Consistent Distributed Memory Services:
Resilience and Efficiency

Theophanis Hadjistasi
University of Connecticut, Storrs CT, USA
theo@uconn.edu

Alexander A. Schwarzmann
University of Connecticut, Storrs CT, USA
ass@uconn.edu

—— Abstract

Reading, ’Riting, and 'Rithmetic, the three R’s underlying much of human intellectual activity,
not surprisingly, also stand as a venerable foundation of modern computing technology. Indeed,
both the Turing machine and von Neumann machine models operate by reading, writing, and

computing, and all practical uniprocessor implementations are based on performing activities
structured in terms of the three R’s. With the advance of networking technology, communica-
tion became an additional major systemic activity. However, at a high level of abstraction, it
is apparently still more natural to think in terms of reading, writing, and computing. While
it is hard to imagine distributed systems—such as those implementing the World-Wide Web—
without communication, we often imagine browser-based applications that operate by retrieving
(i.e., reading) data, performing computation, and storing (i.e., writing) the results. In this art-
icle, we deal with the storage of shared readable and writable data in distributed systems that
are subject to perturbations in the underlying distributed platforms composed of computers and
networks that interconnect them. The perturbations may include permanent failures (or crashes)
of individual computers, transient failures, and delays in the communication medium. The focus
of this paper is on the implementations of distributed atomic memory services. Atomicity is
a venerable notion of consistency, introduced in 1979 by Lamport [35]. To this day atomicity
remains the most natural type of consistency because it provides an illusion of equivalence with
the serial object type that software designers expect. We define the overall setting, models of
computation, definition of atomic consistency, and measures of efficiency. We then present al-
gorithms for single-writer settings in the static models. Then we move to presenting algorithms
for multi-writer settings. For both static settings we discuss design issues, correctness, efficiency,
and trade-offs. Lastly we survey the implementation issues in dynamic settings, where the uni-
verse of participants may completely change over time. Here the expectation is that solutions are
found by integrating static algorithms with a reconfiguration framework so that during periods of
relative stability one benefits from the efficiency of static algorithms, and where during the more
turbulent times performance degrades gracefully when reconfigurations are needed. We describe
the most important approaches and provide examples.

2012 ACM Subject Classification Networks — Cloud computing,General and reference — Sur-
veys and overviews

Keywords and phrases Atomicity, shared-memory, read/write objects, fault-tolerance, latency
Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.1

Category Invited Paper

© Theophanis Hadjistasi and Alexander A. Schwarzmann;
37 licensed under Creative Commons License CC-BY
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).

Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Déaniel Marx, and Donald Sannella;
Article No. 1; pp. 1:1-1:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:theo@uconn.edu
mailto:ass@uconn.edu
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2

Consistent Distributed Memory Services: Resilience and Efficiency

1 Introduction

Shared storage services are located at the core of most information-age systems. Shared
memory systems surveyed in this work provide objects that support two different access
operations. That is, a read, that obtains the current value of the object, and a write that
replaces the old value of the object with a new one. To be useful, such objects need to be
resilient to failures and perturbations in the underlying computing medium, and must be
consistent in that there are guarantees regarding relationships between previously written
values and the values read by subsequent read operations. Such resilient and consistent object
are also called registers. Here we focus on read/write objects, however for objects with more
complicated semantics, such as transactions or read-modify-write operations, there exist
common implementation challenges that any distributed storage system faces and needs to
resolve. Imagine a storage system that is implemented as a central server. The server accepts
client requests to perform operations on its data objects and returns responses. Conceptually,
this approach is simple, however, two major problems can already be observed. The first is
that the central server is a performance bottleneck. The second is that the server is a single
point of failure. The quality of service in such an implementation degrades rapidly as the
number of clients grows, and the service becomes unavailable if the server crashes (imagine
how inadequate a web news service would be were it implemented as a central server). Thus
the system must be available. This means it must provide its services despite failures within
the scope of its specification, for example, the system must be able to mask certain server
and communication failures. The system must also support multiple concurrent accesses
without imposing unreasonable degradation in performance. The only way to guarantee
availability is through redundancy, that is, by using multiple servers and by replicating the
contents of objects among these servers.

