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Abstract
Industrial embedded platforms are often used to execute stream-processing applications, from
which the results are used by actuators. On average, these stream-processing applications should
at least meet the required throughput of their actuators, which poses a real-time requirement on
the system. To avoid extra costs and delays, it is desired to estimate during the early design phase
if a combination of an embedded platform and a stream-processing application can achieve the
required throughput. The throughput of a stream-processing application executed on different
embedded platforms can be predicted by modeling them using static or measurement based
analysis. However, during the early design phase it can be desirable to have a model that allows
a large set of embedded platforms to be considered, where embedded platforms with predictive
instructions are supported.

This paper presents a gray-box approach applicable during the early design phase to perform
cross-platform throughput predictions for industrial stream-processing applications and their em-
bedded platforms. A three step regression-based approach is presented, which uses an expression
based on Amdahl’s law for the discrete scaling of workload over cores and a large database with
CPU performance scores to perform cross-platform throughput predictions. Validation, with a
limited set of platforms, showed the usability of the approach. The pragmatic approach is based
on a prototype industrial digital image processing application for a printer from Océ, which is
also used to present the approach.

2012 ACM Subject Classification General and reference → Estimation,General and reference
→ Performance,Computer systems organization → Real-time systems

Keywords and phrases throughput prediction, stream-processing application, early design phase,
regression model, cross-platform

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.18

Acknowledgements The research is carried out as part of the Octo+ program under the re-
sponsibility of Embedded Systems Innovation by TNO (ESI) with Océ Technologies B.V. as the
carrying industrial partner. The Octo+ research is supported by the Netherlands Ministry of
Economic Affairs.

© Tjerk Bijlsma, Alexander Lint, and Jacques Verriet;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 18; pp. 18:1–18:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tjerk.bijlsma@tno.nl
mailto:alexander.lint@oce.com
mailto:jacques.verriet@tno.nl
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 Early Design Phase Throughput Prediction for Industrial Applications

1 Introduction

Industrial embedded platforms typically execute applications that process streams of in-
formation, from which the results are used by an actuator. Variations in processing time
can often be absorbed by a small buffer between the stream-processing application and the
actuator. However, the stream-processing application should at least achieve the required
throughput, such that outputs are available at a fixed rate for the actuator. This throughput
puts a real-time requirement on the system, where not meeting the deadline a few times
in a row results in an empty buffer towards the actuator. It is necessary to know if an
embedded platform in combination with a stream-processing application can achieve its
throughput and real-time requirements, as early as possible during the design time of such
industrial systems. Not achieving the required throughput either influences the specifications
of the industrial system, or causes quality loss for the industrial system. An alternative is to
over-dimension the embedded platform, which increases production costs and thereby harms
the competitiveness of the industrial system.

A trend is the constant increase of actuation speed and quality for stream-processing
applications, thereby requiring more complex processing and a higher throughput. Often
architecture or design patterns [4] are applied for stream-processing applications to manage
their complexity and achieve scalability. The Master Slave pattern is often applied for
scalability, as it allows data parallelism to be exploited by using more slave threads, as
suggested by Amdahl’s law [2]. The Pipes and Filter pattern manages complexity by
clustering parts of the stream-processing application as filters, thereby allowing function
parallelism to be exploited. Stream-processing applications using these patterns are applied
throughout industry. Applying these patterns, manages the complexity and enables scalability
of the throughput for these stream-processing applications. However, in addition to enabling
scalability, knowledge of the achievable throughput for target embedded platforms is desirable.
Having the knowledge of achievable performance on different embedded platforms during the
early design phase enables Design Space Exploration (DSE), such that a trade-off between
achievable throughput and costs can be made.

The throughput of a stream-processing application executed on different embedded
platforms can be predicted by modeling their combinations using static analysis or by using
measurement based analysis [26]. However, using static analysis for throughput prediction
requires worst-case execution times [26], which can be hard to derive for CPUs of embedded
platforms that use techniques like caching and predictive instructions. Measurement based
analysis requires measurements on considered target CPUs to predict execution times, such
that only physically available target CPUs and platforms can be considered. During the early
design phase a light-weight analytical model [17, 13] for the performance of the combined
application and embedded platform can be desirable, to be able to easily consider a large
set of combinations. Preferably gray-box application and platform knowledge is sufficient
to create such a model, where measurements on a reference platform suffice to predict the
throughput for a large set of target platforms.

This paper presents a gray-box approach applicable during the early design phase to
perform cross-platform throughput predictions for industrial stream-processing applications
and their embedded platforms. This pragmatic approach is based on the early design phase
of a real prototype Océ digital image processing application for a printer with real-time
requirements, which is also used as running example. For stream-processing applications
that implement the Master Slave design pattern, a three step regression-based approach
is presented. The prediction uses an extended expression based on Amdahl’s law that
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considers the discrete scaling of workload over slaves, which is to the best of our knowledge a
novel contribution. A database with CPU performance scores is used for the cross-platform
throughput prediction, enabling predictions for a very large set of CPUs and embedded
platforms. Suitability of the approach has been validated, by using measurements for a
limited set of platforms. Additionally, DSE can be performed to select a cost-effective
embedded platform that delivers the required throughput. For its performance, the digital
image processing application requires predictive instructions and caching, such that x86
instruction set based CPUs are considered.

