT.2006.33
http://dx.doi.org/10.1109/RTAS.2017.33
http://dx.doi.org/10.1109/RTAS.2017.33
http://dx.doi.org/10.1109/12.544479
http://dl.acm.org/citation.cfm?id=302430.302438
http://dl.acm.org/citation.cfm?id=302430.302438
http://dx.doi.org/10.1109/EMWRTS.1996.557785
http://dx.doi.org/10.1109/RTAS.2007.30
http://dx.doi.org/10.1109/RTAS.2007.30
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1016/S0305-0548(00)00082-4

A. Bhat, S. Samii, and R. Rajkumar 23:21

13 S. Gopalakrishnan and M. Caccamo. Task partitioning with replication upon heterogeneous
multiprocessor systems. In 12th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS’06), pages 199–207, April 2006. doi:10.1109/RTAS.2006.43.

14 Rachid Guerraoui and André Schiper. Fault-tolerance by replication in distributed systems.
In Alfred Strohmeier, editor, Reliable Software Technologies — Ada-Europe ’96, pages 38–
57, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

15 P. Guo and Z. Xue. Improved task partition based fault-tolerant rate-monotonic schedul-
ing algorithm. In 2016 International Conference on Security of Smart Cities, Industrial
Control System and Communications (SSIC), pages 1–5, July 2016. doi:10.1109/SSIC.
2016.7571812.

16 K Hasimoto, Tatsuhiro Tsuchiya, and T Kikuno. Effective scheduling of duplicated tasks
for fault tolerance in multiprocessor systems. IEICE TRANSACTIONS on Information
and Systems, E85-D:525–534, 03 2002.

17 J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell. A Program Structure for
Error Detection and Recovery, pages 53–68. Springer Berlin Heidelberg, Berlin, Heidelberg,
1985. doi:10.1007/978-3-642-82470-8_7.

18 David Johnson. Near-optimal bin packing algorithms. Ph.D. Dissertation, MIT, MA, 08
2010.

19 J. Kim, G. Bhatia, R. Rajkumar, and M. Jochim. Safer: System-level architecture for failure
evasion in real-time applications. In 2012 IEEE 33rd Real-Time Systems Symposium, pages
227–236, Dec 2012. doi:10.1109/RTSS.2012.74.

20 J. Kim, K. Lakshmanan, and R. Rajkumar. R-batch: Task partitioning for fault-tolerant
multiprocessor real-time systems. In 2010 10th IEEE International Conference on Com-
puter and Information Technology, pages 1872–1879, June 2010. doi:10.1109/CIT.2010.
321.

21 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
SCIENCE, 220(4598):671–680, 1983.

22 Kay Klobedanz, Jan Jatzkowski, Achim Rettberg, and Wolfgang Mueller. Fault-tolerant
deployment of real-time software in autosar ecu networks. In Gunar Schirner, Marcelo Götz,
Achim Rettberg, Mauro C. Zanella, and Franz J. Rammig, editors, Embedded Systems:
Design, Analysis and Verification, pages 238–249, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

23 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

24 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. jcp, 21:1087–1092, jun 1953. doi:10.1063/
1.1699114.

25 Dong-Ik Oh and T.P. Bakker. Utilization bounds for n-processor rate monotone scheduling
with static processor assignment. Real-Time Systems, 15(2):183–192, Sep 1998. doi:10.
1023/A:1008098013753.

26 Yingfeng Oh and Sang H. Son. Enhancing fault-tolerance in rate-monotonic scheduling.
Real-Time Systems, 7(3):315–329, Nov 1994. doi:10.1007/BF01088524.

27 C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. Fault-tolerant distributed
deployment of embedded control software. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 27(5):906–919, May 2008. doi:10.1109/TCAD.2008.
917971.

28 Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei. Timing analysis of
the flexray communication protocol. Real-Time Systems, 39(1):205–235, Aug 2008. doi:
10.1007/s11241-007-9040-3.