Replication introduces the challenge of ensuring consistency. How does the system record
new values so that consequently the it can find and return the latest value of a replicated
object? This problem was not present with a central server implementation: the server
always contains the latest value. In a replicated implementation, one may attempt to consult
all replicas in search of the latest value, but this approach is expensive and not fault-tolerant
as it assumes that all replicas are accessible. A trivial solution would be in each operation to
consult all replicas servers in search of the latest value, however, this is not fault-tolerant (as
it assumes all replicas are accessible) and expensive. In any case, none of the implementation
issues should be a concern for the clients of the distributed memory service. What the clients
should expect to see is the illusion of a single-copy object that serializes all accesses so that
each read operation returns the value of the preceding write operation, and that this value is
at least as recent as that returned by any preceding read. More generally, the behavior of
the object, as observed externally, must be consistent with the abstract sequential data type
of the object, and in developing applications that use such objects the clients must be able
to rely on the abstract data type of the object. This notion of consistency is formalized as
atomicity [35] for read/write objects, and equivalently, as linearizability [32] that extends
atomicity to arbitrary data types. While there is no argument that atomicity is the most
convenient notion of consistency, we note that weaker notions have also been proposed and
implemented, motivated primarily by efficiency considerations. Atomicity provides strong
guarantees, making it more expensive to provide than weaker consistency guarantees [7].
We take the view that it is nevertheless important to provide simple and intuitive, be it
more expensive, atomic consistency. Barbara Liskov, a Turing Prize laureate, in a keynote
address (at [37]) remarked that atomicity is not cheap, however, if we do not guarantee it,
this creates headaches for developers.

T. Hadjistasi and A. A. Schwarzmann

Contemporary storage systems may also provide more complex data access primitives
implementing atomic read-modify-write operations. Such access primitives are much stronger
than separate read and write primitives we consider in this work. Implementing such opera-
tions is expensive, and at its core requires atomic updates that in practice are implemented
by reducing parts of the system to a single-writer model (ex., Microsoft’s Azure [10]), by
depending on clock synchronization hardware (ex., Google’s Spanner [13]), or by relying
on complex mechanisms for resolving event ordering such as vector clocks (ex., Amazon’s
Dynamo [15]). Our exposition of atomic read/write storage illustrates challenges that are
common to all distributed storage systems.

Document structure. Section 2 describes the general distributed setting for implementing
consistent shared memory services, defines atomic conistency, and describes the measures
of efficiency. In Sections 3 and 4 we present several approaches that implement consistent
shared memory in static services for the SWMR and the MWMR setting respectively. Lastly,
we survey several approaches for providing consistent shared memory in dynamic systems in
Section 5. We conclude with a discussion in Section 6.

2 Distribution and Consistency

We now describe a general distributed setting for implementing consistent shared memory
services.

Modeling distributed platforms. We model the system as a collection of interconnected
computers, or nodes, that communicate by sending point-to-point messages. Each node
has a unique identifier from some well-ordered set Z, local storage, and it can perform
local computation. A node may fail by crashing at any point of the computation. The
time of failure is chosen by and adversary that has knowledge of the past computation and
the algorithms implementing a particular distributed service. Any node that crashes stops
operating: it does not perform any local computation, it does not send any messages, and
any messages sent to it are not delivered. Common approaches to implementing resilient in
the face of failures algorithm specify failure models that provide qualitative or quantitative
restrictions on the power of adversaries, e.g., by limiting the adversary to causing at most f
crashes for some algorithm-specific parameter f.

The system is asynchronous, and the nodes have no access to a global clock or synchroniz-
ation mechanisms. This means that relative processing speeds at the nodes can be arbitrary,
and that the nodes do not know the upper bound on time that it takes to perform a local
computation. The message delays can also be arbitrary, and the nodes do not know bounds
on message latency (although such bounds may exist). Thus algorithms may not rely on
assumptions about global time or delays.

We assume that messages can be reordered in transit, however, the messages cannot be
corrupted, duplicated, or generated spontaneously. If a message is received then it must
have been previously sent. The messages are not lost, but message loss can be modeled as
long delays (we do not address techniques for constructing more dependable communication
services, e.g., by using retransmission or gossip).