The outline of this paper is as follows. In Section 2 related work is presented, followed by
an overview of the throughput-prediction approach in Section 3. Following, the single-core
execution time prediction is explained in Section 4. Section 5 presents the throughput
prediction for multiple cores in an embedded platform. Next, the cross-platform throughput
predictions are presented in Section 6 and validated in Section 7. A design space exploration
is presented in Section 8. Finally, conclusions and future-work are discussed in Section 9.

2 Related Work

Typically, a model is used to predict the throughput of a stream-processing application,
allowing predictions for different embedded platform configurations and input streams.
The model to perform throughput predictions should be chosen depending on the internal
application structure and the development phase. The gut feeling of the designer and back-
of-the-envelope models are straightforward and suitable during the early design phase, for
applications with a clear relation between the execution time and the features of their input
stream. A small amount of time is needed to create and use such models, however, their
accuracies vary. Detailed static analysis models, like data-flow models [25] or discrete-event
simulation [13, 12] can capture complex interactions and perform accurate predictions for
an application. However, creating such models requires a fair amount of time and worst-
case execution times, which make them less suitable for the early design phase in which
the application can change a lot. In [24], detailed modeling of applications in a real-time
system and their contention during the early design phase is discussed. This approach
focuses on detailed models of applications on a single platform and their contention to ease
integration, rather than to predict performance. The approach presented in [11] models
an application as a process network with worst-case and best-case execution times for the
tasks together with the scheduling policy for the considered platform. This requires detailed
knowledge of the underlying platform and does not allow predictions for other platforms
without constructing a dedicated model for it. An alternative to detailed behavioral models
are predictive models, as used in the SPORE approach proposed by [15], where code is
instrumented to measure the impact of features from the input stream on the execution
times of parts of the application, resulting in a simple expression to predict execution times.
This approach considers predictions for a single platform using an elaborate tool flow for
automated instrumentation and feature selection. In [20], a performance modeling approach
using probability distributions for the execution times of an application together with a
platform is presented. The modeled CPU is restricted to not contain caches or predictive
instructions, which are typically present in commercially available CPUs and beneficial for
the execution time of stream-processing applications. Furthermore, extensive overviews of
software performance-prediction approaches are provided by both [3] and [27], including
approaches based on queuing networks, stochastic process algebra, stochastic Petrinets,
and stochastic processes. However, the discussed approaches do not address models of the
underlying platform or CPUs that support predictive instructions and mostly contain detailed
application models that may be time consuming to create.
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18:4 Early Design Phase Throughput Prediction for Industrial Applications

Our approach performs regression for applications based on the Master Slave pattern [4]
executed by a reference embedded platform, followed by a DSE according to the Y-chart
approach [11] to identify cost-effective alternatives. The Y-chart approach describes multiple
iterations of evaluating a mapping of an application to a target platform, where based
on evaluation result the mapping, application, or platform is optimized. To predict the
throughput when using multiple cores in a CPU, regression is performed using an extension
of Amdahl’s law [2] that considers the discrete partitioning and distribution of objects from
the input stream. Other approaches predicted throughputs using a support vector machine,
a neural network, or machine learning, as presented in [1] and [10]. However, in [1] the focus
is on the time used in a production system rather than different embedded platforms and
in [10] database queries for a fixed platform are considered. Extensions of Amdahl’s law
are proposed for multi-core and cloud computing systems [28, 23, 8, 14]. However, these do
not consider the discrete scaling of workload over slave processes and cores. An approach
applying DSE for heterogeneous system performance is presented in [18], searching mappings
of tasks from an application among cores in CPUs, considering latency and energy for which
back-of-the-envelope predictive models are used. Where this approach considers mappings
for modeled platforms, our approach performs DSE for a large set of CPUs using information
obtained from a performance database. Our approach targets the early design phase using
gray-box knowledge of applications, such that an expression for throughput prediction is
easily obtained and updated during the development of the application.

3 Overview of Throughput-Prediction Approach

This section presents an overview of the piecewise linear expression for the throughput
prediction, which is obtained in three steps: a single-core, a multi-core, and a cross-platform
prediction step. Also, a description is given of the industrial stream-processing applications
that are targeted by this approach.

The proposed throughput-prediction approach predicts the throughput for Master Slave
based stream-processing applications, for different input streams and embedded platforms.
A piecewise linear expression is employed because of its simplicity and adaptability during
the early design phase. The approach uses a piecewise linear expression obtained by the
following three steps:
1. Single-core execution time prediction: translate the features of the input stream into a

single-core execution time. For the running example, translate the (input) compressed
bitmap size to an execution time on a single processing core. To derive this expression,
execution times of the test-set processed by the application at a single processing core
are used.

2. Multi-core throughput prediction: translate the single-core execution time to a multi-
core execution time, from which the throughput can be derived. For the digital image
processing application, this involves considering the distribution of data over the slaves.
To derive this expression, execution times of the digital image processing application for
the test-set while it is executed at one, two, and three processing cores are used.

3. Cross-platform translations: translate the performance to other platforms, using available
performance scores. For the digital image processing application the scores from the
PassMark [21] performance database are used.

Execution times can be obtained, by using an early version of an application mapped to a
reference platform. The preceding three steps will be detailed in sections 4, 5, and 6.
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Figure 1 Digital image processing application structure, applying the Master Slave pattern.

