
HWP: Hardware Support to Reconcile Cache
Energy, Complexity, Performance and WCET
Estimates in Multicore Real-Time Systems
Pedro Benedicte1

Barcelona Supercomputing Center and Universitat Politècnica de Catalunya, Barcelona, Spain
pbenedic@bsc.es

https://orcid.org/0000-0003-1670-7783

Carles Hernandez2

Barcelona Supercomputing Center, Barcelona, Spain
carles.hernandez@bsc.es

https://orcid.org/0000-0001-5393-3195

Jaume Abella3

Barcelona Supercomputing Center, Barcelona, Spain
jaume.abella@bsc.es

https://orcid.org/0000-0001-7951-4028

Francisco J. Cazorla4

Barcelona Supercomputing Center and IIIA-CSIC, Barcelona, Spain
francisco.cazorla@bsc.es

https://orcid.org/0000-0002-3344-376X

Abstract
High-performance processors have deployed multilevel cache (MLC) systems for decades. In the
embedded real-time market, the use of MLC is also on the rise, with processors for future systems
in space, railway, avionics and automotive already featuring two or more cache levels. One of
the most critical elements for MLC is the write policy that not only affects several key metrics
such as performance, WCET estimates, energy/power, and reliability, but also the design of
complexity-prone cache coherence protocol and cache reliability solutions. In this paper we make
an extensive analysis of existing write policies, namely write-through (WT) and write-back (WB).
In the context of the real-time domain, we show that no write policy is superior for all metrics:
WT simplifies the design of the coherence and reliability solutions at the cost of performance,
WCET, and energy; while WB improves performance and energy results, but complicates cache
design. To take the best of each policy, we propose Hybrid Write Policy (HWP) a low-complexity
hardware mechanism that reconciles the benefits of WT in terms of simplifying the cache design
(e.g. coherence solution) and the benefits of WB in improved average performance and WCET
estimates as the pressure on the interconnection network increases. Guaranteed performance
results show that HWP scales with core count similar to WB. Likewise, HWP reduces cache
energy usage of WT, to levels similar to those of WB. These benefits are obtained while retaining
the reduced coherence complexity of WT, in contrast to high coherence costs under WB.

2012 ACM Subject Classification Computer systems organization → Parallel architectures,
Computer systems organization → Embedded systems, Computer systems organization → Real-
time systems, Computer systems organization → Dependable and fault-tolerant systems and
networks

1 Spanish Ministry of Education, Culture and Sports under the FPU grant FPU15/01394
2 MINECO and FEDER funds through grant TIN2014-60404-JIN
3 MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717
4 European Research Council under EU’s H2020 research/innovation programme (grant No. 772773)

© Pedro Benedicte, Carles Hernandez, Jaume Abella, and Francisco J. Cazorla;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 3; pp. 3:1–3:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbenedic@bsc.es
https://orcid.org/0000-0003-1670-7783
mailto:carles.hernandez@bsc.es
https://orcid.org/0000-0001-5393-3195
mailto:jaume.abella@bsc.es
https://orcid.org/0000-0001-7951-4028
mailto:francisco.cazorla@bsc.es
https://orcid.org/0000-0002-3344-376X
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

Keywords and phrases multilevel caches, real-time systems, multicores, WCET

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.3

Acknowledgements This work was partially funded by the Spanish Ministry of Economy and
Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excel-
lence. It also received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773).

1 Introduction

High-performance processors ubiquitously deploy several levels of cache (e.g. IBM POWER
9, Intel Core i7-based systems, and the ARM A Series). This emanates from the positive
impact that MLC have on overall system performance. However, MLC design is delicate,
not only because it involves high complexity when dealing with coherence, inclusion, and
miss policies (among other issues); but also because it can affect key metrics like cycle time,
energy/power (and hence temperature), and reliability.

In the real-time domain, the increase in computation needs of critical software across
all domains, is driving system designers towards the use of multicores, which necessarily
carry the use of MLC systems. For instance, the ARM big.LITTLE (automotive), the
Aeroflex Gaisler LEON4 (space), and the NXP T2080 (railway and avionics) architectures
comprise two or more levels of cache, the last of which is shared between cores. In addition
to average performance, MLC impacts noticeably other metrics specially sensitive to real-
time systems: worst-case execution time (WCET) estimates, i.e. guaranteed performance;
hardware reliability – particularly critical in the space domain and other harsh environments;
and complexity that affects compliance with safety standards (e.g. ISO26262 [17]).

The (cache) write policy determines how writes to lower (L1) cache levels, those closer
to the cores, are handled. Under write-through (WT), write operations are performed in
the lower cache and are forwarded to the higher (L2) cache level so that both caches hold
consistent data. With write back (WB), write operations are only performed in the lower level
cache, and the update of the next level is postponed until the cache lines containing the dirty
data is evicted from the lower level cache. The write policy impacts the write-miss policy
(write-allocate or not write-allocate), the cache coherence solution (e.g. in snooping-based
protocols the write miss policy determines – together with the inclusivity protocol – the
set of actions to take on a read/write to local and global data), and the reliability solution
(e.g. WT usually requires low-overhead parity in lower level caches and ECC in higher level
caches, whereas WB requires ECC in dL1 to keep the reliability of data not backed up in
L2). Due its remarkable impact on the overall MLC cache design, the write policy affects
metrics as important as guaranteed performance, energy/power, and reliability.

Interestingly, each write policy offers a different trade-off among the different metrics and
MLC complexity. Hence, the design of the write policy requires finding a balance between
them. The latter goes beyond a simple high-performance and real-time classification. Instead,
for a given area (e.g. real-time), the particular application domain defines the relevance of
each metric and hence, the write policy to use. For instance, in the space domain, due to
exposure to radiation, hardware reliability plays a much more important role than in railway.
Likewise, performance is much more relevant in automotive, where performance needs are
expected to increase by 100x in coming years [4], than in space. In this line, we make the
following main contributions:

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.3

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:3

1. We make an in-depth analysis of both write policies, WT and WB, with emphasis on
those metrics of relevance for real-time systems. WT simplifies coherence since most
updated data is always in L2, and reliability since the more costly ECC is only needed in
L2 with only parity being used in dL1. However, as the pressure on the interconnection
(NoC) increases – as a result of integrating more cores – the contention on the NoC
generated by writes under WT greatly reduces guaranteed performance (i.e. increases
WCET estimates). Further, WT increases energy consumption as each write accesses the
NoC and the larger L2. With WB, each write to dL1 does not result in accessing the NoC,
with considerable energy consumption reduction; and exceptional WCET reductions. Yet,
WB complicates coherence and reliability, increasing cache complexity.

2. We propose Hybrid Write Policy (HWP), a low-overhead mechanism that takes advantage
of the good properties of each policy. Building on WT, we attack its average and
guaranteed performance issues, with a mechanism that builds on shared/private data
classification hardware and applies WT to shared data and WB to private data. HWP
removes write-through operations on private data, which in general are the most accessed
data, while keeping it for shared data, so cache coherence can be managed as in pure
WT caches. At hardware level, in the the Memory Management Unit (MMU) or Memory
Protection Unit (MPU), HWP incurs negligible cost for tracking whether memory pages
are shared or private and other page properties such as read/write permissions.

3. We evaluate WCET estimation, reliability, energy consumption and coherence cost of
HWP. Our results show that for those scenarios in which tasks have limited data sharing,
HWP delivers performance similar to WB. Even when the percentage of shared data is as
high as 40% HWP remains competitive in all evaluated metrics (other works estimate the
percentage of shared data in multiprocessor programs ranges from 25% [13] to 17% [15]).
Overall, our design has a simplicity comparable to WT in terms of coherence, while
achieving average/guaranteed performance and energy consumption comparable to WB.

The rest of this paper is structured as follows. Section 2 introduces basic concepts of
MLC. Section 3 shows some of the main tradeoffs in the design of the cache write policy.
Section 4 details our proposal (HWP) in terms of average and guaranteed performance,
energy, reliability and coherence control. Section 5 provides empirical evidence of HWP
benefits on our evaluation framework. Section 6 presents the most relevant related works.
Section 7 summarizes the main conclusions of this work.