The nodes with ids in the set Z include a set of writers W, a set of readers R, and a set
of replica servers S. These sets need not be disjoint, but it is helpful to view separately the
roles a participant in the service can play. We categorize a distributed networked system as
either static or dynamic as follows. In the static system the set of participating nodes is fixed,

1:3

ICALP 2018

1:4

Consistent Distributed Memory Services: Resilience and Efficiency

and each node may know the identity of all participants; crashes (or voluntary departures)
may remove nodes from the system. Static algorithms are commonly designed to tolerate up
to f < |S|/2 server crashes and arbitrary number of crashes among readers and writers. In
the dynamic system the set of nodes may be unbounded, and the set of participating nodes
may completely change over time as the result of crashes, departures, and new nodes joining.
The failure models considered in dynamic settings are much more complicated, given the
systems may dramatically evolve over time.

Distributed shared memory and consistency. A distributed shared memory service emu-
lates a shared memory space comprised of readable and writable objects, often called registers,
over a networked platform that where distributed nodes communicate by message passing.
Service implementations use replication to ensure survivability and availability of the objects,
but the service makes this invisible to the clients. The contents of each object is replicated
across several servers or replica hosts. Clients invoke read and write operations on the objects,
where the clients that perform read operations are called readers, and those that perform
write operations are called writers (a client may be both a reader and a writer).

In response to client requests the service invokes a protocol that involves communication
with the replica hosts. This protocol implements and determines the consistency guarantees
of the memory system. Atomic consistency definition involves “shrinking” the duration
of each operation in any execution to a chosen serialization point between the operation’s
invocation and response, and requiring that the ordering of the operations according to the
serialization points preserves their real-time ordering, and the resulting behavior of the object
is consistent with its sequential specification. In particular, if a read is invoked after a write
completes, then the read is guaranteed to return either the value of that write, or a value
written by subsequent write that precedes the read. Additionally, if a read is invoked after
another read completes, it returns the same or a “newer” value than the preceding read.

Whereas atomicity is often defined in terms of an equivalence with a serial memory, the
definition given below implies this equivalence (as shown in in Lemma 13.16 in [39]), and is
more convenient to use because it provides a usable recipe for proving atomic consistency.

» Definition 1 (Atomicity, [39]). An implementation of an object is atomic, if for any
execution if all the read and write operations that are invoked on an object complete, then
the read and write operations for the object can be partially ordered by an ordering <, so
that the following conditions are satisfied:

Al. The partial order is consistent with the external order of invocations and responses,
that is, there do not exist read or write operations m; and 7 such that m; completes
before 7y starts, yet mo < 7.

A2. All write operations are totally ordered and every read operation is ordered with respect
to all the writes.

A3. Every read operation ordered after any writes returns the value of the last write preceding
it in the partial order; any read operation ordered before all writes returns the initial
value.

Efficiency, Rounds and Message Exchanges. In assessing the efficiency of read and write
operations of an implementation, we measure communication latency, local computation time,
and message complezity of operations.

Communication latency of an operation is measured in terms of communication rounds or
communication exchanges. The protocol implementing each operation involves a collection of
sends of typed messages and the corresponding receives. A communication round is defined
following [17].

T. Hadjistasi and A. A. Schwarzmann

» Definition 2 (Communication Round, [17]). A process p performs a communication round

during an operation 7 in an execution of an implementation A if all the following hold:

1. process p sends message(s) for operation 7 to a set of processes Z C T,

2. upon the delivery of the message for m to process ¢, ¢ € Z, q sends a reply for 7 to p
without waiting for any other messages, and

3. when p receives the collection of replies that is deemed sufficient by the implementation,
it terminates the round. After this either p starts a new round or 7 completes.

A communication exchange is defined in [30].

» Definition 3 (Communication Exchange, [30]). Within an execution of an implementation
A, a communication exchange is the set of sends and corresponding matching receives for a
specific type of message within the protocol.