The throughput-prediction approach targets industrial stream-processing applications
that apply the Master Slave pattern [4]. Additionally, the MapReduce pattern [7] introduced
by Google has a structure similar to the Master Slave pattern, such that the predictions may
even be applicable for computing clusters. Typically, stream-processing applications have a
tight throughput requirement, which means that the output has to be available at a fixed
rate for an actuator. A small buffer is often used for the output of the stream-processing
application, such that the throughput requirement can be averaged over the number of
outputs in this buffer. The input stream consists of a stream of objects that the application
should process, where the objects can be sub-divided into parts that can be distributed
among the slaves for processing.

We use a prototype of an Océ digital image processing application for a printer as running
example. The application has a tight throughput requirement, because converted bitmaps
have to be available at a fixed rate to actuate the print head at the moment the paper passes
it. A buffer for a few bitmaps can be used towards the print head, because buffering too
many bitmaps hampers the ability to correct the print head for detected failures. This puts
a firm real-time requirement on the system [5, 25], where it is undesirable that a deadline is
missed but the system can continue afterward. Not meeting the deadline a few times in a
row results in an empty buffer towards the print head, such that one or possibly multiple
pages get lost in the case of duplex printing.

An overview of the digital image processing application is given in Figure 1. The input
stream consists of compressed Continuous Tone (CT) bitmaps that are partitioned into 8
bands each for this example, where each band covers a fixed number of lines from a bitmap.
The master has two function blocks, annotated with a white diagonal pattern. First, it
receives a CT input bitmap from which the bands are dispatched to slaves. Next, it assembles
the results of the slaves to return a Half Toned (HT) output bitmap. Note that a slave
may have to process multiple bands. Internally slaves apply the Pipes and Filter pattern
to process the bands, in such a way that typically the available cache memory is sufficient,
thereby avoiding interference due to memory access between slaves. At initialization time,
the number of slaves, which each will be assigned to a core or hyper-thread of a core, can
be configured. For a processor that supports hyper-threading, typically a physical core can
be seen as two logical cores, where the logical cores share the execution resources of the
physical core. For the performance required by the digital image processing application, x86
instruction set based CPUs are considered that typically support hyper-threading, predictive
instructions, and caching. To benchmark the application, a test-set with 455 bitmaps is used
that represents the typical load of the prototype Océ digital image processing application,
because the test-set includes simple, typical, and complex bitmaps.
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4 Single-Core Execution Time Predictions

A linear expression is used to predict the single-core execution time for stream-processing
applications. Typical features of the input stream, like size or resolution, relate to required
processing time. The relation between one or more features from an input stream and the
single-core execution time is captured using regression.

Gray-box knowledge of the stream-processing application can be used to identify features
from the input stream that determine, or have a strong influence on, the execution time.
Using a linear expression to relate these features and the execution time results in a simple
and easy adaptable model, thereby making it especially suitable during the early design
phase when many design decision still have to be made. For a good relation between the
identified features and the execution time, an application designed for predictable temporal
behavior is desirable, thus it should avoid large and abrupt changes in execution time for
minor feature changes.

For the digital image processing application, the compressed size of a bitmap and the
size of the bands in this compressed bitmap influence the execution time, as illustrated in
Figure 2. The execution times to process bands or compressed bitmaps have been measured
on a reference Intel Core i7 platform, where execution times were determined by timestamps
at the beginning and end of the processing. Both a) and b) plot the compressed size of the
CT bitmap versus the execution time of the slave to process all bands of the 455 bitmaps
from the test set using a single core or hyper-thread of a core of the embedded platform. In
a) and c) a single core is used, and in b) and d) a single hyper-thread of a core is used while
the other hyper-thread is performing computations for another slave process. In Figure 2
c) and d) the compressed size of a band is plotted versus the execution time of the slave
to process this band, where all bands of the 455 bitmaps have been processed. Note that
Figure 2 c) and d) have significantly more measurements than a) and b), which is because c)
and d) plot the relation for each of the 8 bands of the 455 bitmaps.

Figure 2 shows a relation between the execution time of the slaves of the digital image
processing application and the compressed size of the bitmaps or bands, because the execution
time increases when the bitmap or band size increases. The figure suggests a linear relation
between bitmap or band size and image processing time, because most points are located
around a line. This linear relation can be captured by Equation (1), with a coefficient c0
that is multiplied with the size of the band or bitmap b to which a constant c1 is added to
obtain the execution time for a single core Ts(b):

Ts(b) = c0b+ c1 (1)

Note that the equation relates one feature, b in this case, to the execution time, but more
features can be added if they are present and identified in the input stream.

Linear regression can be applied [19] using a tool box like StatsModels [22] to derive
values for c0 and c1. Using the so-called ordinary least squares for the errors of the linear
regression [19, 6], minimizes the sum of the squares of the differences between the measured
execution times and those predicted by Ts(b) via Equation (1). In Table 1, the coefficients
c0 and constants c1 found by applying regression for Equation (1) for the four considered
cases are given.

Additionally, Table 1 provides the R2 and P (F ) values for the quality of the regression.
The coefficient of determination, the R2 value, gives the explained variation divided over the
total variation for the regression. For the hyper-threading bitmap size regression, the R2

value of 0.94 indicates that 6 percent of the variation is unaccounted for. The four cases for
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a) Single core bitmap processing. b) Hyper-threaded bitmap processing.

c) Single core band processing. d) Hyper-threaded band processing.

