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Abstract
Most works in schedulability analysis theory are based on the assumption that constraints on
the performance of the application can be expressed by a very limited set of timing constraints
(often simply hard deadlines) on a task model. This model is insufficient to represent a large
number of systems in which deadlines can be missed, or in which late task responses affect the
performance, but not the correctness of the application. For systems with a possible temporary
overload, models like the m-K deadline have been proposed in the past. However, the m-K model
has several limitations since it does not consider the state of the system and is largely unaware
of the way in which the performance is affected by deadline misses (except for critical failures).
In this paper, we present a state-based representation of the evolution of a system with respect
to each deadline hit or miss event. Our representation is much more general (while hopefully
concise enough) to represent the evolution in time of the performance of time-sensitive systems
with possible time overloads. We provide the theoretical foundations for our model and also show
an application to a simple system to give examples of the state representations and their use.
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1 Introduction and Motivation

The development of most control applications is based on the assumption that the design,
definition and analysis of the controls functionality can be separated from the development
and analysis of the software code implementing it. The functional model of the controls and
of the program threads implementing them are connected by a suitable set of assumptions
on the time properties of the code. In most cases, the assumptions relate to the activation
periods, the maximum allowed response times (or deadlines) and possibly the output jitter.
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10:2 Beyond the Weakly Hard Model

In many instances, if the periodic tasks are schedulable within the deadlines, then the system
is assumed to be correct. This assumption corresponds to the hard deadline model.

As highlighted by several authors (a comprehensive discussion of the issue is in [10]),
this assumption is simplistic and may lead to overprovisioning of resources on one side (by
requesting that all deadlines are met when in reality the system may be tolerant to some
deadline misses) and the inability to model the impact of late responses as a performance
degradation, given that the only possible outcome is a binary (feasible, infeasible) assessment
of the system correctness.

To cope with the possibility of deadline misses, more sophisticated task models have
been proposed, including analysis methods that compute the maximum lateness or number
of consecutive deadline misses, or the Weakly Hard model, aimed at verifying whether the
system can guarantee that at most m deadlines are missed for every set of K consecutive
task instances. These models have been developed by the real-time analysis community,
often inspired by generic requirements from controls developers, but mostly abstract from
considerations on the performance of the controls.

Alternatively, the timing model of the software tasks is included in a general model of the
system together with the model of the controls, that is, the two domains are not separated
but jointly considered. Examples of these approaches include system models using hybrid or
timed automata (such as those used by the Times tool [18]) and models that cosimulate the
control functionality and the task timing, to assess the impact of scheduling delays on the
performance (examples are the Jitterbug, TrueTime [10] and TRes tools [11]).

Contribution and Paper Structure

In this work, we propose to define a new abstraction for Cyber Physical Systems (CPSs)
analysis that represents the performance degradation of the system in correspondence to
possible deadline misses. In particular, the focus of the paper is on computing the evolution
of control performance for a CPS in which its control tasks can suffer sporadic deadline
misses, that can be described by a set of Weakly Hard constraints. We consider a task
actuation implemented using the LET paradigm, where the control output is updated at
the task deadlines. When a job misses its deadline, the control output is not updated. The
LET implementation imposes fixed delays of the control output, thus enabling a precise
analysis of the control system. First, the freshness of the control output is extracted for each
step of the possible sequences of hit and missed deadlines, considering different handling
methods for the deadline miss event. Then, the corresponding sequence of update matrices
for the state variables is constructed, and a performance value is assigned to the sequence.
The sum of squared errors is chosen as a representative performance index. The proposed
approach allows extracting useful information such as worst-case performance bounds and
critical sequences of deadline hits/misses with respect to a target performance.

Our model is more detailed than the Weakly Hard model (summarized in Section 2) since
it considers the evolution of the system state in correspondence to miss events and, by taking
into account the actual patterns of hits and misses, it includes an estimate of the system
performance at each state. The proposed model is still much simpler than hybrid automata
since it only considers the impact of a finite number of job completions and abstracts the
time behavior by means of deadline miss/hit sequences. The model of the system assumed in
this paper is summarized in Section 3, and the proposed approach with the overall objectives
are discussed in Section 4.
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We show how the size of the state description can be bounded by a set of scheduling
assumptions, or as a result of timing analysis, and how the performance annotation can be
computed for simple metric functions on Linear Time Invariant (LTI) systems. Furthermore,
under the hypothesis that the system evolution is bounded by an exponential function, the
number of steps in each analyzed sequence can be effectively limited with a bounded error
on the performance index. Section 5 contains the description of how to compute the impact
on the control values (update freshness) as a consequence of possible deadline misses, and
Section 6 how to compute a state trajectory from sequences of hits and misses. These results
are used in Section 7 to assign performance values to the sequences and possibly compute
the worst-case values. Finally, in Section 8 we show the application of the proposed method
to a case study consisting of a control of a Furuta pendulum.

1.1 State of the Art
The weakly-hard real-time schedulability analysis targets the problem of bounding the
maximum number of deadline misses over a number of task activations. A dynamic assignment
of priorities for streams with m-K requirements is proposed by Hamdaoui et al. [20] to reduce
the probability of missing more than m deadlines every K iterations. Weakly hard real-time
schedulability analysis can be traced back to the work of Bernat et al. [5] on the m-K model.
The analysis in [5] and in other works assumes that there is an explicit initial state of the
system, in which the initial offset of each task in the system is known. This limitation is
removed in [34].

Recent developments in the study of overloaded systems allow to relax the requirement of
knowing the initial system state. The approach proposed by Quinton et al. [23] consists in the
worst-case analysis of a system model represented as the superposition of a typical behavior
(e.g., of periodic task activations) that is assumed feasible, and a sporadic overload (i.e., a rare
event). Under such an assumption, other works [16,30] proposed methods for weakly-hard
analysis that consists of two phases: 1) the system is verified to be schedulable under the
typical scenario (by the classical hard analysis), and 2) when the system is overloaded, it can
be guaranteed that out of K successive activations of a task, at most m of them will miss
the deadline.