We can observe that a round in Definition 2 is composed of two exchanges: the first is
comprised of sends in item (1) and the corresponding receives in item (2), and the second is
comprised of the reply sends in item (2) and the corresponding receives in item (3). Thus, in
essence each exchange constitutes “one half” of a round. Traditional implementations in the
style of ABD are structured in terms of communication rounds, cf. [5, 26], each consisting
of two exchanges. The first is a broadcast from a reader or writer process to the servers,
and the second is a convergecast in which the servers send corresponding responses to the
initiating process.

Computation time accounts for all local computation within an operation; here time
complexity of local computation may be significant. When local computation is not more
than a constant time per each message send and receive, we consider this to be insignificant
relative to the communication latency of an operation. Otherwise, computation time needs
to be assessed in addition to communication latency.

Message complexity of an operation is determined by the worst case number of messages
sent during the operation.

3 SWMR Implementations

Algorithms designed for single-writer static settings assume a fixed set known participants
and accommodate some dynamic behaviors, such as asynchrony, transient failures, and
permanent crashes within certain limits. A summary of the most relevant results for this
setting is given in the first part of Table 1.

We commence by presenting the the seminal work of Attiya, Bar-Noy, and Dolev [5]
that provides an algorithm, colloquially referred to as ABD, that implements SWMR atomic
objects in message-passing crash-prone asynchronous environments. This work won the
Dijkstra Prize in 2011. In ABD replication helps achieve fault-tolerance and availability, and
the implementation replicates objects at nodes in the set S, called servers, and it tolerates f
replica servers crashes, provided a majority of replicas do not fail, i.e., |S| > 2f. Read and

write operations are ordered using logical timestamps associated with each written value.

These timestamps totally order write operations, and therefore determine the values that

read operations return. All operations terminate provided a majority of replicas do not crash.

A pseudocode for ABD is given in Algorithm 1; in referring to the numbered lines of code
we use the prefix “L.” to stand for “line”. Write operations involve a single communication
round-trip consisting of two communication exchanges. The writer broadcasts its request to
all replica servers during the first exchange and terminates once it collects acknowledgments
from some majority of servers in the second exchange (L19-23). Each read operation takes
two rounds involving in four communication exchanges. The reader broadcasts a read request

1:5

ICALP 2018

1:6

Consistent Distributed Memory Services: Resilience and Efficiency

Table 1 Model, Communication Exchanges, Message Complexities, Participation Bounds, and
Predicate Computational Class.

‘Write Read Wrt Msg Rd Msg Client Local
Algorithm Model | Exch. Exch. Comp Comp Participation | Complexity

ABD [5] SWMR 2 4 2|S]| 48| Unbounded Constant
Fasr [17] SWMR 2 2 2|S| 2|S]| IRl < £l —2 NP-Hard
SF [26] SWMR 2 2or4 2|S]| 4|S]| V)| < % -1 NP-Hard
SLIQ [25] SWMR 2 2 or4 2|S]| 4|S]| Unbounded Constant

CCFaST [4] SWMR 2 2 2/8| 2/8| IRl < Bl —2 [Polynomial
OHSAM [30] SWMR 2 3 28| 2|S|+|S> | Unbounded Constant
OunSAM’ [30] SWMR 2 2o0r3 2|S]| 3|+ |S)? Unbounded Constant

CCHYBRID [3] SWMR 2 2 or 4 2|8 48| Unbounded Polynomial

OHFAsT [3] SWMR 2 2or3 2|S]| |S|? Unbounded Polynomial
MR [41] SWMR 2 2 or 3or4 |S|? 4/S| Unbounded Constant
ERATO [21] SWMR 2 2o0r3 2|S| 3|+ |S)? Unbounded Constant
ABD-mw [5, 40] || MWMR 4 4 4|8 4|S]| Unbounded Constant
SFw [18] MWMR | 2or 4 2o0r4 4|8 4|S]| Unbounded NP-Hard
CWwWFR [24] MWMR 4 2o0r4 Iy 48| Unbounded Constant
OuMaM [30] MWMR 4 3 4|S| 2|S| + |SI? Unbounded Constant
OHMaAM’ [30] MWMR 4 2 or 3 4|S| 31S| +|SI? Unbounded Constant
ErATO-MW [21] MWMR 4 2o0r3 4|S| 38|+ |S)? Unbounded Constant

to all replica servers in the first exchange, collects acknowledgments from some majority
of servers in the second exchange, and it discovers the maximum timestamp (L3-7). In
order to ensure that any subsequent read will return a value associated with a timestamp
at least as high as the discovered maximum, the reader propagates the value associated
with the maximum timestamp to at least a majority of servers before completion (L8-11).
The correctness of this implementation, that is, atomicity, relies on the fact that any two
majorities have a non-empty intersection. The local computation at readers, writers and
servers in ABD incurs insignificant computational overhead.