Figure 2 Execution times of digital image processing application (µs) given the compressed
bitmap size or compressed band size, for a processor using a single core or a core with a single
hyper-thread.

Table 1 Regression results for execution time using a single or hyper-threaded core with bitmap
or band size.
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c0 0.0021 0.0037 0.0022 0.0039
c1 31,730 46,740 3883 5680
R2 0.93 0.94 0.93 0.94
P (F ) 0.0 0.0 0.0 0.0

which regression is performed leave only 6 or 7 percent of the variation in the execution time
unaccounted for, which is acceptable. The P (F ) values indicate whether the regression has
significant predictive capability; the P (F ) values should be smaller than the significance level
of 0.05. For all four regressions the P (F ) values are 0.0, indicating that the regression is
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a) Single core bitmap processing. b) Hyper-threaded bitmap processing.

c) Single core band processing. d) Hyper-threaded band processing.

Figure 3 Residuals for linear relation from Equation (1) using variables from Table 1.

significant. All coefficients c0 and constants c1 also had a P-value of 0.0, indicating that it is
very unlikely that they deviate significantly from the obtained values. Finally, residual plots
of the differences between the measured and predicted execution times are given in Figure 3.
These plots show no relation between the band or bitmap size and the difference between
the measured and predicted execution times, indicating that it is captured by the regression.

5 Multi-Core Throughput Predictions

A piecewise linear expression for the speedup of the single-core execution time, when using
multiple slaves that each process a part of the input stream, is discussed in this section.
An expression based on Amdahl’s law [2] is used that accounts for the workload of the
input stream which is typically partitioned into a number of discrete parts. The multi-
core throughput prediction is performed using the single-core execution times based on the
compressed bitmap and band size, where using the compressed bitmap size results in the
best predictions. The multi-core throughput prediction enables the different mappings of an
application and platform to be evaluated, as suggested by the Y-chart approach [11].

An expression that expresses the speedup by using multiple cores or hyper-threaded cores
to execute the slaves in the embedded platform, should express the scaling of the single-core
execution time. Amdahl [2] gave an expression, where the execution time scales continuously
with the number of additional cores that can be used. Amdahl’s law assumes that a workload
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can be continuously distributed over the number of parallel resources, slaves when the Master
Slave pattern is applied, which is given in the following equation:

Ta(s, b) = (1− p)Ts(b) + p(1
s

)Ts(b) (2)

where Ts(b) is the execution time when using a single core or hyper-thread for a workload b,
p is the fraction of the execution time that benefits from additional parallel resources, and s
is the number of parallel cores or hyper-threaded cores. Our observation is that typically an
input stream consists of objects that have a discrete partitioning in a number of elements
that each require processing. When considering continuous scaling to process a bitmap with
8 bands, going from 4 to 5, 6, or 7 slaves would speedup the throughput. However, due to
the discrete partitioning of a bitmap in 8 bands no speedup is realized, because at least one
of the slaves has to process two parts and thereby determines the throughput. Therefore, an
extension of Amdahl’s law is proposed that considers the discrete scaling of the workload.
The discrete scaling expression for Amdahl’s law Td(d, s, b) that returns an execution time,
considers that a workload b has d discrete parts that are to be distributed over s parallel
resources and is expressed as follows:

Td(d, s, b) = (1− p)Ts(b) + p(
dd

s e
d

)Ts(b) (3)

where the ceiling dd
s e determines the largest integer number of the discrete parts in the

input stream that a slave has to process and this is divided by d to determine the speed up
compared to the single-core execution time Ts(b).

By adding coefficients and a constant, regression can be performed using the discrete
scaling expression of Amdahl’s law to express the execution time dependent on the number
of used cores. For the digital image processing application, regression is performed using the
following expression:

Td(d, s, b) = Ts(b)c2 + (
dd

s e
d

)Ts(b)c3 + c4 (4)

where Ts(b) gives the single-core execution time for one bitmap from the input stream of the
digital image processing application which has d discrete parts, which are processed by s
slave processes that each run on their own core or hyper-thread of a core. Each part of the
expression has a coefficient, c2 and c3, and a constant c4 is added, which are determined by
performing regression. Note that compared to Equation (3), Equation (4) does not contain p
to represent the sequential fraction. The variable p is left out because regression captures it
in the coefficients c2, c3, and c4.

Regression for the digital image processing application is performed using Equation (4),
where for the single-core execution time prediction Ts(b) the regression results from Table 1
are used. The single-core execution time prediction for the bitmap size returns the total
execution time for all slaves and can directly be used for Ts(b). The single-core execution
time prediction for the band size returns the execution time of the slave for the specific
band, but the execution time for all bands of a bitmap is required. The average size of the n
bands of a bitmap can be used to compute the single-core execution time, by multiplying the
execution time for the average band size by n. However, the predicted execution times for
the average band sizes are nearly similar to the predicted execution times for the bitmap
sizes. Alternatively, the maximum band size can be used by taking the size of the largest
band of a bitmap, computing its execution time, and multiply it by n, to get a pessimistic
estimation of the execution time. Because execution times predicted for maximum band
sizes differ from execution times predicted for bitmaps sizes, below multi-core throughput
predictions based on both single-core execution time predictions will be compared.
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Table 2 Regression results for the execution time at one or more single or hyper-threaded cores,
using the bitmap or band size to determine Ts(b).
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c2 0.0300 0.0151 -0.0369 -0.0146
c3 0.9903 0.9661 0.8500 0.8131
c4 1971.4 2795.0 5641.8 5420.5
R2 0.98 0.95 0.95 0.91
P (F ) 0.0 0.0 0.0 0.0