2 Background

When designing a multilevel cache hierarchy, see the illustrative example in Figure 4, there
are several design choices to be made, which are not independent of each other but quite
tightly correlated. In addition to the write policy we have.

With write allocate (WA), on a write miss data is fetched into cache, as it is the case for
read misses, and once fetched, the write operation occurs. With no-write allocate (nWA), on a
write miss the write operation is simply forwarded to the next cache level (or memory). Both
WT and WB can use either of these write-allocation policies, but we only consider WB-WA
and WT-nWA caches, since they are the most common choices. Though, our analysis can be
extended to other combinations.

The inclusivity of the lower cache levels into the upper cache levels (those closer to
memory), imposes that all contents in the lower level cache are also included in the upper
level cache. Hence, whenever a cache line is evicted from the upper level cache, all cache
lines in the lower level cache holding any of the contents of the cache line evicted in the

ECRTS 2018

3:4 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

upper level cache, are also evicted. Under an exclusivity approach, cache lines can be stored
only in one of the two levels involved. When a new cache line is fetched by the processor, it
is typically fetched into the lower level and removed from the upper level. When a cache
line is evicted from the lower level it is moved up to the next level. Finally, non-inclusive
caches are those where no constraint is imposed on whether cache lines are stored in upper
or lower cache levels. This is a common choice for instruction caches since they are typically
read-only and thus, cache lines can be simply removed on an eviction.

Snooping and directory-based approaches are the most commonly used ones for imple-
menting cache coherence in multicores. For a moderate number of cores, snooping is in general
the preferred mechanism because it is faster and much easier to implement and verify [28].
We use it as reference mechanism in this paper. We also assume a bus interconnect, although
other interconnect networks would also benefit from our solution. Under snooping, writes
can be handled in two different ways: write invalidate or write update. We focus on the
write-invalidate MESI (Modified, Exclusive, Shared, Invalid) protocol as one of the most
common that also supports write-back caches. We also cover a simple valid/invalid (V/I)
protocol, used for WT caches. Under MESI when a snoop write request arrives to cache, the
cache invalidates its own copy, if the cache has it. MESI distinguishes between data that is
shared (i.e. exists a copy of the same data in another dL1), exclusive (it only exists a copy in
the local dL1 and is clean), modified data (i.e. the data only exists in the local dL1 and it is
dirty), and invalid data. Coherence is often implemented on top of inclusive caches, so that
coherence can be checked in L2 and, only on a read/write request from a core that hits in L2,
the dL1 caches of the other cores might be accessed. Under WT with a simple V/I, coherence
is completely managed in L2 and, upon a shared cache line write request, it is immediately
invalidated in the dL1 caches of the other cores and the data is delivered right away. When
dL1 caches are WB and use MESI, on an L2 match a complex process is initiated to invalidate
the corresponding dL1 lines, which may be dirty. This stalls the requesting core, with the
L2 not accepting further requests until the current one is resolved. This occurs when the
potentially dirty line in the dL1 of another core is written back to L2 and invalidated. The
fact that accesses may be multi-cycle and non-pipelined to manage coherence imposes the
use of complex logic. This may increase design cost and additional power, while significantly
affecting critical circuit paths and limit operation frequency. Alternatively, the coherence
protocol can be handled at each dL1 cache and the interconnect. With this approach dL1
caches snoop the bus to monitor the activity from the other cores and cores have to expose
its activity to the interconnect. This removes the need for using inclusive caches but comes
at the expense of an increase in power and complexity in the on-chip interconnect. For
instance, in the absence of a shared medium ensuring the in-order delivery of core/memory
transactions is difficult [29].

Error correction codes such as single error correction double error detection (SECDED)
are inherently complex mechanisms that introduce some delay to encode/decode data. When
used in dL1 caches, SECDED can increase cache latency. To prevent so, complex logic is put
in place to recover a correct state if data is delivered to upper cache levels unchecked. For
L2 caches, SECDED can be more complex since their impact on performance – for instance
by making cache access to take an extra cycle – have relatively lower impact than for dL1
caches. When there is no need to correct errors in the dL1 cache, a simple parity mechanism
can be used instead of SECDED.

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:5

Table 1 Percentage of stores executed by the EEMBC Automotive and MediaBench suites.

EEMBC % EEMBC % MediaBench % MediaBench %
a2time 5% matrix 3% adpcm.d 13% mesa.m 12%
aifftr 18% pntrch 0% adpcm.e 14% mesa.o 14%
aifirf 8% puwmod 12% epic.d 6% mesa.t 9%
aiifft 18% rspeed 14% epi.e 5% mpeg2.d 10%
basefp 2% tblook 6% g721.d 8% pegwit.d 6%
bitmnp 11% ttsprk 4% g721.e 9% pegwit.e 6%
cacheb 16% gsm.d 3% pgp.d 5%
canrdr 15% gsm.e 3% pgp.e 13%
idctrn 8% jpeg.d 6% rasta 8%
iirflt 7% jpeg.e 10%

3 Tradeoffs in the Design of Cache Write Policy

MLC are one of the main hardware blocks in a multicore architecture devoted to improve
performance and reduce the energy/power profile of applications. MLC aim at rapidly and
efficiently satisfying data/instruction requests coming from the cores, while maintaining
the coherence (i.e. the particular value returned on a read), consistency (i.e. when data is
available), reliability (physical integrity) and more recently security (i.e. protection against
unwanted/unauthorized actions). The cache write policy, which handles write operations,
is at the core of the complexity of MLC since it has a direct impact on the design of
other policies. In this section we analyze the impact of WT and WB policies on reliability,
inclusivity, and coherence choices. We also analyze their impact on performance (average
and guaranteed), reliability, and energy/power. For the latter, the results obtained from
several controlled experiments are used as supporting argument.

3.1 Write-Through (WT)
Under WT, each store operation is sent to the L2 so it uses the NoC, which can significantly
increase the pressure on it. In the core, the store buffer decouples the commit (finalization)
of the stores so that they do not block the pipeline. To that end, once a store reaches the
commit/writeback stage, it updates dL1 and in parallel it is placed in the FIFO store buffer
allowing the execution to continue. The store is forwarded to L2 when it reaches the head of
the store buffer and there is available NoC bandwidth. The store buffer can significantly
mitigate the impact of stores in single-core architectures, but rapidly becomes insufficient in
multicore. This is better illustrated with an example: let us assume that a bus connects dL1
and L2 caches and each store operation uses it for k cycles. As long as the frequency of stores
is (on average) below 1/k, they will not significantly affect processor performance – unless
they are bursted which we do not assume in this simple example. However, in a multicore
architecture with Nc cores, as soon as the pressure in the bus increases, the actual duration
of a store becomes k ×Nc, i.e. k × (Nc − 1) cycles of contention and k cycles for the bus
access. In this scenario, stores become a performance issue as soon as their density reaches
1/(k ×Nc). As an illustrative example, Table 1 shows the percentage of store operations
executed by EEMBC and Mediabench benchmarks, see Section 5 for more details on the
experimental setup. The average percentage of stores is 9%. Further k ×Nc ∈ [15, .., 20] –
and hence it is higher than 1/9, for multicores with 4-8 cores. To make things worse, the
percentage of memory operations is growing in emerging data-intensive real-time applications,

ECRTS 2018

3:6 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

Core 0 Core 1 Core 2

Bus

L2

Ƭi Ƭj Ƭk

(a) Setup (b) Same duration (li = lj = lk) (c) Different duration (2 · li = lj = lk)

Figure 1 τi aBAT and wBAT as a function of its load and its contenders’ (τj and τk) load.

e.g. applications in cars managing data coming from different sensors such as radar, LIDAR,
and stereo cameras. Intuitively, this problem can be alleviated by using a crossbar between
the dL1 and the L2, at the expense of increased hardware cost. However, this would just
shift the problem from the bus to the L2 itself, since L2 access latency is longer than that of
the crossbar. Further, to preserve coherence, each store must be allowed to reach any part of
the entire L2 cache, which defeats any attempt to mitigate the problem by partitioning the
cache space.