Following ABD, a folklore belief developed that in atomic memory implementations,
“reads must write” The work by Dutta et al. [17] refuted this belief by presenting an algorithm,
called FAST, in which all read and write operations involve only two communication exchanges.
Such operations are called fast. To avoid the second round in read operations, FAST uses
two mechanisms: (7) a recording mechanism at the servers, and (i7) a predicate that uses the
server records at the readers. Here, each server records in a set all processes that witness its
local timestamp and resets it whenever it learns a new timestamp. Each reader explores the
sets from the different server replies to determine whether “enough” processes witnessed the
maximum observed timestamp. If the predicate holds, the reader returns the value associated
with the maximum timestamp. Otherwise it returns the value associated with the previous
timestamp. The predicate takes in account which processes witnessed the latest timestamp
as it examines the intersection of the received sets.

It was also shown in [17] that atomic memory implementations are only possible when
the number of readers is constrained in with respect to the number of replicas servers and in
inverse proportion to the number of crashes as stated in the following theorem.

» Theorem 4 ([17]). Let f > 1, [W| =1 and |R| > 2. If |R| > % — 2, then there is no fast
atomic register implementation.

T. Hadjistasi and A. A. Schwarzmann

Algorithm 1 Reader, Writer, and Server Protocols for SWMR algorithm ABD

1: At each reader r 16: At each writer w
2: function READ(v: output) 17: State ts init 0
3: Get: broadcast (get, i) to all replica servers 18: function WRITE(v: input)
4: await responses (get-ack, v’,ts’) 19: Put: ts + ts+ 1
5: from some majority of servers 20: broadcast (put, v, ts,) to all servers
6: Let v be the value associated with the 21: await responses (put-ack)
T: maximum timestamp maxts received 22: from some majority of servers
8: Put: broadcast {put, v, maxts, i) to all servers 23: return()
9: await responses (put-ack)
10: from some majority of servers 24: At each server s
11: return(v) 25: Upon receive (put,v’,ts’, j)
26: if ts’ > ts then
12: At each server s 27: (ts,v) + (ts',v")
13: State v init L, ts init 0 28: send (put-ack) to j
14: Upon receive (get, j)
15: send (get-ack, v, ts) to j

A recent work by Ferndndez Anta, Nicolaou, and Popa [4], has shown that, although the
result in [17] is efficient in terms of communication, it requires reader processes to evaluate
a computationally hard predicate. The authors abstracted the predicate used in FAST as
a computational problem that they show to be NP-hard via a reduction from the decision
version of the Maximum Edge Biclique Problem [43], which is NP-Complete. This suggest
the existence of a trade-off between communication efficiency and computational overhead in
atomic memory implementations.

Given the inherent limitation on the number of readers in fast single-writer implement-
ations, Georgiou et al. [26] sought a solution that would remove the limit on the number
of readers, in exchange for slowing down some operations, i.e., the goal is to enable fast
operations, but allow slower operations, taking more than two communication exchanges,
when this is unavoidable. They provided a SWMR algorithm, named SF, that adopts an
approach to implementing readers similar to the one in [17], but uses a polynomial time
predicate to determine whether it is safe for a read operation to terminate after two exchanges.
In order not to place bounds on the number of readers, the authors group readers into abstract
entities, called virtual nodes, serving as enclosures for multiple readers. This refinement has
a non-trivial challenge of maintaining consistency among readers within the same virtual
node. This solution trades communication for the scalability in the number of participating
readers. In SF significant computational overheads incur in order to determine the speed of
an operation (to evaluate the mentioned predicate). At most a single complete read operation
performs four exchanges for each write operation. Writes and any read operation that pre-
cedes or succeeds a four exchange read, is fast. This development motivated creating a new
class of implementations, called semifast implementations. Informally, an implementation is
semifast if either all reads are fast or all write operations fast. Algorithm SF becomes fast
(same as [17]) when each virtual node contains one reader.