Table 2 gives the regression results for Equation (4) when using the single or hyper-
threaded core execution time predictions from Table 1. Regression was performed using
measured execution times for the test-set when using 1, 2, or 3 single or hyper-threaded
cores in the platform. The R2 indicates that between 2 and 9 percent of the variation
is unaccounted for, which indicates a good result. Note that when using the band size
for Equation (4), the obtained value for c2 is negative. Together, the value of c2 and the
constant c4 relate to the execution time of the master, where the rather small negative
c2 indicates that with increasing band sizes the execution time for the master decreases
slightly. Furthermore, the P (f) value being smaller than 0.05 indicates significant predictive
capability of the regression. Also for this regression, each coefficient and constant had a
P-value of 0.0, indicating that it is unlikely that the found values deviate significantly from
the actual values.

Figure 4 shows measured execution times given the compressed bitmap size or the
maximum band size on single or hyper-threaded cores, lines for the relations obtained for
Equation (4), and corresponding residual plots. In a), b), e), and f) the execution times
when using a single core or a hyper-threaded core are plotted versus the compressed bitmap
size or the maximum band size. Additionally, for 1, 2, and 3 cores the line resulting from
Equation (4) is plotted, where in e) and f) only two lines are visible because the lines for
4 and 6 hyper-threads overlap. The residual plots in c), d), g), and h) show that there is
no remaining relation between the compressed bitmap size or maximum band size and the
differences between the predicted and measured execution times. These plots show that
the line of the piecewise linear equation relates to the measurements and that there is no
remaining relation between the execution time and the compressed bitmap size.

We choose to use the bitmap size to predict the single-core execution time, because the
regressions in Table 1 and 2 that use the bitmap size show a slightly better R2, compared
to when the maximum band size is used. When using three cores with hyper-threading for
the digital image processing application for a bitmap with a size of 7,255,824, which has
1,316,317 as corresponding maximum band size, an execution time of 20.23 ms is measured,
where the bitmap size based expression predicts 21.68 ms and the band size based expression
21.74 ms. The slightly better R2 indicates that the regression results using the bitmap size
cover the variance in the execution times a little bit better compared to the regression using
the maximum band size. Additionally, obtaining the size of the bitmap is more convenient
compared to identifying the maximum size among the bands in a bitmap.
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a) Single core bitmap processing. b) Single core band processing.

c) Residuals single core bitmap processing. d) Residuals single core band processing.

e) Hyper-threaded bitmap processing. f) Hyper-threaded band processing.

g) Residuals hyper-threaded bitmap processing. h) Residuals hyper-threaded band processing.

Figure 4 Execution time for the digital image processing application using multiple cores given
the compressed bitmap or band size, including lines for Equation (4), and residual plots.
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The discrete scaling Amdahl’s law expression Td(d, s, b) returns an execution time in
µs, where for the digital image processing application a throughput value is desired. The
worst-case or average throughput can be determined by taking the reciprocal of the execution
time for a large or average bitmap which is multiplied by 1 · 106, resulting in the Bitmaps Per
Second (BPS) that can be processed by the digital image processing application. A buffer of
n output bitmaps is used at the output of the digital image processing application to average
the variations in execution times. Because the execution time is linearly related to the CT
bitmap size, the average size of the n CT bitmaps that can fill the buffer determines the
throughput. The average bitmap size of the test-set, being 7,255,824, is used as average size
for these n bitmaps that determine the throughput. Note that typically, one would choose a
bitmap size slightly larger than the average size that fits in the buffer, to include a margin
on the throughput.

6 Cross-Platform Throughput Predictions

Cross-platform throughput prediction can be achieved by combining the multi-core throughput
prediction with performance numbers of a reference and a target platform. During the early
design phase, such performance numbers allow predicting the potential throughput of an
application on considered platforms, before investing the effort of porting the application to
the platform.

To translate the throughput from a reference to a target platform, performance numbers
of both platforms are required to determine a ratio that represents the relative throughput
increase or decrease. It is preferable to base the performance number on a benchmark that
performs similar operations, also in similar proportions, as the considered stream-processing
application. Accurate performance numbers can be realized by creating a representative
benchmark to obtain performance numbers for both platforms. Creating such a benchmark
is costly. Furthermore, only physically available platforms can be used for such benchmarks,
which can limit the number of platforms that can be considered. An alternative is to use a
database with performance numbers, like FutureMark [9] or PassMark [21], which provide
performance numbers for server and desktop CPUs and mobile platforms. Note that a
drawback of such a database is that the performance numbers may be less accurate in
representing the performance of the considered application.