The impact of WT on average performance due to NoC contention magnifies for guaranteed
performance, causing inflated WCET estimates. This comes from the fact that worst-case
time allowances must be done in the WCET estimates to factor in the impact of NoC
contention. In general, no assumption can be made on how the requests of the different
running tasks are interleaved in the use of the bus. The exception to this are some static
timing analysis techniques that keep track of the worst-time when each request from each
core can be issued, and hence are able to exactly determine how requests overlap in the
access to shared resources [22][14][21]. This, of course, comes at a significant cost, including
the increasing effort of making a cycle-accurate model of the MLC system and processor,
and increased analysis computation time. Further, this analysis, despite producing (in
general) tighter WCET estimates, makes them non time-composable so that any shift in
any task requires performing the WCET estimation for all tasks. Hence, to increase time
composability and reduce costs, worst-case assumptions are made on how tasks’ request
are aligned [25, 8, 19]. This is better illustrated with an example. Let us assume a bus
connecting the L2 to 3 cores (respectively executing tasks τi, τj , τk) and all bus requests
using the bus for the same duration l (shown in Figure 1 (a)). The best overlapping scenario
for average Bus Access Time (aBAT) happens when requests of the task under analysis (τi)
and the contender tasks (τj , τk, ...) do not overlap as long as the bus utilization of all tasks
is below 100%, and when the utilization goes over 100% the minimum overlap happens. For
instance if a τi uses the bus for 20% of the time and τj for 90% of the time, τi gets affected
only 10% of its time. The worst overlapping scenario for bus access time (wBAT) is assuming
that requests from τi arrive in the same cycle as the requests from the contender tasks, but
τi systematically gets the lowest priority. Figure 1(b) shows how worst-case BAT gets much
more affected than average BAT due to contention for different scenarios of bus utilization of
τi and its contenders. We see that wBAT is significantly affected even for low bus utilization.
For instance, for utilization ui = 20%, uj = 25%, uk = 25% for τi, τj , and τk respectively
(see red rectangle in Figure 1(b)), τi suffers no delay in the best case aBAT and in the worst
case it goes to 60% (a 2.4 increase). Further, typically store operations take shorter than
load operations accessing the cache (no need to wait for a response), which translates into a
scenario in which τi requests take shorter than its contenders’ request. We see in Figure 1(c),
for a scenario in which τi requests take half of its contenders, that the impact of contention

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:7

Performance
C

o
h
e
re

n
ce

 s
im

p
lic

it
y

Reliability cost
 reduction

 Po
w

e
r

e
ffi

cie
n
cy

Performance

C
o
h
e
re

n
ce

 s
im

p
lic

it
y

Reliability cost
 reduction

 Po
w

e
r

e
ffi

cie
n
cy

Performance

C
o
h
e
re

n
ce

 s
im

p
lic

it
y

Reliability cost
 reduction

 Po
w

e
r

e
ffi

cie
n
cy

Performance

C
o
h
e
re

n
ce

 s
im

p
lic

it
y

Reliability cost
 reduction

 Po
w

e
r

e
ffi

cie
n
cy

(a) WT (b) WB (c) HWP (d) Ideal

Figure 2 Visual comparison of the WT, WB and HWP for the different metrics discussed.

on WCET estimates increase. For instance, for utilization ui = 20%, uj = 25%, uk = 25%
for τi, τj , and τk respectively (see red rectangle in Figure 1(c)), τi suffers no delay in aBAT
but a 100% in the wBAT.

Continuous store accesses to the L2 cause performance and WCET degradation but can
also increase power consumption. Updating values with WT policy implies accessing the bus
and L2, even if the core updating the values is the only consumer of this data. This can have
a significant impact on the overall power consumption. For example, when running a2time
from the EEMBC automotive benchmark suite in our reference processor setup (see Figure 4
and Section 5.1), the 14% of the energy consumption comes from the bus and L2.

Under WT, reliability can be handled with reduced overhead. A usual tradeoff consists
of using only parity for error detection in dL1 caches, and (usually) apply it at double-word
level, that is, using 1 parity bit for 64 data bits (8 bytes). This results in low overhead of
around 1.6% (1/64). Furthermore, the operations needed to compute the parity (XOR) can
be carried out in parallel and hence are unlikely to affect cycle time. On a parity error,
however, hardware support is needed to squash the execution of the instruction that obtained
erroneous data and following instructions. On completion, error-free data is fetched from L2
and execution resumes. Alternatively, parity can be checked before delivering the data to
remove the need of squash logic. However, this would likely increase cache latency since XOR
gates to compute the parity bit may easily need an extra cycle. WT parity-protected dL1
caches are used in combination with SECDED-protected L2 caches. The latter is achieved
with ECC that carries an inherent area and logic for its implementation. Typically, SECDED
requires 8 code bits per 64 data bits (so ≈ 12.5% extra bits), with negligible impact on L2
performance, since although an additional cycle may be needed to deliver data corrected,
this operation is fully-pipelined. Hence, L2 latency may increase by 1 cycle, thus slightly
increasing the latency of dL1 read misses, which are generally scarce, but without affecting
L2 throughput. Note that on the event of detection of an error in dL1 in a given cache, it is
simply discarded and data is fetched from upper cache levels since a correct copy of the data
exists in L2 or beyond.

dL1 WT caches simplify coherence management. In particular, dL1 WT caches are made
inclusive L2. As a result, when shared data exists in data dL1 (dL1), up-to-date copies of the
data is also present in L2. Hence, coherence can be managed in L2 and, upon shared data
modifications, the corresponding cores’ dL1 caches receive (infrequent) invalidation requests.
With WT caches a simple invalidation protocol (V/I)) is enough.

Overall, WT can negatively affect average and worst performance – the latter more
intensely– and energy. On the positive side, it can be used with low-overhead coherence and
reliability solutions. These properties are summarized in Figure 2(a) in a qualitative manner,
with Figure 2(d) showing the ideal scenario.

ECRTS 2018

3:8 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

3.2 Write-Back (WB)
For low core counts, the small average performance improvement of WB over WT does not
compensate its additional validation and design costs. However, as the number of cores of
multicore real-time systems increases, WB becomes more attractive.

WB significantly reduces the number of bus and L2 accesses compared to WT. Furthermore,
since worst-case contention is quite proportional to the number of accesses, WCET estimates
are typically much lower with WB than with WT.

WB access count reduction to shared resources decreases the power consumed by those
resources. In our setup, the bus and L2 accounts on average for 13% of the system energy,
and hence reducing its utilization translates into a non-negligible energy reduction. Also,
the need for higher reliability in the data dL1 cache (dL1) increases the power used by the
system due to the extra bits and logic needed to implement, for instance, SECDED codes.
Finally, since invalidation operations due to shared data accesses may require invalidating
dirty lines in dL1, this may cause extra energy consumption to write data back to L2.

When WB is used in the dL1, the data most frequently updated/sensible can be spread
between multiple caches (the different dL1 caches and L2). In this scenario, error detection
in dL1 and error correction in L2 is not enough, since some data is only updated in dL1 and,
upon an error, it could be detected but not corrected. In this case, there are two possible
implementations of ECC in dL1, each one with its advantages and drawbacks:

Under Data delivery after correction data is read from dL1, then ECC checked (and
eventually data corrected), and finally data is delivered. Unfortunately, checking the
ECC code increases access latency by 1 cycle. While such operation can be pipelined,
thus not increasing dL1 utilization, the effective latency for data read increases.
Under Data delivery before correction data is read from dL1 and delivered as if it was
error-free. In parallel, ECC is checked and, upon an error detection, the affected instruction
and subsequent ones need to be squashed. Then, the execution can be resumed using the
corrected data. While such process has negligible impact in performance (radiation errors
occur only sporadically), the logic for squashing instructions and resuming execution may
be complex. However, such logic is analogous to that of WT caches when operating with
parity.