Georgiou et al. [25] showed that fast and semifast quorum-based SWMR implementations
are possible iff a common intersection exists among all quorums. Because a single point of
failure exists in such solutions (i.e., any server in the common intersection), this renders such
implementations not fault-tolerant. The same work introduced Quorum Views, client-side
tools that examine the distribution of the latest value among the replicas in order to enable
fast read operations (two exchanges) under read and write operation concurrency. The
authors derived a a SWMR algorithm, called SLIQ, that requires at least one single slow read
per any write operation, and where all writes are fast. No bound is placed on the number
of readers. SLIQ trades communication for the scalability in the number of participating

1:7

ICALP 2018

1:8

Consistent Distributed Memory Services: Resilience and Efficiency

readers. Here only insignificant computation effort is needed to examine the distribution of
object values among the replicas that the reader receives during the read operation.

Another algorithm, called CCFAST, with a new predicate, is given by Ferndndez Anta et
al. [4], that allows the operations to be fast with only polynomial computation overhead. The
idea of the new predicate is to examine the replies received in the first communication round
of a read operation and determine how many (instead of which [17]) processes witnessed
the maximum timestamp among those replies. With this modification, the predicate takes
polynomial time to decide the value to be returned and it reduces the size of each message
sent by the replica nodes. Algorithm CCFAST is more practical than [17], but it has the same
constraint on the number of readers.

Previous works dealt with algorithms that used only communication between clients
(readers and writers) and the replica servers. Hadjistasi, Nicolaou and Schwarzmann [30]
explored another approach that exploits server-to-server communication. In particular,
they showed that atomic operations do not need to involve complete communication round
trips between clients and servers. The authors focused on the gap between one-round and
two-round algorithms, seeking implementations where operations can take “one and a half
rounds,” i.e., be able to complete in three exchanges. They presented a SWMR algorithm,
called OHSAM, which stands for One and a Half Rounds Single-writer Atomic Memory. Here
reads take three exchanges: the first from the client to the servers, the second is server-to-
server, and the third is from the servers to the client. Such implementations trade latency
for message complexity: the latency is reduced to three exchanges, while server-to-server
exchange has quadratic message complexity in the number of servers. A key idea of the
algorithm is that the reader returns the value that is associated with the minimum timestamp
that corresponds to the last complete write operation (cf. the observation in [17]).

In the same work [30], authors revised the protocol implementing read operations of
algorithm OHSAM to yield a protocol that implements read operations that terminate in
either two or three communication exchanges, OHSAM’. The idea here is to let the reader
determine “quickly” that a majority of servers hold the same timestamp (or tag) and its
associated value. This is done by having the servers send relay messages to each other as
well as to the readers. While a reader collects the relays and the read acknowledgments, if it
observes in the set of the received relay messages that a majority of servers holds the same
timestamp, then it safely returns the associated value and the read operation terminates
in two exchanges. If that is not the case, then the reader proceeds similarly to algorithm
OHSAM and terminates in three communication exchanges. Algorithms OHSAM and OHSAM’
do not impose constraints on reader participation and perform a modest amount of local
computation, resulting in negligible computation overhead.

Ferndndez Anta et al. [3] introduced a “multi-speed” algorithm, named cCHYBRID that
allows operations to terminate in either fwo or four communication exchanges. Algorithm
CCHYBRID does not impose any bounds on the number of the participating readers. CCHYBRID
uses the polynomial predicate introduced in [4] to determine the speed of a read operation,
and it requires at most one complete slow operation per written value. This is similar to the
semifast algorithm SF [26]. However, in contrast with SF, in which processes have to decide
NP-hard predicates, CCHYBRID performs only linear computation.