The analysis of overload conditions is also closely related to the co-design of control and
CPU-time scheduling [3]. The influence of response times on the performance of control
tasks has been studied in several works such as those by Xu et al [31, 32]. Aminifar et al. [2]
proposed an integrated approach for controller synthesis, by selecting the task parameters
that meet the expected control performance and guarantee the stability. The concept is later
extended [1] to distributed Cyber Physical Systems, while in [15] FlexRay is considered as
the communication medium. The m-K model has also been investigated in the co-design of
controls (with respect to their performance) and scheduling [12,24], and is used in [7,8,26,27]
to define the maximum number of samples (jobs) that can be dropped over any sequence
(density of dropped samples), to guarantee a minimum level of quality to the controls. In [29]
the problem of modifying the controller for improving the worst-case performance under m-K
constraints is addressed. Moreover, the m-K model has been used for describing stability
properties of a controlled system, e.g., to account for the maximum number of deadlines that
can be missed in a row without making the system unstable (see [25]). Recent work by Blind
and Allgöwer [6] showed that an unstable plant with feedback control that executes in open
loop for finite time intervals under m-K constraints, can be subject to stability analysis by
means of the Lyapunov method. In a subsequent work, Linsenmayer and Allgöwer [19] faced
the problem of finding a controller that stabilizes the plant described in [6] under a given set
of weakly hard constraints.
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10:4 Beyond the Weakly Hard Model

In the controls literature, Yoshimoto and Ushio [33] consider an overloaded real-time
platform with multiple controllers. The system described is a LTI plant, with the deadline of
the control task equal to the period of the task. They create an arbiter for skipping jobs
that maintain the system schedulable while minimizing a performance degradation index
based on the number of consecutively skipped jobs.

Frehse et al. [12] consider a Weakly Hard system, with a control task that is implemented
using the Logical Execution Time (LET) paradigm [17]. The authors create a hybrid
automaton that represent the connection between the physical system (described with
piecewise affine functions) and the discrete controller, analysing the system with the TWCA
approach [23]. They propose then the use of reachability analysis with the model checker
SpaceEx to analyze if the trajectories guarantee the required performance.

2 The Weakly-Hard Task Model

The m-K model [20] and its generalization in the weakly-hard model [5] are an attempt at
describing the impact of deadline misses on the correctness of the application. The approach
can be used for a real-time system in which a given number of misses can be tolerated without
critical consequences. When the number of deadline misses can be bounded in any time
interval of a given length, the system is defined as weakly-hard.

In this paper, we are interested in Cyber-Physical Systems where control tasks have
weakly-hard constraints. The main goal is to extract bounds for the control performance as
a function of the weakly-hard constraints, and monitor the system at each step. To make the
paper self-contained, this section recalls the standard definitions for weakly-hard real-time
systems, and provides an overview of the major limitations of state-of-the-art approaches.

2.1 Definitions

In a weakly-hard system, the (m,K) constraint provides a bound on the number m of
deadline misses that a task can experience every K instances (i.e., jobs). In the following,
the definitions of satisfaction set and hardness of an (m,K) constraint, taken from the work
of Bernat, Burns, and Llamosí [5], are used.

I Definition 1 (Satisfaction set). Given a constraint (m,K), the satisfaction set SN of
(m,K) is the set of all the sequences of hit and missed deadlines of length N that satisfy the
constraint.

A sequence s ∈ SN is represented by a string of N letters, using "M" for a deadline miss and
"H" for a hit. When necessary, the sequence s will also be denoted as H/M. As a particular
case, the satisfaction set of the constraint (0,K) (for any K) includes sequences with all hits.
This sequence is named hereafter as H-sequence. The H-sequence, also denoted as sH , is the
only sequence that satisfies all the possible (m,K) constraints.

When analyzing the weakly-hard properties of a real-time task, it is generally possible to
extract a set of constraints under different values for K. A set of p weakly-hard constraints
is denoted with Γ, and is defined as: Γ = {(m1,K1), (m2,K2), . . . , (mp,Kp)}. The definition
of satisfaction set is then extended to a set Γ:

I Definition 2. Given a set Γ of weakly-hard constraints, the satisfaction set of Γ is the
intersection of the satisfaction sets of all the constraints in Γ.
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Figure 1 Comparing different state trajectories of a controlled roller moving a sheet of paper,
with 2 deadlines missed in a row every 5 instances. Changing the order of the missed deadlines in a
H/M sequence leads to different behaviors with different control performance.

2.2 Limitations of the Weakly-Hard Model
In this work, we are interested in finding a model that puts in correspondence the timing
properties of a control task (expressed as a sequence of deadline hits and misses), the dynamics
of the physical plant (the controlled system), and the control performance. Unfortunately,
our objective cannot be achieved with a simple m-K weakly-hard model.

In fact, the weakly-hard model has several limitations when applied to the control domain.
First of all, the (m,K) constraint is a model with a “binary” outcome, where either the
system satisfies the constraint or not (e.g., for the purpose of stability analysis [25]), but it
does not provide any information concerning the control performance that can be guaranteed
when the constraint is met.

Another important limitation is that the order (i.e., the actual pattern) of deadline misses
and hits cannot be fully described by using a combination of (m,K) constraints. This is
true even when using the extended model proposed in [5], where the maximum number
of consecutive deadline misses is considered. Indeed, different H/M sequences in the same
satisfaction set generally lead to different control performance values, thus making the (m,K)
constraint a coarse (and possibly misleading) description of the system when addressing the
performance analysis. The explicit consideration of all the valid H/M sequences, together
with the evolution of the system state during the sequence, may be important to enable a
precise study of the control performance. For instance, if the system is near the steady state,
the errors produced by an actuation that uses stale data (e.g., as a result of a deadline miss)
are limited. However, if the system is in a transient condition, actuation errors will have
a much higher impact. Since the sensitivity of the control performance changes with the
system state and its evolution, the adoption of the existing weakly-hard models to analyze
the control performance requires to always account for the overall worst-case scenario.