With WB caches V/I is not enough because data can be in another state apart from
valid or invalid, namely, modified state. Because of this, we will use MESI (an enhancement
over MSI) for WB caches. Maintaining cache coherence in multicores with WB dL1 caches
requires frequent accesses to other cores’ dL1 caches to verify whether shared data is there
and, eventually, retrieve them (if dirty) or invalidate them (if the ongoing access is a write or
data is not dirty). Depending on the inclusivity of the cache system, we find two possible
scenarios (exclusive caches are infrequent so we do not discuss them here):

Inclusive. In an inclusive cache system (the most convenient solution) the updated data
is in dL1 or L2, but L2 has all the tags. This means that all coherence requests can go to
L2, and only upon a match ask dL1 for the data it needs.
Non-inclusive. If the system is non-inclusive, there is no unique cache that “knows”
where all the data is. This means that any request for data has to be communicated to
all caches (all the private dL1 and L2), and any cache can answer with the data. This
complicates the coherence protocol design. Hence, we disregard this option.

Either case, whenever some data is requested and the L2 experiences a hit on shared
data, it must stall the request and block further L2 accesses. Then, the corresponding dL1
caches deliver the data if dirty. Since dirtiness in dL1 caches is not known a priori by the

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:9

Table 2 Commercial processors and their characteristics.

Processor Cores Freq. L1 WT? L1 WB?
ARM Cortex R5 1-2 160MHz Yes, ECC/parity Yes, ECC/parity
ARM Cortex M7 1-2 200MHz Yes, ECC Yes, ECC
Freescale PowerQUICC 1 250MHz Yes, ECC Yes, parity
Freescale P4080 8 1.5GHz No Yes, ECC
Cobham LEON 3 2 100MHz Yes, parity No
Cobham LEON 4 4 150MHz Yes, parity No

L2 cache, it must remain blocked long enough to allow the dirty data to be read from the
corresponding dL1 and be sent to L2. Then, the L2 can update its contents, deliver the data
and hence, serve the request. However, the complexity of the logic to manage all this process
synchronously and across multiple cycles and components may affect critical circuit paths,
which can carry a reduction of the operating frequency.

Figure 2(b) presents in a graphical manner the assessment we have done on WB. We
can see that while WT is better in reliability and coherence simplicity, it performs worse on
performance (both average and worst-case) and power.

3.3 Cache Write Policy in Some Commercial Architectures
To better illustrate the quandary chip vendors face when selecting the write policy, we have
analyzed the miss policy of several commercial processors5.

The ARM Cortex R5 [3] is a 1 (or 2) core processor that implements both WB and
WT in the dL1 cache, both with parity and ECC. This means that either policy can be
selected in a configuration register. The ARM Cortex M7 [1] is a low-performance processor.
Like the previous one, it implements both write policies in the dL1 cache, but it only has
ECC in the L2 cache. ARM acknowledges that using dL1 ECC may have an impact on
operating frequency due to the XOR trees for the ECC when getting the data from the
cache. Thus, depending on the particular chip implementation of the ARM IP processor we
might have to decrease maximum operating frequency or require two cycles to access the
dL1 to support ECC in the dL1 and have the possibility of recovering from errors in the
cache when WB is enabled. Hence, despite in general WB caches perform better the strong
reliability constraints in safety-critical systems and the associated overheads incurred due
to implementing ECC in WB caches makes chip vendors offer the users the possibility to
choose between WT/WB according to the needs of their application. However, this forces
chip vendors to carry with the effort and responsibility to implement and validate both.

The Freescale PowerQUICC [32] implements WB in the dL1 with parity and the L2 with
ECC. This lead to a system where not all cache bit-flips can be recovered. In that respect,
Freescale states that the probability of errors is so low that the target application domain
should accept the possibility of having “unrecoverable" errors.

The Cobham Gaisler LEON3 [12] is a dual-core running at 100MHz, with a 5 stage
in-order pipeline. It is designed for critical real-time systems, and implements WT in the
dL1 cache, so that reliability can be handled in L2 with more robust ECC. The LEON4 [10]
comprises with 4 cores running at 150MHz with a 7 stage pipeline. It has the same critical
real-time systems scope as its predecessor, and the same write policies in the dL1.

5 Core and frequency numbers have been obtained from specific processor implementations [36, 35, 26].

ECRTS 2018

3:10 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

WT has been widely implemented in the last level of private caches (mainly in dL1) due
to its simplicity (no need for reliability and simple coherence) and its acceptable single-core
performance. However, in future multi- and many-cores, the increased number of accesses to
shared resources will cause a dramatic increase in average execution time and the WCET
estimates. WB caches have performance and energy consumption benefits over WT in mid
to high core count processors. However, this performance comes at a complexity cost in the
coherence protocol mainly and, to a lower extent, in the reliability mechanisms.

4 Hybrid Write Policy (HWP)

HWP low-overhead approach addresses WT average and guaranteed performance issues
while reducing overheads w.r.t. WB. HWP eliminates the additional cost of coherence for
WB caches and, simultaneously, keeps WT operations limited to a small fraction of write
operations so that efficiency is close to that of WB caches, see Figure 2(c).

In order to reach its goals HWP builds on the following observations. First, cache
coherence management with WB caches is costly and complex because cache lines accessed
may reside dirty in local dL1 caches. Second, private data is not affected by cache coherence,
so conceptually it is irrelevant whether such data is dirty or not in dL1 caches. And third,
a significant percentage of memory data is only accessed by one processor (also in parallel
applications) and, thus, does not require keeping coherence (e.g. 75% of the access are
reported as private in [13] and around 83% in [15]).

From those observations, we design a new policy (HWP) that manages private data as in
WB caches and shared data as in WT caches. With HWP, memory contents are classified at
page granularity as either shared or private, which has been shown to be a very convenient
granularity for private/shared data classification [15, 6]. In particular, as long as a page
contains any shared data, it is (pessimistically) classified as shared. Otherwise, it is classified
as private. On a write to shared data, HWP writes it through to L2 cache (a la WT).
Meanwhile write operations to private pages are not propagated to L2 (a la WB), hence
decreasing contention in the access to L2.

Next, we discuss the key characteristics and implementation details of HWP, with emphasis
on how to classify data as private or shared (and the appropriate granularity to do so), how
to check whether data is shared or private to decide whether to proceed as in a WT or WB
cache, how cache coherence needs to be managed, what the reliability implications are, and
how contention in the access to L2 is mitigated.

4.1 Data Classification
Orthogonally to HWP, a mechanism is needed to classify data as private or shared. Techniques
exist to that end, with some of them [15] already integrated on a real hardware platform
(LEON3 processor) and Linux, providing evidence of its feasibility. Interestingly, private/share
data classification can be performed at different levels (e.g. cache line size).

Private/shared information can be managed at fine granularity (e.g. cache line level).
This would allow a much finer classification but at the cost of higher area and energy
overheads [15]. Additionally, performing the shared/private classification at page granularity
makes it possible using OS functionality to reduce hardware implementation overheads [6].

Ho et al. [15] and Cuesta et al. [6] show that the most convenient granularity to classify
data is page level. With this solution, whenever a piece of data is shared between two cores,
the whole page in which the data is is marked as shared. Hence, this solution pessimistically
assumes that all data in a shared page is shared. As part of that solution, the information on

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:11

Input
address

TAG
ARRAY

DATA
ARRAY

DATA OUTPUT

hit

mux mux mux mux

D
E
C
O
D
E
R

D

irtyn
ess in

fo

Input
data

Write through

S
/
P

Read /
Write

dTLB

dL1

Cycle 1

1. Blah blah blah
2. Blah blah blah
3. Blah blah blah

1. Blah blah blah
2. Blah blah blah
3. Blah blah blah

Cycle 2

COMPARATORS

Write back

O
n

 ch
ip

 in
terco

n
n

ect

Figure 3 Schematic of HWP cache access protocol.

private/share information can be stored in the Memory Protection Unit (MPU) or Memory
Management Unit (MMU) for each page along with other information such as whether pages
are user-level or supervisor-level, whether they are read/write or read-only, and whether
they are cacheable or not. Such information is often cached in the Translation Lookaside
Buffer (dTLB) together with address translation. In most processors dTLBs are accessed in
parallel with dL1 caches for fast address translation and for verification of the permissions to
read/write in specific memory pages. Hence, they can store private/shared information.