We use the PassMark CPU performance database [21], because it contains thousands of
x86 instruction set based platforms, thereby enabling DSE for all these candidate platforms.
For a broad range of CPUs, PassMark provides a Full CPU score that rates the overall
performance of the CPU and a Single-Threaded CPU score that rates the performance of
a single core or a core with hyper-threading. Users run benchmarks on their CPUs and
submit their scores to the PassMark database, such that the score for common CPUs is
typically averaged over thousands of benchmark results. The Full CPU score is based on a
benchmark with nine tests, where the Single-Threaded CPU score is based on three tests
from this benchmark. Both tests use weighting factors for the contribution of test results
to the score, where compression, floating point math, and string sorting tests have a high
impact. These tests are representative for the type of operations performed by the digital
image processing application. Note that the PassMark database for mobile platforms might
be interesting, however using these scores requires measured execution times for the digital
image processing application at a mobile platform from this database, which we currently do
not have.
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The Full and Single-Threaded CPU scores can be used for the relative performance of
platforms, such that a factor can be derived to translate the throughput to a target platform.
Using the available multi-core throughput regression results from a number of platforms
available in the PassMark database, we derive factors using the PassMark scores. Note that
with multi-core regression results for a sufficiently large number of CPUs in the database,
regression could be applied for an even better relation between the Passmark scores and the
multi-core throughput regression results.

The factor to perform a cross-platform translation for the single-core execution time (Cs),
between a reference and target platform is given by the following expression:
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represent the Full CPU scores and sr
t and st

t the number of cores, for the reference and the
target platform, respectively. Note that this equation uses the Full CPU scores rather than
the Single-Threaded CPU scores, since attempts using the Full CPU scores resulted in a
more accurate prediction, probably because the tests for the PassMark Full CPU score have
a better match with the digital image processing application.

The factor (Cm) to perform a cross-platform translation for the throughput, considering
the number of used cores, between a reference and target platform is given by the following
expression:
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s and pt
s the Single-Threaded CPU scores, and sr

t

and st
t the number of cores in the reference and target platform, respectively. For both the

reference and target platform, this equation translates the Full CPU score to a score for
a single core and divides it over the Single-Threaded CPU score, which results in a factor
that indicates how much more multi-core performance is obtained compared to st times the
Single-Threaded performance.

The factor Cs to translate the execution time from a reference to a target platform is
included in the single-core execution time expressions from Equation (1) as follows:

Tsc(b, pr
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s) = (c0b+ c1)Cs(pr
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s) (7)

where pr
f and pt

f represent the Full CPU scores and sr
t and st

t the number of cores present,
of the reference and target platform, respectively.

The factor Cm to consider the scaling of the multi-core performance and Tsc for the
cross-platform single-core execution time is included in the multi-core throughput prediction
from Equation (4) as follows:
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where Ts is replaced by Tsc and both c3 and c4, which relate to the amount of used parallelism,
are multiplied by Cm.
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Table 3 CPU information of benchmark platforms.

CPU Launch Cores(st) Speed (GHz) pf ps

Reference Core i7 2015 4/8 10,040 2,159
Core i7 4770 Q2’13 4/8 3.4 9,797 2,226
Core i7 860 Q3’09 4/8 2.8 5,060 1,226
Xeon E5 2650 Q1’12 8/16 2.0 10,262 1,310
Atom x5 Z8500 Q1’15 4/4 1.44 1,697 503
Atom C2758 Q3’13 8/8 2.4 3,162 512

7 Throughput Prediction Validation

The cross-platform throughput prediction is validated by comparing its predictions based
on a reference platform with multi-core predictions for a limited set of platforms, by using
execution times measured on these platforms. Differences between 13% and -8% are found,
which is acceptable for a light-weight execution time prediction that guides decisions during
the early design phase.

The CPUs of the platforms used for the validation are shown in Table 3, where the
first row shows the reference platform with an Intel Core i7 from the Skylake generation.
The names of the CPUs are given in the first column and the launch dates in the second
column. These names and launch dates indicate that high-end and low-end CPUs with
varying introduction years will be used for the validation. In the column cores, the number
of cores and hyper-threads is given. The Full CPU score (pf ) and Single-Threaded score (ps)
from the PassMark database, sampled in May 2017, are given in the last two columns. The
platforms contain a varying amount of memory with different speeds, however the slaves of
the digital image processing application can typically prefetch the data in the cache, such
that the memory has limited influence on the execution time.

To validate the accuracy of the cross-platform prediction, execution times have been
measured for the digital image processing application for the platforms from Table 3 and
regression has been performed for these measurements. For each of these platforms, for the
different number of cores or hyper-threads that could be used, the execution times for the 455
bitmaps from the test-set were measured. Regression was performed for the measurements to
obtain compact models from which results can be compared. Table 4, provides the coefficients
c0, c1, c2, c3, and c4 for the platforms from Table 3. The i7 and Xeon CPUs have two rows
with coefficients, one for using them with single-cores (sc) and one for using their cores with
hyper-threading (ht), as indicated in the second column. The last column gives the R2 value
of the regression for the multi-core expression from Equation (4), where the values above
0.92 indicate that good relations have been found.