For example, consider the model of a paper roller, as described in [22] (pag. 40), which
is controlled to zero with a periodic task with T = 50ms and D = 0.7T . The control task
satisfies a weakly-hard constraint with 2 deadline misses in a row every 5 instances. Five
H/M sequences that satisfy the considered weakly-hard constraints are applied, and when a
deadline is missed the control output is not updated. The results are reported in Figure 1 and

ECRTS 2018



10:6 Beyond the Weakly Hard Model

show that each H/M sequence leads to a different state trajectory. If the sum of quadratic
errors (with respect to a reference) is considered as a control performance metric, then
different values will be computed for each trajectory.

These observations motivate the development of a richer model, with an associated
analysis technique to study the control performance under weakly-hard constraints.

3 System Model

This section presents the model of the considered Cyber-Physical System in terms of the
physical plant, the controller, and its task implementation.

3.1 Plant and Control Description
We consider a physical system modeled as a Linear Time-Invariant (LTI) plant, multi-input-
multi-output (MIMO), strictly causal, operating in a well-defined region Ω ∈ Rn of the state
space (possibly the entire state space Rn). A continuous-time description of the plant is
provided by the following state equation:

ẋc(t) = Acxc(t) +Bcuc(t), (1)

where xc(t) is the state vector, uc(t) the control output, and Ac and Bc are constant matrices
of the dynamics with appropriate dimensions. We assume that a discrete-time controller
is implemented as a periodic task τi, with period Ti and relative deadline Di ≤ Ti. The
task is released at the system startup, i.e., time t = 0. The period Ti is chosen as a
compromise between the stability properties of the system (e.g., the phase margin) and
the schedulability constraints given by the available computational resources (speed of the
processor, communication rates, etc.). A general heuristic for the choice of the sampling rate
consists in guaranteeing that there are 4 to 10 samples during the rise time in response to a
step input [28].

The time interval between the k-th and the (k + 1)-th activation of the control task is
defined as [kTi, (k + 1)Ti).

The Logical Execution Time (LET) paradigm is adopted [12] for the control task. An
example execution is shown in Figure 2 with three tasks for sensing (τS), control (τC), and
actuation (τA). The k-th job of the control task uses the system state sensed at the activation
time kTi (without sensing jitter), and the output is used by the actuator at the deadline
(time kTi +Di). Furthermore, we assume that the actuation value is kept constant until the
next update, which occurs at time (k + 1)Ti +Di (as shown by the u[k − 1], u[k] = u[k + 1]
and u[k+2] values in Figure 2). The choice of updating the control value at the task deadline
leads to regularity of the output timing, with no output jitter, thus simplifying the control
synthesis by means of classic techniques based on the assumption of a constant delay Di

(e.g., see [21] for the case with Di = Ti). Moreover, the enforcement of fixed time instants
for the control update enhances the predictability of the system.

The notation x[k] = xc(kTi) is used to denote the discrete-time measure (or an estimate)
of the system state. Analogously, u[k] denotes the discrete-time representation of the control
output. Note that, due to the delay Di, x[k] and u[k] are not updated at the same time
instant. We assume x[k] = x[0],∀k < 0.

The output u[k] is generated by a control function that is assumed to stabilize the
discrete-time plant under consideration. The discrete-time representation of the plant is [4]

x[k + 1] = Adx[k] +Bd1u[k − 1] +Bd2u[k], (2)
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Figure 2 Time execution of sensor, control and actuation tasks.

where the involved matrices are defined as:

Ad = eAcTi , (3)

Bd1 =
∫ Di

0
eAcsdsBc, and Bd2 =

∫ Ti

Di

eAcsdsBc. (4)

For this work, we consider a standard state-feedback controller of the following form:

u[k] = Kd(r − x[k]), (5)

where Kd is the stabilizing control matrix, and r is the reference equilibrium state. Without
loss of generality, from now on we consider that that the reference is equal to the zero vector,
i.e., u[k] = −Kdx[k]. Finally, we assume that the initial state x[0] (and thus the input u[0])
is known.

In the following, we are interested in reasoning about the output value before and after
the deadline for each periodic instance. As shown in Figure 2, in the portion of the control
period before the deadline, the value considered is u[k − 1] = Kdx(k −∆p − 1), and in the
other part is u[k] = Kdx(k−∆c). The delays ∆p and ∆c, which will be defined and analyzed
in detail in Section 5, depend on possible deadline misses (for example, ∆p = 0 and ∆c = 0
for the first cycle in the Figure, and ∆p = 1 and ∆c = 1 for the third cycle).

3.2 Task Set Description

The control task τi is implemented on a real-time platform, together with N other tasks that
can be either periodic or non-periodic. The Worst Case Execution Time (WCET) is assumed
to be known for each task and the periodic control task τi has WCET Ci ≤ Di. We assume
a fixed-priority, fully-preemptive scheduler, as in most established commercial standards. Of
course, the approach is also applicable to multiple independent control tasks in execution on
the same core.
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10:8 Beyond the Weakly Hard Model

3.3 The Task Model of the Controller
The effect of a deadline miss on the controller output depends on the structure of the controller
task and the semantics of information passing. We assume that the task τi computes the
actuation command using the data sensed at every activation. At its completion, the task
copies the output data in a shared memory address, making it accessible to the process that
handles the actuator. To match the considered LET paradigm, we also assume that the
actuator is activated with the same period of τi (equal to Ti) but executed at its deadline
(with very high priority and minimum jitter, possibly as a hardware implementation, Figure
2). The actuator reads the data from the shared memory and uses it as the actuation value
during the next interval of length Ti. This means that if the output variable of τi is not
ready at the deadline, the previously-stored value is used for the actuation.

To ensure a one-to-one correspondence between each element in an H/M sequence and
the corresponding actuation update, we restrict our analysis to the case in which every
execution of a control job is guaranteed to complete at least within (Ti +Di) time units from
its activation. This means that the Worst-Case Response Time WCRTi of the task τi, is
upper bounded as follows:

WCRTi < Ti +Di. (6)

This condition ensures that there cannot be more than one pending invocation of τi at each
deadline. The case in which the WCRT exceeds (Ti +Di) needs a richer description than
H/M sequences, hence a considerable additional complexity for the model and the analysis:
for this reason it is left as a future work. However, note that only part of the presented
analysis relies on this assumption (further details are provided in Section 5.1.1).