In real-time systems an alternative approach to those hardware approaches is possible with
software address space partitioning. Many OS use address spaces (i.e. a range of addresses) to
map specific I/O devices. Also RTOS like PikeOS use separate address spaces to implement
resource partition. Furthermore, in the automotive domain, AURIX architectures come
equipped with caches and different memory types (e.g. flash, ram). From the software
side, address ranges are defined to map data/instructions to the desired memory and or to
make data cacheable or non-cacheable. Hence, address space can be partitioned assigning a
particular address range to shared data.

The main disadvantage of dynamic hardware solutions is that data re-classification is
needed. This happens, for instance, when a page is first loaded by one core (hence classified
as private) and then accessed by another core (being reclassified as shared). This does
not only create predictability issues in real-time systems, but it also adds complexity to
HWP, including writing through all data (dL1 lines) of this page in the owner core, while
managed those same data with WB in the other cores. This complexity is avoided with the
classification based on software address partitioning, which is the solution we assume in this
paper, without loss of generality.

4.2 Private/Shared Data Management
The way in which data is accessed under HWP varies depending on whether data is shared
or private. This is graphically illustrated in Figure 3.

On a load/store access, the dL1 and the dTLB are accessed in parallel. In case of a dTLB
miss, it is served first before proceeding with the access, as done regularly in most processors.
Note that address translation is typically needed before accessing the L2. Therefore, while

ECRTS 2018

3:12 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

Table 3 Timing of a dL1 hit (dTLB hit) under HWP.

cycle 1 cycle 2

LOAD Read dL1, Read dTLB

STORE
Private Write dL1, Read dTLB Update dirtiness bit

Shared Write dL1, Read dTLB Write L2

hit

miss

serialization of dTLB misses and dL1 accesses may be unnecessary for some dL1 hits, dTLB
miss rates are usually extremely low, and their occurrence together with dL1 hits is even
more unlikely since this can only occur if data from the page has been fetched and sufficient
evictions occurred in the dTLB but not in the dL1.

4.2.1 Hit in dL1

In case of a dL1 hit (and dTLB hit), the shared/private information determines whether the
line hit needs to be marked as dirty or not. If the line belongs to a private page (S/P = 0)
and the access is a write operation (W/R = 1), the dirtiness bit is set. The separation of
data and dirtiness information poses no issue since dirtiness information can be accessed
systematically one cycle after, as it is only needed in case of a miss to decide whether the
evicted cache line needs being written back. Also, in case of dL1/dTLB hit, if the line belongs
to a shared page (S/P = 1) and the access is a write operation, data is written through L2
as in a regular WT MLC.

In terms of timing, Table 3 shows the different possible scenarios and their timing. After
the processor request, regardless of whether it is a read or a write, both the dL1 and the
dTLB are accessed in parallel. In the case of a read, at the end of the first cycle the data is
available and is served to the processor. In the case of a write, at the end of the first cycle
the dTLB determines whether it is a write to a shared or private page. If the store targets
a private page, the dirtiness bit is updated in the dL1 cache in the second cycle, and the
request is completed. However, if it is a write to a shared page, a write request is issued to
the L2.

4.2.2 Miss in dL1

On a dL1 miss, WT management is performed as for hits. However, if the miss corresponds
to a read operation (W/R = 0) or the address is private (S/P = 0), the line is fetched
from L2 and allocated in the dL1 data cache. Note that we assume the usual case where
WT implements no-write-allocate (nWA) policy on write misses, whereas WB implements
write-allocate (WA). Different write allocate policies could be implemented such as, for
instance, WA (or nWA) regardless of the privateness of the data accessed.

In Table 4 we see the different scenarios that can happen with a dL1 miss. In the first
cycle, both the dL1 and the dTLB are accessed in parallel. At the end of the cycle, if the
line to be evicted is dirty, the dL1 sends a dirty eviction request to the upper level. In the
load scenario, the next cycle (3 if the line was dirty, 2 if it was clean) the line is requested
to the L2. After n cycles, the cache line arrives to the dL1 and the data is be available. In
the case of a store private, it also requests the line to the L2. When the answer comes, it
updates the dL1 and update the dirty bit (allocate on private data). Finally, on a store to
a shared line, a request for the write is sent to the L2, and no update occurs in dL1 (no
allocate for shared data).

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:13

Table 4 Timing of a dL1 miss (dTLB hit) under HWP.

hit

miss

cycle 1 cycle 2 cycle 3 … cycle n+3

LOAD Read dL1, Read dTLB if dirty -> Eviction Request line L2 Read dL1

STORE
Private Write dL1, Read dTLB if dirty -> Eviction Request line L2 Write dL1, Update dirtiness bit

Shared Write dL1, Read dTLB if dirty -> Eviction Write L2

4.3 Non-Functional Metrics

This section makes a qualitative assessment of the benefits of HWP over WT and WB.
Quantitative comparisons are carried out in the Section 5.

Under HWP, shared data is consistently stored in L2, making that all shared data in dL1
caches is necessarily non-dirty. As a result, with HWP coherence is managed as in the case
of pure WT caches, hence keeping its low- cost and complexity benefits and avoiding the
overheads related to WB caches. With HWP V/I is enough, as for WT, because the shared
data will always be updated in a single place (L2), so we do not need a Modified state in the
dL1 to keep track of who has the most updated data.

Since shared contents are written through to L2, the fraction of dirty dL1 cache contents
is smaller than in pure WB caches. Yet some dL1 cache contents can be dirty. Hence,
error correction capabilities are still required in dL1, as in the case of pure WB caches. A
simple software solution to reduce the associated costs consists in marking the pages storing
error-sensitive data as shared. This way the only data that could be lost would be the private
one. However, for critical applications, the same reliability technique used in WT (SECDED
in dL1) can be used.

Under WT, performance issues relate to contention in the NoC and the L2 due to write-
through stores. With HWP, this problem is alleviated, restricting write throughs to stores
to shared data. Obviously, the lower the number of accesses to shared data, the lower the
number of WT operations, and hence, the lower the contention and the lower the sensitivity
to contention. In general, programs are designed to reduce access count to shared data
(25% [13] and 17% [15]), which usually carries a serialization of tasks.

In general, power consumption relates to the activity performed (dynamic power) and
execution time (static power). By limiting the number of WT operations, dynamic power is
reduced drastically w.r.t. pure WT designs. By reducing contention, execution time is also
lower than for pure WT designs, thus reducing static power.

Overall, our HWP hybrid cache design offers a globally better tradeoff than WB and
WT. This is illustrated in Figure 2(c). As shown, our design offers performance and power
close to that of WB, with similar reliability overheads, but much lower complexity for the
management of shared data. When compared against WT, coherence management cost is
identical, performance and power are much better, and only reliability costs are higher.

5 Evaluation

In this section we quantitatively assess the benefits of HWP over conventional write policies
(WT and WB). We use the metrics presented in previous sections, namely, guaranteed and
average performance, energy consumption, coherence overhead, and reliability.

ECRTS 2018

3:14 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

Figure 4 Block diagram of the main elements of our NGMP-based 8-core architecture.

Table 5 Benchmarks in EEMBC Automotive and MediaBench we use in this paper.

suite List of benchmarks
EEMBC a2time, aifftr, aifirf, aiifft, basefp, bitmnp, cacheb, canrdr
Auto idctrn, iirflt, matrix, pntrch, puwmod, rspeed, tblook, ttsprk
Media- adpcm.d, adpcm.e, epic.d, epic.e, g721.d, g721.e, gsm.d, gsm.e, jpeg.d, jpeg.e,
Bench mesa.m, mesa.o, mesa.t, mpeg2.d, pegwit.d, pegwit.e, pgp.d, pgp.e, rasta

5.1 Reference Architecture and Benchmarks
We use a simulation environment based on the cycle-accurate SoCLib [33] framework to
model the architecture of the Cobham Gaisler’s Next Generation Multipurose Processor
(NGMP), as a representative of current bus-connected multicore MPSoC. The main difference
lies in that we scale the number of cores from 1 to 8 in our experiments (See Figure 4) to
assess the impact on the different metrics, while the NGMP specifically features 4 cores. Each
processor implements a SPARC V8 architecture [11]. Each LEON4 core comprises seven
stages: fetch (F), decode (D), register access (RA), execution of non-memory operations
(Exe), dL1 access (M), Exceptions (Exc) and write back (WB). The execution units are
equipped with an integer and a floating-point unit (FPU). Each core has its own private
instruction (il1) and data (dL1) caches that are 16KB, 4-way with 32-byte lines. Processors
are connected by a shared on-chip round-robin arbitrated AHB processor bus to a shared L2
cache and memory. The shared second level (L2) cache is split among cores, each receiving
one way of the L2. All caches use LRU replacement policy.