Table 5 provides the relative differences between measured and predicted execution times
for the platforms, for the case where four cores or four hyper-threads are used. Differences
between results from the expressions are compared, rather than comparing the slopes and
constants for the expression. Comparing slopes and constants between the expression for the
multi-core and cross-platform throughput predictions showed to be impractical, because the
performed regressions for the five coefficients has multiple solutions. The differences shown in
Table 5 are given for three bitmap sizes, the average bitmap size in the test set, and a small
and a large bitmap size. The large and small bitmap size are determined by subtracting
and adding the standard deviation among the bitmap sizes in the test set, respectively.
Considering the differences given in Table 5, for the average size bitmap the multi-core and



T. Bijlsma, A. Lint, and J. Verriet 18:15

Table 4 Regression results for the digital image processing application executed at the platforms
from Table 3.

c0 c1 c2 c3 c4 R2

Reference sc 0.0021 31,730 0.0300 0.9903 1971 0.98
Core i7 ht 0.0037 46,740 0.0151 0.9661 2795 0.95
Core sc 0.0024 35,860 0.0147 1.0063 1919 0.97
i7 4770 ht 0.0040 56,160 0.0026 0.9995 3058 0.97
Core sc 0.0047 60,380 0.1059 0.9170 2140 0.96
i7 860 ht 0.0075 105,400 0.0020 0.9972 4285 0.96
Xeon sc 0.0041 66,310 0.0141 1.0075 3365 0.97
E5 2650 ht 0.0062 95,580 0.0419 0.9239 4542 0.97
Atom x5 Z8500 sc 0.0105 137,400 0.0035 1.0192 6085 0.97
Atom C2758 sc 0.0126 157,800 -0.0603 1.0868 5425 0.92

Table 5 Difference between measurement and prediction for the digital image processing applica-
tion, using 4 cores.

Bitmap small average large
size 1,450,148 7,255,824 13,061,500

Intel sc 0.01 0.00 0.00
i7 4770 ht -0.07 -0.05 -0.04
Intel sc -0.05 -0.08 -0.10
i7 860 ht -0.02 0.01 0.04
Intel sc 0.08 0.10 0.11
Xeon E5 2650 ht 0.03 0.09 0.13
Atom x5 z8500 sc -0.06 -0.07 -0.07
Atom C2758 sc 0.10 0.08 0.06

cross-platform predictions differ between 10% and -8% and for all bitmaps between 13%
and -8%. Similar numbers are obtained using a different number of cores and cores with
hyper-threads. These differences do not seem to relate to platform generations nor cores with
or without hyper-threads. Given that it is a light-weight model to guide decisions during the
early design phase, we find this error acceptable.

8 Design Space Exploration using Throughput Predictions

Cross-platform throughput predictions enable exploration of suitable and cost-effective
embedded platforms. First, cost-effective embedded platforms are compared, followed by an
exploration of effective combinations of platforms.

Often costs and performance are Key Performance Indicators (KPI) for stream-processing
applications. However, cost is a KPI that can be refined in platform purchase costs, develop-
ment costs, and life-cycle costs. Note that quantifying development and life-cycle costs is
difficult and that they are likely larger than the platform purchase cost. By quantifying the
throughput of a stream-processing application for a large list of embedded platforms, the most
cost-effective platform can be selected. However, among products, the development costs
can be reduced by selecting a cost-effective low, medium, and high-performance embedded
platform for which development and updates will be performed. For the life-cycle, it would

ECRTS 2018



18:16 Early Design Phase Throughput Prediction for Industrial Applications

be even nicer to be able to combine a number of these low, medium, and high-performance
embedded platforms to be able to scale the throughput by adding an embedded platform.
Note that this requires an adapted stream-processing application that distributes scaled
bands to the slaves at the different platforms and balances the load, as described by the
MapReduce pattern for computing cluster.

Combining the cross-platform throughput prediction with an extensive and detailed list
of Intel CPUs [16], a motherboard list, a list with memory modules, and a PassMark score
list, the design space can be explored for cost-effective embedded platforms and embedded
platform combinations. Intel provides extensive lists of their CPUs with details like sockets,
supported memory types, and the CPU name, which allows linking the CPU information
with compatible motherboards, memory modules, and PassMark scores, respectively. In
the performed exploration 44 motherboards were considered and 20 different DDR memory
modules, with varying technologies and sizes, for which the information and costs were
obtained via supplier information. The list of Intel contained 2504 CPUs from which 987 were
selected as relevant and the PassMark list contained 2253 entries with 1424 relevant entries.
Combining the Intel and PassMark list resulted in a list with detailed CPU information, with
amongst others the CPU costs, for 754 CPUs. The combination of this list with detailed
CPU information and the list with motherboards and memory modules, resulted in 1838
different combinations that each represent an embedded platform to be considered.

In the list with embedded platforms, for each platform the throughput was added for the
digital image processing application, the costs of the platform, and cost per one BPS. For
each embedded platform, the throughput in BPS was calculated, using Equation (7) and (8)
and the PassMark score. To calculate the throughput, a large bitmap of size 13,061,500 is
considered, similar to the large bitmap used in Table 5. Additionally, the number of cores
or cores with hyper-threads is decreased by one or two, respectively, to allow room for the
master and other processing.

Table 6 provides a low, medium and high-performance platform, obtained from the list
of embedded platforms that may be cost-effective alternatives to the reference platforms to
reduce development costs. To compare the costs, throughput in BPS, and costs per BPS
of these platforms, values relative to the Intel i7 Skylake reference platform are provided.
The first column indicates the performance category of the platform and the second column
gives the name of the CPU. The relative increase or decrease in cost, predicted throughput,
and costs per BPS, are given in the third, fourth, and fifth column, respectively. The final
two columns give the PassMark scores, pf and ps, of the CPU. The table illustrates that
the high-performance platform with an Intel i7 5820k CPU reduces the cost per BPS by a
fraction of 0.375, where the low-performance platform costs 1.44 times as much, compared
to the reference platform. Still, the low or medium-performance platforms are interesting as
cost-effective solutions for products in which the predicted throughput would be sufficient,
because their platform costs are a fraction compared to the high-performance platform costs.
Note that for industrial systems, the platform selection also considers the period for which
CPUs and components will be long-term available for production, which we did not include
here.