4 Approach and Objective

The objective of this work is to propose a new model for relating the performance of control
systems to schedulability conditions with possible deadline misses. Our model consists of
a (finite) state-based representation, in which a control job belongs at every point in time
to one state in the set. The new state is evaluated at each deadline hit or miss event, and
represents a specific sequence of hits and misses. This state is annotated with a control
performance value (as summarized in Figure 3).

This model can be used as a time contract between the design of the controls and their
software (task) implementation. It enables

the definition of monitors that can not only intercept at run time unforeseen timing faults,
but also possible performance degradation that requires a recovery action, and
the definition of the performance of the system at each deadline hit or miss event.

The approach presented in this paper is divided in steps:
1. A conventional m-K timing analysis (such as in [5] or [34]) is assumed to be performed

on the tasks (using the timing model with WCETs). This analysis allows to bound the
possible sequences of hits and misses and the number of states that are reachable. Safety
monitors can be added to the system to guard against additional misses that can bring the
system outside of the set of reachable states and would indicate an error in the estimate
of the WCETs or other inaccuracies in the model of the task set.

2. For each state and each hit or miss event, two parameters (∆p, ∆c) are computed (as
shown at the bottom of Figure 2), that relate to the freshness of the control updates.
This step requires only knowledge on the task execution model and the deadline handling
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Figure 3 State machine representation of performance indexes for H/M sequences with constraint
(m, K) = (1, 2) and window of N = 3 steps. The reachability boundary restricts the analysis only to
the possible combinations of N steps of hits and misses that satisfy the given (m, K) constraint.

strategy (extracted from the software implementation of the controls). The values ∆p,
∆c are computed using a set of state machines as shown in Figure 4 of Section 5 (different
from the one of Figure 3).

3. Each state is annotated by the corresponding state update matrix, computed considering
the plant model and the control parameters.

4. Performance bounds for the controlled system are extracted, and a description suitable for
the on-line monitoring of the system behavior is created, in which each state is annotated
by a performance matrix Πi. Whenever the system transitions to a state with a degraded
performance and before it can further progress into a poor performance condition, a
monitor may be triggered to try to perform recovery actions.

In the following sections, steps number 2, 3 and 4 are analyzed in detail.

5 From Deadline Misses to Update Freshness

This section studies the impact of deadline misses on the freshness of the control updates. The
presented approach is general enough to be applied to different deadline miss management
policies. This analysis step only requires information related to the software implementation
of the controller, i.e., it is independent of the physical system and the control parameters.

5.1 Handling Deadline Misses
Depending on the system implementation, and possibly on the configuration of the operating
system, a job that misses its deadline can be handled in different ways. In this work, two
common strategies are considered:
1. Job killed: the execution of the job that misses its deadline is aborted.
2. Job continued: a job that misses its deadline continues to execute until it completes.

Multiple pending jobs are served in first-in-first-out order.
Each strategy not only results in a different effect on the timing properties (schedulability
and response time) of the task set, but also in a different impact on the freshness of the
control update and a different performance of the control system.

ECRTS 2018



10:10 Beyond the Weakly Hard Model

The update freshness is a parameter used to describe the age (as a number of control
steps) of the current actuation value, which can be formally defined as follows.

I Definition 3 (Update freshness ∆k). Let k′ be the control step for which the state x[k′] is
used to generate the k-th control update u[k], with k′ ≤ k. The update freshness ∆k ∈ N≥0
is defined as ∆k = k − k′, that is

u[k] = −Kdx[k −∆k].

Furthermore, we also introduce the worst update freshness ∆max, that is the maximum
number of aging steps for the active control value.

The proposed analysis considers each k-th control window (i.e., [kTi, (k+1)Ti)). Due to the
delay Di in the generation of the actuation, two control outputs can exist within such windows,
each with a corresponding update freshness. In the sub-window [kTi, kTi +Di) the control
output is equal to the one generated in the previous control window, i.e., u[k−1]. Conversely,
the control output in the window following the actuation update [kTi + Di, (k + 1)Ti) is
equal to u[k]. Taking into account the update freshness, the two control outputs within the
k-th control window are defined as

u[k − 1] = −Kdx[k − 1−∆k−1] (7)
u[k] = −Kdx[k −∆k]. (8)

For example, considering the example of Figure 2, the task instance released at time kTi

completes its execution within the deadline, and the actuation value u[k] after the deadline
is equal to −Kdx[k] with update freshness 0. As the next deadline is missed, u[k + 1] is not
updated and remains equal to −Kdx[k], thus the value of the update freshness ∆k+1 is now
equal to 1.

The next sections will show how to compute the sequences in time of the update freshness
values ∆k−1 and ∆k (also denoted as update freshness pairs) for all the possible H/M
sequences that satisfy an (m,K) constraint. The possible time traces of the freshness pairs
are represented using a state machine, where each node is described by a pair (∆k−1,∆k).
For the sake of clarity, we will refer to the state machine defining the update freshness as
F-state machine, and its vertexes as F-states. The F-state evolution rules for the job killed
and job continued strategies need to be defined to construct the F-state machines.

5.1.1 Job Killed
Under this policy, whenever the job executing in the k-th control window misses its deadline,
the actuator uses the previous value for the control output u[k], consequently increasing
the update freshness ∆k. Hence, the definition of the F-state evolution rule for the update
freshness follows.

Job killed: F-state evolution rule. Consider the k-th control window, characterized by the
pair (∆k−1,∆k). The update freshness pair of the (k + 1)-th control window is:

(∆k, 0), if the (k + 1)-th job of the control task hits its deadline;
(∆k,∆k + 1), otherwise (deadline miss).