We evaluate a large subset of the EEMBC automotive [27] suite comprising common critical
real-time applications in automotive systems and MediaBench [20] comprising embedded
applications such as multimedia and communications. The benchmarks we use from both
suites are listed in Table 5. We create several scenarios in which we vary the percentage of
accesses targeting the address range for shared data.

5.2 Energy
As presented in Section 3 each cache write policy carries side effects on the write-miss policy,
the reliability solution, inclusivity, and the coherence solution. This affects the set of activities
carried out by each task, the energy cost of each activity and hence the overall energy profile
of each task. Further, the complexity of each write policy varies which affects its ’intrinsic’
energy consumption.

We assess the energy usage under each policy using CACTI [24], the state-of-the-art
integrated model for cache and memory access time, cycle time, area, leakage and dynamic
power consumption, configured with the NGMP cache parameters. With CACTI we break-

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:15

(a) EEMBC (b) Mediabench

Figure 5 Average energy breakdown per cache access for EEMBC and Mediabench.

down the energy usage of each cache access into 5 components: dL1 access, dL1 reliability,
L2 access, L2 reliability, and coherence.

We present the average cache access energy consumption, across all EEMBC and Me-
diabench benchmark suites, in Figures 5 (a) and 5 (b) respectively. The difference across
individual programs in each benchmark are not relevant, and hence are not shown. We
compare WT, WB and HWP; and for the latter two, we assume three different scenarios
depending on the percentage of accesses to shared data: 5%, 10%, 20% and 40%. Note that
WT results do not depend on the percentage of shared data, since all writes go to L2.

We observe that the dL1 energy usage for an access is roughly the same for all write
policies. The difference in the energy of the dL1 reliability solution is small, with WT having
the lowest value due to the use of simple parity instead of ECC (used by WB and HWP).

We also observe that the lowest access energy profile is obtained for WB and HWT. In
the case of WB, there are few L2 accesses, since stores do not access L2 every time, while
the load access rate to the L2 is relatively low. HWP has a higher L2 access rate than WB
since it writes shared data directly to the L2.

On the coherence side, WB has an increased amount of coherence-related messages as
the shared data increases. Taking into account all components, WB and HWP consume
roughly the same energy per access for a given ratio of accesses to shared data. Both show
approximately a 42-50% per access energy reduction (depending on the percentage of shared
data) with respect to WT. To sum up, when comparing the different write policies on the
energy aspect, HWP has the same reduced energy consumption as WB compared to WT (up
to 50%), but without the coherence complexity inherent to WB, as presented in Section 4.

5.3 Guaranteed Performance
WCET estimation is one of the most critical metrics for real-time systems, since it determines
the guaranteed performance that the system can deliver. As presented before, WCET
estimation is challenged by the use of multicores due to contention delay suffered by tasks.

In order to assess the benefits on WCET estimate reduction of HWP, we have created
1-, 2-, 4- and 8-task workloads, as presented in Table 6. Workloads have been generated
using benchmarks from the EEMBC automotive suite (eembc1.X, eembc2.X) and from the
MediaBench suite (media1.X, media2.X). Across workloads, the first task in each workload,
the one for which WCET estimates are produced, comprise at least one benchmark with at
most a 5% of stores, and at least one benchmark with at least a 13% of stores. The rest of
the new benchmarks in the workload are selected randomly.

Modeling multicore contention is a concern for timing validation and verification as
witnessed by a notable amount of works on the topic, summarized in [9]. Many measurement-
based approaches – the most extended industrial practice – build on the availability of

ECRTS 2018

3:16 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

Table 6 Benchmark mixes used to assess WCET estimates under different core counts.

Mix main cont1 cont2 cont3 cont4 cont5 cont6 cont7
eembc1.1 bitmnp
eembc1.2 puwmod
media1.1 g721.d
media1.2 jpeg.d
eembc2.1 bitmnp a2time
eembc2.2 puwmod aifftr
media2.1 g721.d adpcm.d
media2.2 jpeg.d adpcm.e
eembc4.1 bitmnp a2time matrix rspeed
eembc4.2 puwmod aifftr idctrn ttsprk
media4.1 g721.d adpcm.d gsm.d pegwit.d
media4.2 jpeg.d adpcm.e g721.e pgp.d
eembc8.1 bitmnp a2time matrix rspeed tblook canrdr aifirf aifftr
eembc8.2 puwmod aifftr idctrn ttsprk basefp cacheb tblook ttsprk
media8.1 g721.d adpcm.d gsm.d pegwit.d g721.d pegwit.d gsm.e pgp.d
media8.2 jpeg.d adpcm.e g721.e pgp.d adpcm.e jpeg.d gsm.e adpcm.e

performance monitoring counters (PMCs) [23, 25, 7, 18, 8]. From those we build on [18]
since it captures the number of requests each core performs to the shared resources. This
results in partially time composable WCET estimates, rather than fully-time composable ones
that result from assuming that every single request of the task under analysis is delayed
regardless of the load contenders put on the shared resources.

We illustrate the model [18] with a small example comprising one task under analysis
or τa and a contender task or τb. When τb has more requests than τa, each request of τb is
assumed to delay the requests of τa. The worst-case contention that τb can cause on τa, i.e.
∆cont

b→a, is computed according to Equation 1, where nt
b is the number of τb requests of type

t and latt is the latency of that request type. Note that the model makes the worst case
assumption of no overlap of requests, so each τb’s request delays τa by its latency, i.e. latt.

∆cont
b→a =

∑
t∈T

min(na, n
t
b)× latt (1)

In our case the request types are T = {L2h, L2m, s2h, s2m} corresponding to loads hitting
and missing in the L2 cache, and stores hitting and missing in the L2 cache respectively,
which can be tracked with existing PMCs [11]. The corresponding latency of each of these
event type is [18] (in processor cyles): latL2h = 9, latL2m = 7, lats2h = 1, and lats2m = 1.

Note that it does not matter the type of τa requests but just it overall number na =∑
t∈T n

t
a. That is, the contention τa suffers depends on its total number of requests and the

number of requests of each type of its contenders (τb in this case). The model factors in the
case when τb has fewer accesses than τa that results in some τa requests not being delayed
by any request from τb. The approach presented in Equation 1 for τb is followed for all the
Nc− 1 tasks simultaneously running with τa, where Nc is the number of cores. The reader
is referred to [18] for more details.

Figure 6 shows the WCET estimate obtained for the first task under each cache write
policy. WCET estimates are shown as the number of cores varies from 1 to 8. In order
to simplify the comparison, all WCET estimates are normalized to the WCET estimate of

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:17

(a) 0% shared (b) 10% shared (c) 20% shared (d) 40% shared

Figure 6 Normalized WCET estimate for the first task in the workload under different core
counts and percentage of shared data for the different write policies.

the first task when run in isolation under WB. We see that in all cases the tightest WCET
estimates are obtained with WB. HWP obtains comparable results to those of WB and much
better than those for WT. The latter gets rapidly worse as the core count increases. Note
that Figures 6 (a), (b), (c), and (d) are not directly comparable, since for each figure WCET
estimates are normalized to that of WB when the task runs on isolation.

We also see that WT is not affected by the percentage of shared data, since it always
updates the L2 regardless if the data is shared or not. WB does not show meaningful
variations either, while HWP has small variations (mainly for eembc2 and media2). In all
cases HWP is significantly better than WT.

Across all shared-data scenarios for WT we can observe that:
Mix eembc2 suffers a significant increase in WCET estimates (more than 5x in the 8 core
configuration). This is due to the combination of memory instructions the program under
analysis executes (30% of all instructions) and the number of stores the competing tasks
have (9% of all instructions on average).
Mixes eembc1 and media2, have lower, yet significant, WCET increases (more than 2x
and 3x respectively). This is caused by the combination of the two metrics just mentioned
is lower than that of eembc2.
Finally, media1 has a small WCET estimate increase due to a lower number of memory
instructions executed by the main program (23%) and a lower percentage of stores in the
challenger tasks (6% on average).