Figure 5 plots the relative costs to the reference platform, when using one or multiple
embedded platforms to realize a required throughput, suggesting that considering multiple
embedded platforms results in smoother increasing platform costs. Note that size and power
are not considered in this comparison, but that they are an important element in the trade-off
for the platform selection. Using the list with embedded platforms, for a throughput of
220 until 280 BPS, the most cost-effective solutions are searched to realize the required
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Table 6 CPUs for high, medium, and low-performance embedded platforms.

Performance CPU Relative Relative Relative pf ps

category name costs BPS costs/BPS
High i7 5820k 1.29 3.35 0.375 12,994 2,016
Medium i7 6700te 1.00 1.10 0.875 10,514 2,113
Low i5 6402p 0.80 0.55 1.44 7,750 2,081

Figure 5 Cost comparison for platform combinations and single platforms to realize a desired
BPS.

throughput, either by only using one embedded platform or by allowing multiple embedded
platforms to be used. Multiple platforms can be used that each process a part of a bitmap,
where partitioning the bitmap requires no additional effort and the effort for combining the
parts is negligible. In case multiple embedded platforms are considered, an exhaustive search
is performed that considers all platform combinations to realize the required throughput. The
speed of communicating bitmaps plays a role, if we compare solutions with one or multiple
embedded platforms. Therefore, network interfaces, with their speed and costs, were added
to the platforms and the search accounts for the achievable BPS via the network interface. It
is sufficient to consider the number of BPS that can be communicated via a network interface,
because communicating a next bitmap can overlap with processing the current. Performing
the searches requires less than 30 seconds on a single core, making it a scalable approach.
An interesting result is that for a throughput of 230 until 270 BPS, the usage of multiple
embedded platforms is more cost-effective and also results in a smoother increasing platform
cost.

Table 7 provides details for the selected platforms, which are plotted in Figure 5, with
costs relative to the costs of the Intel Core i7 reference platform. In the case of multiple
embedded platforms, cost-effective Core i7 and i5 CPUs can be combined until a throughput
of 270 BPS. In contrast, for a throughput of 230 BPS, a single embedded platform with two
powerful Xeon CPUs at one motherboard is selected. For a throughput between 230 and 270
BPS the platform cost for multiple embedded platforms is up to 17% lower compared to a
single platform. The cost difference is because cost-effective Core i7 and i5 CPUs can be
combined, rather than using two the same Xeon CPUs on a motherboard.
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Table 7 Comparison between multiple and single embedded platforms selected to realize a desired
number of BPS.

Multiple embedded platforms Single embedded platform
BPS CPUs BPS Costs CPU BPS Costs
220 Core i7 6800K 220 1.37 Core i7 6800K 220 1.37
230 Core i7 5820K 230 1.84 Xeon E5 2620 349 2.22

Atom x7 Z8700 Xeon E5 2620
Atom x5 Z8550

240 Core i7 6800K 241 1.95 Xeon E5 2620 349 2.22
Core i3 4170 Xeon E5 2620

250 Core i7 6800K 251 2.07 Xeon E5 2620 349 2.22
Core i5 4590 Xeon E5 2620

260 Core i7 5820K 272 2.14 Xeon E5 2620 349 2.22
Xeon E3 1231 v3 Xeon E5 2620

270 Core i7 5820K 272 2.14 Xeon E5 2620 349 2.22
Xeon E3 1231 v3 Xeon E5 2620

280 Xeon E5 2620 349 2.22 Xeon E5 2620 349 2.22
Xeon E5 2620 Xeon E5 2620

9 Conclusion

A throughput-prediction approach for stream-processing applications and their embedded
platforms has been presented in this paper. A real prototype industrial Océ digital image
processing application for a printer, for which this approach was applied, has been used to
demonstrate the approach. For this application, a design space exploration was performed,
where the piecewise linear expression for the throughput prediction made it possible to
consider combinations of more than 1800 different embedded platforms with the digital image
processing application to realize desired throughputs.

The throughput prediction targets stream-processing applications that apply the Master
Slave or possibly the MapReduce pattern, during the early design phase. A piecewise linear
expression is related to features in the input stream, such that only gray-box knowledge
of the application is necessary and updating the expression is easy. First, the execution
time when using a single core is related to one or more features from the input stream.
The second step scales the single-core execution time for the multiple cores or cores with
hyper-threading that are used in the embedded platform. This step uses an expression for
the discrete scaling of workload over slaves, which is a novel extension of Amdahl’s law. The
third step uses performance scores from a performance database to translate the performance
from a reference platform to target platforms. To demonstrate the applicability of the
approach, it was applied to an Océ digital image processing application for a printer. The
obtained piecewise linear expression allowed throughput predictions during the early design
phase and exploring a large set of embedded platforms. Validation of the cross-platform
throughput prediction, using the digital image processing application and a limited set of
platforms, showed an acceptable error and thereby its usability. An interesting extension of
this throughput-prediction approach would be the inclusion of key configuration parameters of
the application, like the output bitmap resolution, to enable predictions for next generations
of the system.
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