The above rule comes from the following rationale. If a deadline hit occurs in the (k+1)-th
control window, then the corresponding control output will use a fresh value, i.e., ∆k+1 = 0.
Otherwise, the control output of the k-th control window will also be used in the next window,
with an increase of the update freshness. Therefore, the update freshness of u[k + 1] is given
by the update freshness of u[k] plus one period, i.e., ∆k+1 = ∆k + 1.
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Figure 4 State machines expressing the evolution of the update freshness pair (∆p, ∆c). The one
related to the job killed strategy corresponds to the case with ∆max = 3.

Given a boundMmax on the number of consecutive deadline misses, it is possible to bound
the maximum update freshness experienced in a control window, that is ∆max = Mmax.
Finally, it is important to observe that the above rule is independent of the assumption
stated in Equation (6) that bounds the worst-case response time of the control task. In fact,
under the job killed strategy, the response-time is always implicitly bounded by the relative
deadline Di.

5.1.2 Job Continued
Under the assumption of Equation (6), the evolution of the update freshness under the job
continued strategy is determined by the following rule.

Job continued: F-state evolution rule. Consider the k-th control window, characterized
by the pair (∆k−1,∆k). The update freshness pair of the (k + 1)-th control window is:

(∆k, 0), if the (k + 1)-th job of the control task hits its deadline;
(∆k, 1), otherwise (deadline miss).

Like for the job killed strategy, when the deadline is hit the next control output will dispose
of a fresh value, i.e., ∆k+1 = 0. On the other hand, if the deadline in the (k + 1)-th control
window is missed, the corresponding control output will be equal to u[k]. By Equation (6),
a pending job of the control task cannot span more than two consecutive control windows.
As a consequence, the state sensed at the beginning of the k-th control window, i.e., time
kTk, will be used at most for producing the (k+ 1)-th control output, which implies that the
update freshness is implicitly bounded by one, i.e., ∆max = 1 (independent of Mmax). Note
that, despite this advantage with respect to the job killed strategy, the number of deadline
misses under the job continued strategy can significantly increase because of self-pushing [34].

5.2 Constructing the State Machines for the Update Freshness
Given the F-state update rules introduced above, this section shows how to construct a
F-state machine that describes the possible evolutions of the update freshness pairs. Each
F-state machine is defined by a set of vertexes V , where each vertex is tagged with a freshness
pair, and a set of directed edges E connecting the vertexes. An edge e ∈ E is defined as a
triplet consisting in the source vertex, the destination vertex, and a label that states if the
vertex is taken when a deadline is hit or miss. For instance, e = ((0, 0), (0, 1),M) is an edge
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Algorithm 1 Construction of state machines for the update freshness.
1: global A = {(0, 0)}
2: global V = {(0, 0)}
3: global E = {}
4:
5: function Entry_Point( )
6: explore( (0, 0), H )
7: explore( (0, 0), M )
8: end function
9:

10: function explore( (∆p,∆c), x )
11: (∆′p,∆′c) = State evolution rule((∆p,∆c), x)
12: V = V ∪ { (∆′p,∆′c) }
13: E = E ∪ { ((∆p,∆c), (∆′p,∆′c), x) }
14: if (∆′p,∆′c) /∈ A then
15: A = A ∪ { (∆′p,∆′c) }
16: explore( (∆′p,∆′c), H )
17: if ∆′c < Mmax then
18: explore( (∆′p,∆′c), M )
19: end if
20: end if
21: end function

that connects an F-state with update freshness defined by the pair (0, 0) to another vertex
corresponding to the pair (0, 1) to represent the F-state evolution after a deadline miss.

These F-state machines are characterized by the following two properties: (i) the same
update freshness pair can be obtained for different values of k (i.e., different control windows
may have the same update freshness), and (ii) the evolution of the update freshness pair
is only dependent on the immediately preceding pair (∆k−1,∆k). For this reason, when
needed, the following short notation is adopted to get rid of the index k: ∆c denotes the
current update freshness, i.e., ∆c = ∆k for the k-th control window; and ∆p denotes the
previous update freshness, i.e., ∆p = ∆k−1.

Algorithm 1 reports the pseudocode to generate the F-state machines. The algorithm
exploits the recursive procedure explore that (i) computes the next state (∆′p,∆′c) by means
of a state evolution rule given a deadline hit (x = H) or miss (x = M), (ii) adds and connects
the new node to the F-state machine, and (iii) finally opens two recursive branches related
to a deadline hit or miss, respectively. The algorithm termination is guaranteed by keeping
track of the previously-visited states in the set A and by the bound ∆max, both limiting
the opening of recursive branches. Two illustrations of the resulting F-state machines are
reported in Figure 4. It is worth noting that, given the strategy to handle the deadline misses
and the bound ∆max, such F-state machines are fixed and independent of the parameters of
the control tasks and the control plant. As a consequence, they provide a very general model
to study the evolution of the update freshness.

6 Computing State Trajectories

In the previous section, we defined the relation between H/M sequences and the freshness of
the control update. The next step requires combining the update freshness parameters with
the information coming from the plant model, which is used to compute the update matrices
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of the plant state for each step of an H/M sequence. This leads to the definition of a chain of
matrices that is then used to extract the state trajectory of the plant (subject to the control).

6.1 State Update Function and Stability Properties
Starting from Equation (2) and combining it with Equations (7) and (8), we derive the state
update of the system with an arbitrary freshness pair (∆p,∆c). The resulting state equation
can be rewritten as:

x[k + 1] = Adx[k]−Bd1Kdx[k − 1−∆p]−Bd2Kdx[k −∆c] (9)

In order to achieve a compact representation of the above equation for different freshness
pairs (∆p,∆c), we introduce the augmented plant state vector ξ[k] as

ξ[k] =
[
x[k]; x[k − 1]; · · · x[k −∆max − 1]

]
, (10)

which contains the state values of the last ∆max + 2 control steps, i.e., from x[k] to x[k −
∆max − 1]. Note that x[k −∆max − 1] is the last possible value of the state considered in
Equation (9). Then, by leveraging this augmented state, it is possible to rewrite the state
update function of the control system in Equation (9) as follows

ξ[k + 1] = Φ(∆p,∆c)ξ[k]. (11)