WB is the write policy with lower WCET estimate performance penalty. WB causes a
small increase in WCET estimates even when we have 40% of data shared (higher than what
is usually found in parallel applications [13, 15]). This is so, because only data requested by
other cores is exchange via the bus.

HWP lies in between WT and WB, though it is much closer to WB. For eembc1 and
media1, the WCET estimate is remarkably low. This is also contributed by low percentage
of memory instructions combined with the low percentage of stores in the challenger tasks.
For eembc2 and media2, HWP suffers high increase in WCET estimates in the 40% shared
data scenario: despite HWP reduces the pressure on the bus, (i) the high percentage of share
data, (ii) the high percentage of memory instructions these benchmark mixes execute (30%
and 23% respectively), and (iii) the number of instructions that are stores in the competing

ECRTS 2018

3:18 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

(a) EEMBC (b) Mediabench

Figure 7 Number of broadcasts and write-backs per memory access.

tasks (8 and 9% respectively), cause the pressure on the bus to increase. Yet, HWP stills
performs better than WT, specially in high-core setups (4-8), where WT grows to 3-6x and
HWP only grows to less than 2x in the worst setups. The penalty difference with WB as
the number of cores and shared data increase is mainly due to the fact that all accesses to
shared data is sent to the L2 (write-through on shared data), without the need of another
core requesting the data. This means that the same core could write several times directly
to L2 without another core requesting the data in between.

To sum up, HWP obtains similar WCET estimates to WB, but significantly smaller
than WT (up to 5x) in multi-core setups. This difference in WCET estimates increases
significantly with the number of cores being used.

5.4 Coherence
The write policy impacts the selection of the coherence solution. With WT caches a simple
invalidation protocol V/I is enough, while for WB caches a more complex policy such as
MESI is required. For HWP, an invalidation protocol such as the one used in WT is enough.

The potential impact of the coherence protocol, in particular MESI, is two-fold. First,
the complexity of its design, implementation, and validation. And second, its impact on
performance since the number of messages to exchange between processors and the L2 cache
to maintain coherence.

Since the complexity has been qualitatively assessed in Sections 3 and 4, here we focus on
the number of messages that will be sent in every coherence protocol as a proxy to coherence
performance overheads. In particular we focus on the invalidation messages and the number
of write-backs caused because of coherence (not due to cache capacity issues).

Figure 7 shows the average number of coherence messages per memory access for EEMBC
(a) and Mediabench (b). We evaluate the 3 write policies: WT, WB and HWP; considering
5%, 10% and 20% of shared accesses in the last two policies. The number of invalidations in
WT is high in both benchmark suites because every write access requires that an invalidation
message is sent to the bus, since any other private cache can have a copy of the data. For
WB and HWP the number of invalidations is much smaller, since the cache directory tracks
the core having a copy of each cache line, and only shared data that actually is in private
caches will be invalidated.

The other coherence metric we analyze is the number of write-backs related to coherence,
which only happen for the WB policy. This occurs when a core c0 modifies some data in its
private dL1 and another core c1 wants to access that data. Since the L2 knows that c0 has
this data in a Modified state, the L2 asks c0 to write back the modified data to L2, and then

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:19

the L2 sends it to c1. In the WT policy, the L2 always has the most updated values, so there
are no write-backs due to coherence. Likewise, HWP only writes back private data, treating
shared data like WT, so there are no write-backs due to coherence either.

Note that while the trend for the coherence cost shown in this section is similar to that
of energy (Figure 5), the absolute values are not the same. This is so because the energy
cost of a write-back is higher than that of an invalidation. As a result, when comparing WT
to WB/HWP, the energy consumed in coherence is not that high as the number of messages
as shown in this section.

Overall, HWP offers the best of WT and WB in terms of coherence: it generates as little
invalidations as WB without the coherence related write-backs of WB.

5.5 Reliability
We assume that caches are able to detect and correct single-bit upsets (SBU), while multi-bit
upsets (MBU) may occur when their probability is high enough. We assume that solutions
such as word interleaving6 are applied so that a N-bit MBU becomes N SBUs. Hence, the
criteria to assess reliability consists of whether designs are able to detect and correct single-bit
errors. Note that such reliability criteria are already implemented in processors targeting the
highest criticality levels in the space [11] and automotive [2] domains.

Since in WT all the updated data is always in L2, only parity is required in dL1 to detect
single-bit errors given that correct data can be retrieved from L2. WB and HWP allow dirty
data in the dL1 cache, and thus they require error correction capabilities in dL1, such as
SEC-DED. The L2 cache always implements SEC-DED, since there can be dirty data at this
cache level when using all policies.

The difference in the reliability technique used in dL1 has limited impact on area. Parity,
used in WT, imposes a 1.6% increase in the number of cells needed (1 bit per 64-bit word),
as well as few XOR gates and a comparator. SEC-DEC, used in WB and HWP, increases
by 12.5% the number of cells (8 bits per 64-bit word), and also adds extra XOR gates and
comparators [16]. Note that the relative area of dL1 cache w.r.t. L2 cache is typically low,
and all write policies implement SEC-DED in L2, thus lowering the relative additional cost
of SEC-DED vs parity in dL1 when put in the context of the complete cache system.

This section complements the comparison that has been made in Sections 3 and 4.3.

6 Related Work

Relevant related works relate to WB caches and their use in real-time systems, private/
shared data classification mechanisms, models for computing WCET estimates for multi-core
contention, and the use of other hybrid techniques for high-performance computing.

Due to the recent interest in the use of WB caches for critical real-time systems, mainly
due to its potential increase in guaranteed performance, some works [34, 5] have studied
static WCET analyses of this write policy, since it is more challenging than for WT caches.
Authors in [34] propose an eviction-focused technique, analyzing for each cache miss if it
could result in a write-back in order to estimate the WCET. In a more recent work [5], a
new method has been proposed to complement the previous work by using a store-focused
technique. This method consists in checking whether a store may transform a currently

6 Interleaving K words at bit level ensures that bits of a given word, and hence protected with the same
parity/ECC code, are at a distance of at least K bits.

ECRTS 2018

3:20 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

clean line into dirty, and hence result in a write-back later on. Those techniques can be
retargeted to capture HWP to tighten WCET estimates over WB/WT. In this line, previous
works [31] also propose new cache systems that take into account shared/private data to
improve WCET estimates, but with more radical changes required in the architecture.

Regarding private/shared data classification, different methods and hardware designs
based on them have been proposed [13, 15]. Some authors [13] classify the different types
of cache access patterns, and use such classification to implement a specific distributed
cache design. Authors study the percentage of data that is private, shared/read-only and
shared/modified. In [15] the authors propose a dynamic classification of shared and private
pages. This technique needs some WB mechanism when a page changes its status from
private to shared. While this technique may also improve performance over WT, it also has
to deal with the coherence complexity of WB.

WCET estimate computation in multicores has been subject to intense study [23, 25, 7,
18, 8]. In [18, 8], the authors propose techniques for computing partially time composable
Execution Time Bounds for bus accesses based on the number of requests the contenders can
generate, regardless of when they access the bus. These technique provides tighter WCET
estimates than simpler fully time composable models that always assume the worst case on a
bus access. We have built on these techniques for WCET estimation.

Techniques for a hybrid approach on coherence management have been studied in high-
performance domains [30, 6]. In [30], the authors implement a similar technique to [15]
that dynamically changes the status of memory pages from private (default) to shared when
they are accessed by more than one core. In [6], the authors propose a similar technique to
differentiate private and shared pages at OS level, thus reducing the size of cache directories
since they do not need to keep track of private lines. However, in these works there is still a
non-trivial coherence mechanism with transient states, while our proposal targets a simpler
(static) coherence mechanism.