ECRTS 2018

http://dx.doi.org/10.1109/RTAS.2006.43
http://dx.doi.org/10.1109/SSIC.2016.7571812
http://dx.doi.org/10.1109/SSIC.2016.7571812
http://dx.doi.org/10.1007/978-3-642-82470-8_7
http://dx.doi.org/10.1109/RTSS.2012.74
http://dx.doi.org/10.1109/CIT.2010.321
http://dx.doi.org/10.1109/CIT.2010.321
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1023/A:1008098013753
http://dx.doi.org/10.1023/A:1008098013753
http://dx.doi.org/10.1007/BF01088524
http://dx.doi.org/10.1109/TCAD.2008.917971
http://dx.doi.org/10.1109/TCAD.2008.917971
http://dx.doi.org/10.1007/s11241-007-9040-3
http://dx.doi.org/10.1007/s11241-007-9040-3

23:22 Recovery Time Considerations for Software Fault Tolerance

29 R.L. Rao and S.S. Iyengar. Bin-packing by simulated annealing. Computers and Mathem-
atics with Applications, 27(5):71–82, 1994. doi:10.1016/0898-1221(94)90077-9.

30 Jorge Real and Alfons Crespo. Mode change protocols for real-time systems: A survey
and a new proposal. Real-Time Systems, 26(2):161–197, Mar 2004. doi:10.1023/B:TIME.
0000016129.97430.c6.

31 Taxonomy and definitions for terms related to on-road motor vehicle automated driving
systems., .

32 C. Schonfeld. Redundancy approaches in spacecraft computers. In 28th Israel Annual
Conference on Aviation and Astronautics, pages 148–156, 1986.

33 L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: an approach to
real-time synchronization. IEEE Transactions on Computers, 39(9):1175–1185, Sep 1990.
doi:10.1109/12.57058.

34 D. Thiele, P. Axer, and R. Ernst. Improving formal timing analysis of switched ethernet by
exploiting fifo scheduling. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, June 2015. doi:10.1145/2744769.2744854.

35 Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, M. N.
Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele Gittleman, Sam
Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kolski, Alonzo Kelly, Maxim
Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson, Brian Pilnick, Raj Rajkumar,
Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv Singh, Jarrod Snider, Anthony Stentz,
William “Red” Whittaker, Ziv Wolkowicki, Jason Ziglar, Hong Bae, Thomas Brown, Daniel
Demitrish, Bakhtiar Litkouhi, Jim Nickolaou, Varsha Sadekar, Wende Zhang, Joshua
Struble, Michael Taylor, Michael Darms, and Dave Ferguson. Autonomous Driving in
Urban Environments: Boss and the Urban Challenge, pages 1–59. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-03991-1_1.

36 A.J. Wellings. Applying new scheduling theory to static priority pre-emptive schedul-
ing. Software Engineering Journal, 8:284–292(8), September 1993. URL: http://
digital-library.theiet.org/content/journals/10.1049/sej.1993.0034.

37 Thomas Wolf and Alfred Strohmeier. Fault tolerance by transparent replication for dis-
tributed ada 95. In Michael González Harbour and Juan A. de la Puente, editors, Reliable
Software Technologies — Ada-Europe’ 99, pages 412–424, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

http://dx.doi.org/10.1016/0898-1221(94)90077-9
http://dx.doi.org/10.1023/B:TIME.0000016129.97430.c6
http://dx.doi.org/10.1023/B:TIME.0000016129.97430.c6
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1145/2744769.2744854
http://dx.doi.org/10.1007/978-3-642-03991-1_1
http://digital-library.theiet.org/content/journals/10.1049/sej.1993.0034
http://digital-library.theiet.org/content/journals/10.1049/sej.1993.0034

	Introduction
	Related Work
	System Model and Problem Definition
	Computation Model
	Fault Model
	Problem Statement

	Recovery Time Analysis for Passive Backups
	Backup Following the Primary
	Recovery Time Bounds for Hot Standbys
	Recovery Time Bounds for Cold Standbys

	Redundant-Task Type Assignment To Tasks
	Hot standby
	RTR = 0
	RTR > 0

	Cold standby
	RTR = 0
	RTR > 0

	Multi-Level Backups

	Task partitioning with Recovery Time Constraints
	The TPCDC+R Heuristic
	Evaluation and Discussion

	Applying Simulated Annealing to the Fault-Tolerant Task Allocation Problem
	Generating Random Solutions
	Selecting an Annealing Schedule
	Evaluation

	Concluding Remarks