Here ,Φ(∆p,∆c) is the state update matrix, which is defined as

Φ(∆p,∆c) =


Ad · · · −Bd2Kd · · · −Bd1Kd · · ·
In 0n · · · · · · · · · · · ·
0n In 0n · · · · · · · · ·
... · · ·

. . . . . . · · · · · ·

 , (12)

where 0n and In are square matrices of zeros and the identity matrix, respectively, with
dimension n (n denotes the size of the state space, i.e., x[k] ∈ Rn). Φ(∆p,∆c) is square
with dimension n · (∆max + 2). The definition of Φ(∆p,∆c) in Equation (12) is not a direct
function of ∆p and ∆c: rather, ∆p and ∆c determine the position of the blocks −Bd1Kd

and −Bd2Kd. The value ∆max determines the matrix size.
Using the state machines for the update freshness defined in the previous section, it is

possible to assign each vertex (by means of the corresponding pair (∆p,∆c)) with a matrix
Φ(∆p,∆c). For instance, the matrices for the state machine when the job-continue strategy
is used (reported in Figure 4(b)) are:

Φ(0, 0) =

 Ad −Bd2Kd −Bd1Kd 0n

In 0n 0n

0n In 0n

 (13)

Φ(0, 1) =

 Ad −(Bd1 +Bd2)Kd 0n

In 0n 0n

0n In 0n

 (14)

Φ(1, 0) =

 Ad −Bd2Kd 0n −Bd1Kd

In 0n 0n

0n In 0n

 (15)

Φ(1, 1) =

 Ad −Bd2Kd −Bd1Kd

In 0n 0n

0n In 0n

 . (16)
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Each such matrix corresponds to a possible mode in which the control system can operate,
and such modes can be reached as a function of the pattern defined by an H/M sequence
depending on the state machine that defines the update freshness. Furthermore, not all
the possible transitions between such modes are actually possible: only the subset of H/M
sequences that belong to the satisfaction set of Γ is possible, limiting the possible paths in
the state machine of the update freshness. In this view, the control system under analysis
can be considered as a particular case of a constrained switched linear system [29].

Equation (11) is particularly useful when studying the stability of the controlled system.
According to the choice of Kd discussed in Section 3, the system is stable when no deadline
misses occur (i.e., the dynamic related to matrix Φ(0, 0) is stable). However, no stability
properties are guaranteed for the other operating modes. A performance analysis is mean-
ingless for an unstable system, therefore all possible mode switches must lead to a stable
behavior. An interesting approach for defining a controller that is stable for each possible
H/M sequences (even if related to a simplified model with respect to the one presented here)
is presented in [19]. However, in order to dispose of a bound on the number of steps of the
H/M sequences under analysis, we require the stronger condition of exponentially stability:
given the matrices Φ(∆p,∆c), this property can be verified with the technique presented by
Yu and Zhang in [35]. More details are provided in Section 7.2.

6.2 Mapping H/M Sequences to State Trajectories
After assigning a matrix Φ(∆p,∆c) to each vertex of the state machine for the update
freshness, it is possible to obtain a sequence of such matrices given an initial vertex and an
H/M sequence. The compact notation Φk denotes the matrix Φ(∆p,∆c) obtained at the
k-th step of an arbitrary H/M sequence. If the initial state ξ[0] is known, it is possible to
recursively compute the (k + 1)-th state of the system as follows:

ξ[k + 1] = Φkξ[k]
ξ[k] = Φk−1ξ[k − 1]
. . .

ξ[1] = Φ0ξ[0],

so obtaining the following compact form:

ξ[k + 1] = ΦkΦk−1 · · ·Φ0ξ[0]. (17)

Thus, by simply multiplying a set of matrices Φk, it is possible to compute the corresponding
state trajectory of the system. By considering each possible valid path in the state machine
of the update freshness, it is also possible to compute all state trajectories subject to the
weakly-hard constraints of the control task. To practically enable such computations, an
initial state (in terms of update freshness) and a given length for H/M sequences are required.
The former can be selected as the one characterized by the pair (0, 0), which matches the
condition at the system startup. A bound on the length of H/M sequences is provided in
the next section. Finally, it is worth noting that the initial state ξ[0] contributes to the
state trajectory with a fixed proportional constant. This means that the initial state can
be treated as a scaling factor, while the shape of the trajectory is only determined by the
sequence of hit and missed deadlines. This consideration is fundamental for the performance
analysis that will be addressed in the following section, as it allows a significant reduction of
its computational complexity.



P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale 10:15

7 Assigning Performance Values to H/M sequences

The first objective of this section is to assign a control performance index to each state
trajectory, computed for a given H/M sequence (as defined in the previous section). As a
result, H/M sequences are associated with a performance value, enabling the computation
of the worst-case system performance over all the possible H/M sequences. Then, for the
purpose of monitoring the evolution of the performance online, we provide a richer state-based
performance model.

7.1 Mapping Trajectories to Performance
The proposed approach can be used with different performance metrics: as a representative
case, we focus on the sum of quadratic error of the augmented plant state vector, which is
formally defined for a given H/M sequence s as

P (s) =
N−1∑
i=0

ξ[i]T ξ[i], (18)

where N is the length of the sequence s. This index is indeed the discrete representation of
the widely-adopted integral of squared error [14]. Note that our approach is also compatible
with other performance indexes. Combining Equation (18) with Equation (17), we obtain
the following expanded expression for P (s):

P (s) =
N−1∑
i=0

ξ[i]T ξ[i]

= ξ[0]T
(
I + ΦT

0 Φ0 + ΦT
0 ΦT

1 Φ1Φ0 + ...+ ΦT
0 ΦT

1 · · ·ΦT
N−1ΦN−1 · · ·Φ1Φ0

)
ξ[0]

= ξ[0]T Ψ(s)ξ[0] (19)

The resulting matrix Ψ(s) is then a function of the ordered system states during the
trajectory determined by the sequence s.

Likewise Equation (17), the initial state ξ[0] can be treated as a proportional constant
value also for the performance P (s). This means that an order between the performance of
different H/M sequences can be defined independently of the initial state. Motivated by this,
we select the norm of Ψ(s), defined as Π(s) = ||Ψ(s)||2, as a scalar performance index.