7 Conclusions

The relentless trend towards the adoption of multilevel caches in real-time systems is a
fact, in the line of high-performance systems. Our analysis of the write miss policy shows
that WT simplifies coherence and reliability, while WB performs better in performance and
energy. From the analysis we propose a new Hybrid Write Policy (HWP) that discriminates
among shared and private data to smartly write through dL1 data or keep it dirty in dL1.
Experimental results show that HWP results in remarkably better guaranteed performance
than WT. HWP results for energy consumption per memory access improve those of WT.
In terms of complexity of the coherence protocol, HWP implements a simple Valid/Invalid
protocol like WT, compared to the complex MESI protocol used in WB.

References
1 ARM. ARM Cortex-M7 processor. http://infocenter.arm.com/help/topic/com.arm.

doc.ddi0489b/DDI0489B_cortex_m7_trm.pdf.
2 ARM. Arm cortex-r series processors specification. http://infocenter.arm.com/help/

topic/com.arm.doc.set.cortexr/index.html.
3 ARM. ARM Cortex R5 technical reference manual. http://infocenter.arm.com/help/

topic/com.arm.doc.ddi0460d/DDI0460D_cortex_r5_r1p2_trm.pdf.
4 ARM. ARM expects vehicle compute performance to increase

100x in next decade. https://www.arm.com/about/newsroom/

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0489b/DDI0489B_cortex_m7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0489b/DDI0489B_cortex_m7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460d/DDI0460D_cortex_r5_r1p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460d/DDI0460D_cortex_r5_r1p2_trm.pdf
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php

P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:21

arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.
php, 2015.

5 T. Blaß, S. Hahn, and J. Reineke. Write-back caches in WCET analysis. In ECRTS, 2017.
6 B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato. Increasing the effectiveness

of directory caches by deactivating coherence for private memory blocks. In ISCA, 2011.
7 D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee. Response time

analysis of COTS-based multicores considering the contention on the shared memory bus.
In IEEE TrustCom, 2011.

8 E. Díaz, M. Fernández, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and F. J. Cazorla.
MC2: Multicore and cache analaysis via deterministic and probability jitter bounding. In
ADA-Europe, 2017.

9 G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J. Cazorla.
Contention in multicore hardware shared resources: Understanding of the state of the art.
In WCET Workshop, 2014.

10 Cobham Gaisler. LEON4-N2X data sheet and user’s manual. http://www.gaisler.com/
doc/LEON4-N2X-DS.pdf.

11 Cobham Gaisler. NGMP preliminary datasheet version 2.1. http://microelectronics.
esa.int/gr740/LEON4-NGMP-DRAFT-2-1.pdf.

12 Cobham Gaisler. UT699 32-bit fault-tolerant SPARC V8/LEON 3FT processor data sheet.
http://www.gaisler.com/doc/gr712rc-datasheet.pdf.

13 N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: near-optimal
block placement and replication in distributed caches. In ISCA, 2009.

14 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core
processors with shared instruction caches. In RTSS, 2009.

15 N. Ho, I. I. Ashraf, P. Kaufmann, and M. Platzner. Accurate private/shared classification
of memory accesses: a run-time analysis system for the LEON3 multi-core processor. In
DATE, 2017.

16 M. Y. Hsiao. A class of optimal minimum odd-weight-column SEC-DED Codes. In IBM
Journal of Research and Development, 1970.

17 International Organization for Standardization. ISO/DIS 26262. Road Vehicles – Func-
tional Safety, 2009.

18 J. Jalle, M. Fernandez, J. Abella, J. Andersson, M. Patte, L. Fossati, M. Zulianello, and F. J.
Cazorla. Bounding resource contention interference in the next-generation microprocessor
(NGMP). In ERTS, 2015.

19 H. Kim, Dionisio de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding
memory interference delay in COTS-based multi-core systems. In RTAS, 2014.

20 Chunho Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A tool for evaluating
and synthesizing multimedia and communications systems. In MICRO, 1997.

21 B. Lesage, D. Hardy, and I. Puaut. Shared data caches conflicts reduction for WCET
computation in multi-core architectures. In RTNS, 2010.

22 Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing analysis of concur-
rent programs running on shared cache multi-cores. In RTSS, 2009.

23 T. Moseley, J. L. Kihm, D. A. Connors, and D. Grunwald. Methods for modeling resource
contention on simultaneous multithreading processors. In IEEE ICCD, 2005.

24 N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi. CACTI 6.0: A tool to under-
stand large caches. In HP Tech Report HPL-2009-85, 2009.

25 J. Nowotsch, M. Paulitsch, D.B. Uhler, H. Theiling, S. Wegener, and M. Schmidt. Multi-
core interference-sensitive WCET analysis leveraging runtime resource capacity enforce-
ment. In ECRTS, 2014.

ECRTS 2018

https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
http://www.gaisler.com/doc/LEON4-N2X-DS.pdf
http://www.gaisler.com/doc/LEON4-N2X-DS.pdf
http://microelectronics.esa.int/gr740/LEON4-NGMP-DRAFT-2-1.pdf
http://microelectronics.esa.int/gr740/LEON4-NGMP-DRAFT-2-1.pdf
http://www.gaisler.com/doc/gr712rc-datasheet.pdf

3:22 Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET

26 NXP. MPC8245 integrated processor hardware specifications. https://www.nxp.com/
docs/en/data-sheet/MPC8245EC.pdf.

27 J. Poovey. Characterization of the EEMBC Benchmark Suite, 2007.
28 A. Roca, C. Hernandez, M. Lodde, and J. Flich. Area-efficient snoopy-aware NoC design

for high-performance chip multiprocessor systems. In Computers & Electrical Engineering,
2015.

29 S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient unicast and multicast support
for CMPs. In MICRO, 2008.

30 A. Ros and S. Kaxiras. Complexity-effective multicore coherence. In PACT, 2012.
31 M. Schoeberl. Time-predictable cache organization. In STFSSD, 2009.
32 Freescale Semiconductor. MPC8548E PowerQUICC III integrated processor hardware spe-

cifications. http://cache.freescale.com/files/32bit/doc/data_sheet/MPC8548EEC.
pdf.

33 SoCLib. The soclib project. http://www.soclib.fr/trac/dev.
34 T. Sondag and H. Rajan. A more precise abstract domain for multi-level caches for tighter

WCET analysis. In RTSS, 2010.
35 STMicroelectronics. STM32F756xx datasheet. http://www.st.com/content/ccc/

resource/technical/document/datasheet/fb/d4/56/db/60/61/4f/9c/DM00166114.
pdf/files/DM00166114.pdf/jcr:content/translations/en.DM00166114.pdf.

36 Texas Instruments. TMS570LS09x/07x 16/32-Bit RISC flash microcontroller. http://www.
ti.com/lit/ug/spnu607/spnu607.pdf.

https://www.nxp.com/docs/en/data-sheet/MPC8245EC.pdf
https://www.nxp.com/docs/en/data-sheet/MPC8245EC.pdf
http://cache.freescale.com/files/32bit/doc/data_sheet/MPC8548EEC.pdf
http://cache.freescale.com/files/32bit/doc/data_sheet/MPC8548EEC.pdf
http://www.soclib.fr/trac/dev
http://www.st.com/content/ccc/resource/technical/document/datasheet/fb/d4/56/db/60/61/4f/9c/DM00166114.pdf/files/DM00166114.pdf/jcr:content/translations/en.DM00166114.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/fb/d4/56/db/60/61/4f/9c/DM00166114.pdf/files/DM00166114.pdf/jcr:content/translations/en.DM00166114.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/fb/d4/56/db/60/61/4f/9c/DM00166114.pdf/files/DM00166114.pdf/jcr:content/translations/en.DM00166114.pdf
http://www.ti.com/lit/ug/spnu607/spnu607.pdf
http://www.ti.com/lit/ug/spnu607/spnu607.pdf

	Introduction
	Background
	Tradeoffs in the Design of Cache Write Policy
	Write-Through (WT)
	Write-Back (WB)
	Cache Write Policy in Some Commercial Architectures

	Hybrid Write Policy (HWP)
	Data Classification
	Private/Shared Data Management
	Hit in dL1
	Miss in dL1

	Non-Functional Metrics

	Evaluation
	Reference Architecture and Benchmarks
	Energy
	Guaranteed Performance
	Coherence
	Reliability

	Related Work
	Conclusions