7.2 Bounding the Number of Steps
To bound the complexity of the analysis, a finite horizon approach is selected, with N steps
for the considered H/M sequences. Theoretically speaking, an exact performance analysis
should consider an infinite horizon: however, given an arbitrary small error, a limited number
of steps is sufficient to obtain a performance measurement.

As a lower bound, the value of N must never be less than the maximum window size K of
the weakly-hard constraints, in order to avoid pathological cases where the constraint is not
even completely defined on an input sequence. From a control perspective, it is important
that the resulting performance analysis is applied to a sufficiently long interval of control
steps, such that meaningful information can be extracted. For instance, the number of
control steps N should be sufficient to include the settling time of the step response of the
system. In general, the interval size must be carefully chosen to include the step response of
all the possible H/M sequences. As the global switching system is exponentially stable by
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hypothesis, following the results presented in [35], all the possible response dynamics of the
plant state can be upper-bounded by an exponential function. Thus, a safe upper bound for
N can be computed as the number of steps for which the exponential envelope converges
within a given error of the reference.

7.3 Worst-Case Performance
The worst-case performance can be computed as a function of the weakly-hard constraints of
the control task. In this paper, the performance is a quadratic error metric, and is therefore
formally a cost; for a true performance (positive) metric, the maximum in (20) (in the
following definition) should become a minimum.

I Definition 4 (Worst-Case Performance). Given a set Γ of weakly-hard constraints for the
control task and a number of steps N , the worst-case performance for Γ is the maximum
value of Π(s) provided by all sequences in the satisfaction set of Γ with length N , i.e.,

WCP (Γ, N) = max
s∈SN

Π(s). (20)

The normalized worst-case performance WCPn(Γ, N) is computed with respect to the
sequence sH of all hits and is defined as

WCPn(Γ, N) = WCP (Γ, N)
Π(sH) . (21)

Interestingly, the worst-case performance is not necessarily associated with the sequence that
has the largest number of deadline misses in the satisfaction set of Γ. Also, the proposed
analysis allows to discern the effects on the performance of the order of deadline misses in
the H/M sequence. Deadline misses in the early steps of the sequence s typically lead to
worse performance with respect to deadline misses that occur late in the sequence. This
behavior can intuitively be explained by the results derived by Yu and Zhang in [35]. In
Equation (17), the j-th extended state ξ[j] is computed as the result of the multiplication of
j matrices Φj . Early misses contribute to the first terms, e.g., with only two or four matrices
in the product. Since some matrices related to steps with missed deadlines can determine an
unstable steady-state system (i.e., operating modes in which the system can diverge) these
terms can result in a system that temporally tends to diverge from the control reference.
Otherwise, since a switching control system is stable when the norm of the asymptotic
multiplication of such matrices tends to zero, it is expected that longer terms (such as those
towards the end of Eq. (17) representing late events in the hit/miss sequence) tend to be
inherently more stable and contribute less to the dynamic (the unstable modes are dampened
due to the asymptotic stability).

7.4 State-Based Representation of the Performance
The last step of our analysis is creating a state machine where every vertex represents the
performance value of a H/M sequence of N control steps. For the sake of clarity, the states
of this machine will be denoted as P-states. The edges between vertexes represent one step
in the H/M sequence (hence a hit or missed deadline).

In the resulting P-state machine, it is possible to identify sets of sequences that lead to
various degrees of acceptable or poor performance. Performance monitors can be inserted
into the system for controlling (and possibly avoiding) transitions to a poor performance
sequence. This can be obtained by increasing the priority of the control task, shedding higher
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Figure 5 State machine representation of performance indexes for H/M sequences, for the case
with Γ = (1, 2) and N = 4. The vertexes in green are the best values for performance, the red ones
are undesirable values and the orange one is a sequence that may lead to an undesirable behavior.
The edges marked with a red X are unfeasible transitions.

Figure 6 Scheme of the Furuta inverted pendulum, as the plant model used in the case of study.

priority load, or switching to a less computationally expensive implementation. Interesting
information can also be extracted by analyzing the number of hits that are needed to recover
from sequences with poor performance. If an unacceptable sequence is found, the design of
the system must be changed in order to compensate this behavior. The solution can be, e.g.,
changing the control law parameters, or modifying some implementation strategies, such as
the task implementation or the deadline miss handling policy.

The resulting P-state machine is a powerful tool for the performance analysis or possibly
for the synthesis of runtime monitors controlling the evolution of the system and triggering
recovery actions when needed. An illustrative example of the P-state machine for performance
analysis is shown in Figure 5. Some transitions are marked with a red X and correspond
to transitions that should never occur because of the results of the weakly hard analysis.
The vertexes are colored differently following their performance values and critical P-states
leading to poor performance can be easily identified.

8 Case Study

In this section, the proposed methodology is applied to a case study, consisting of a small
rotary inverted pendulum (Furuta’s Pendulum [13]) as illustrated in Figure 6. The objective of
the control is to keep the pendulum in the upright position, which is an unstable equilibrium.
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Table 1 Numerical values for the parameters describing the Furuta pendulum.

Parameters Arm Pendulum Units Motor Units

m 0.4 0.02 kg kt 0.768 N · m/A

L 0.1 0.2 m ke 0.768 V · s/rad

l 0.06 0.1 m Rm 3.3 Ω
J 0.0018 2.67 · 10−4 kg · m2 Jm 0.0015 kg · m2

b 0.0004 0.005 kg/(m · s)

The geometry and mass properties of the system are described by the set of parameters
(Lp, lp, Jp, mp) and (Lr, lr, Jr, mr), which are the length, barycenter position, inertia and
mass of pendulum stick (index p) and arm (index r), respectively. The viscous damping on
the arm and pendulum joints have coefficients br and bp, respectively. The state vector of the
considered plant is defined as x = [θ, α, θ̇, α̇]T , where θ is the angular position of the arm and
α is the position of the pendulum with respect to the vertical. The controlled input voltage
drives an electric motor on the arm joint, producing a torque Λ. The equation relating
the voltage and the generated torque is Λ = (kt(Vm − kmθ̇))/Rm, where kt is the torque
constant of the motor, Vm is the voltage applied, ke is the back e.m.f constant, and Rm is
the resistance of the motor winding. The balancing control problem is considered, using a
model linearized in the neighborhood of the upward position of the pendulum arm. Under
the defined state vector, the following Linear Time Invariant (LTI) model [9] is obtained:

Ac =


0 0 1 0
0 0 0 1
0 m2

pL2
pLrg

Υ
Jp(−bm−br)

Υ
−mpLpLrbp

Υ
0 (Jr+mpL2

r)gmpLp

Υ
mpLrLp(−bm−br)

Υ
−(Jr+mpL2

r)bp

Υ

 , Bc =


0
0

Jpkt

Rm
mpLrLpkt

Rm


where bm = kekt/Rm and Υ = (Jr +mpL

2
r)Jp −m2

pL
2
rL

2
p.

Performing the discretization of the system, following Equations (3) and (4), using a
sample time Ti = 0.1s and deadline Di = 0.2Ti, and substituting the values with ones
provided in Table 1, the model can be expressed in the following numerical form:

Ad =


1.0000 0.0036 0.0188 −0.0007

0 1.2282 −0.0332 0.0503
0 0.0266 0.0081 −0.0032
0 3.7230 −0.2448 0.2794

 , Bd1 =


0.0381
0.0109
0.0261
−0.1006

 , Bd2 =


0.0666
0.0320
1.2539
0.4166


The control law used for this example is a stabilizing static feedback of the state with
constants Kd = [−1.4557, 62.8126,−2.0459, 2.7210].

Experimental Setup

The tests have been carried out covering all the possible combinations of hits and misses
that satisfy different (m,K) constraints, with an analysis horizon of N = 20 steps. For
the purposes of this case study, this value is sufficient to capture the main features of the
dynamics when different weakly-hard constraints are used. Both the job killed and job
continued strategies have been considered. The scheduling parameters (m,K) are computed
for K ∈ [5, 8] and m ∈ [1,K − 3], respectively. In order to study the evolution of the control
performance, for each strategy, the corresponding matrices Φk have been computed.
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Figure 7 Results related to the job continued strategy. Plots on the left: state trajectories for
the H/M sequence that leads to the worst-case performance under different (m, K) constraints. Plot
on the right: normalized worst-case performance for the considered configurations.

Experimental Results

The experiments produced a big volume of data, thus, for the sake of clarity and compactness,
only the most representative results have been represented and discussed here.

By considering different weakly-hard constraints (m,K), Figure 7 reports the trajectories
of the system in correspondence to the H/M sequence that originates the worst-case per-
formance. The figure also reports the normalized performance for each of the considered
constraints. The plots of the state trajectory (on the left) show that, fixed the window K, the
settling time and the width of possible oscillations (of the trajectory) increase as the number
of deadline misses m increases. Looking at the plot on the right, it is noticeable that the
worst-case performance is monotone with respect to the dimension of the scheduling window
K. In particular, note that for the same number of deadline misses, better performance can
be obtained for larger values of K. This can be explained by the fact that deadlines are to
be placed with a lower density.

Figure 8 shows the experimental results under the same configurations considered in the
previous figure but related to the job kill strategy. While it is possible to observe the same
monotonic trend of the performance with respect to parameter K, the value of the normalized
WCP is worse than the one obtained with the job continued strategy. As a matter of fact,
for the same constraint (m,K), the job killed strategy also shows worse trajectories in terms
of settling time and oscillations.

Also note that this strategy leads to unstable configurations (e.g., see the case for
(m,K) = (3, 6) in the figure), which tend to arise to the larger value of ∆max. The
performance value has also been computed for the particular cases of unstable systems only
for the purposes of comparison with the job continued strategy of Figure 7. These results pose
an interesting observation on the trade-offs between schedulability and performance analysis
for the tested system: while the job killed strategy can improve the system schedulability,
lowering the computational workload and possibly simplifying schedulability analysis, it
tends to provide worse performance. For this reason, we believe that the proposed analysis
framework may be valuable when facing with control-scheduling co-design activities.

ECRTS 2018



10:20 Beyond the Weakly Hard Model

0 1 2

0

10

20
A

n
g

le
 [

d
e

g
]

(m, K) = (1, 6)

0 1 2

0

10

20
(m, K) = (1, 7)

0 1 2

0

10

20
(m, K) = (1, 8)

0 1 2

0

10

20

A
n

g
le

 [
d

e
g

]

(m, K) = (2, 6)

0 1 2

0

10

20
(m, K) = (2, 7)

0 1 2

0

10

20
(m, K) = (2, 8)

0 1 2

time [s]

-20

0

20

40

A
n

g
le

 [
d

e
g
]

(m, K) = (3, 6)

0 1 2

time [s]

0

10

20
(m, K) = (3, 7)

0 1 2

time [s]

0

10

20
(m, K) = (3, 8)

1 2 3 4 5

m

0.5

1

1.5

2

2.5

3

3.5

4

lo
g

1
0
(W

C
P

n
)

WCPn((m,K),20)

K = 5

K = 6

K = 7

K = 8

Figure 8 Results related to the job killed strategy. Plots on the left: state trajectories for the
H/M sequence that leads to the worst-case performance under different (m, K) constraints. Plot
on the right: normalized worst-case performance for the considered configurations. The elements
marked with a "x" refer to unstable configurations.

9 Conclusions

We presented a new methodology to compute a state machine abstraction that allows to
relate the performance of a control application to a sequence of deadline hits and misses,
subject to weakly-hard constraints, in the execution of a control task updating a control
value. We show the possibility of computing the state machine by formal derivation assuming
knowledge of the deadline management policy, the LTI system and a simple performance
metric. The size of our state representation is constrained by leveraging worst case timing
analysis and assuming a finite time horizon.

Future work will include consideration of additional performance metrics and the possible
use of simulation techniques to compute the state abstraction when an analytical derivation
is not possible.
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