The same work [3] explores the idea of combining the polynomial predicate with the three
communication exchanges read protocol of algorithm OHSAM [30]. The resulting “multi-speed”
algorithm, called OHFAST, allows one and one-and-a-half round-trip operations, equivalent
two or three communication exchanges. In algorithm OHFAST, the decision of whether the
read operation must be slow is moved to the replica servers. When replica servers determine

T. Hadjistasi and A. A. Schwarzmann

that a slow read is necessary, they perform a relay phase to inform other servers before
replying to the requesting reader. It is interesting that in OHFAST not all servers uniformly
perform a relay for a particular read operation. Some servers may be replying directly to the
requesting reader, whereas others may perform a relay phase. Thus, it is possible for a read
operation to terminate before receiving a reply from the server that initiates the relay.

A recent work by Mostefaoui and Raynal [41] defines what a time-efficient implementation
of atomic registers is based on two different synchrony assumptions. The first assumes bounded
message delays and is expressed in terms of delays, and the second assumes round-based
synchrony. Authors then present a time-efficient implementation of atomic registers while
trying to keep its design spirit as close as possible to ABD. We refer to this solution as
algorithm MR. In the algorithm a write operation takes two communication exchanges and
a read operation takes two, or three, or four exchanges. The heart of the given algorithm
is the wait predicate that takes place on the servers side and it is associated with write
operations. The wait predicate ensures both atomicity and the fact that the implementation
is time-efficient. The trade-off between ABD and this implementation lies in the message
complexity of write operations, which for ABD is linear and for MR is quadratic in to the
number of replica servers. Algorithm MR is particularly interesting for registers used in
read-dominated applications.

Lastly, Georgiou et al. [21] presented algorithm ERATO, which stands for Efficient Reads
for ATomic Objects. The algorithm improves the three-exchange read protocol of OHSAM [30]
to allow reads to terminate in either two or three exchanges using client-side tools, Quorum
Views, introduced in algorithm SLIQ [25]. The three exchanges of the new read protocol are
as follows: (1) reader broadcasts a request to servers; (2) the servers share this information
among themselves, including the reader, and (3) once this is “sufficiently” done, servers reply
to the reader. During the second exchange, the reader uses Quorum Views [25] to categorize
the distribution of timestamps, and determines whether it is able to complete the read. If
not, it awaits “enough” messages from the third exchange before completion. Here, the idea
of the algorithm is that when the reader is “slow” it returns the value associated with the
minimum timestamp, i.e., the value of the previous write that is guaranteed to be complete
(cf. [30] and [17]). Similarly to ABD, write operations take two exchanges.

4 MWMR Implementations

We now turn out attention to the multi-writer/multi-reader (MWMR) implementations of
atomic memory. Whereas logical timestamps alone are sufficient to order write operations in
the single-writer algorithms, the existence of multiple writers requires a somewhat different
approach. The simplest approach is instead of a timestamp to use pairs consisting of a
timestamp and processor id to order the written values. Such a pair is termed a tag. When
a writer performs a write operation it associates the value with a tag (ts,id), where ts is
a logical timestamp, and id is the writer’s unique id that distinguishes the current write
operation from all others. Tags are ordered lexicographically in establishing an order on the
operations. A summary of the most relevant results for this setting is given in the second
part of Table 1.

The work of Lynch and Schwarzmann [40] presented a multi-writer extension of algorithm
ABD (and also introduced the notion of reconfigurable memory, where the set of replica
servers can be dynamically reconfigured). The static version of their MWMR, implementation,
that we call ABD-Mw, is given in Algorithm 2. In contrast with ABD, where the sole writer
generates new timestamps without any communication, the writers in ABD-Mw start a

1:9

ICALP 2018

1:10 Consistent Distributed Memory Services: Resilience and Efficiency

Algorithm 2 Reader, Writer, and Server Protocols for MWMR algorithm ABD-mw

1: At each reader r 16: At each writer w

2: function READ(v: output) 17: function WRITE(v: input)

3: Get: broadcast (get, i) to all replica servers 18: Get: broadcast (get, 1) to all replica servers

4: await responses (get-ack, v, tag’) 19: await responses (get-ack,v’,tag’)

5: from some majority of servers 20: from some majority of servers

6: Let v be the value associated with the 21: Let maztag = (ts,pid) be the max tag
7: maximum tag maxtag received 22: Let newtag = (ts + 1, w)

8: Put: broadcast (put, v, maztag,) to all servers 23: Put: broadcast (put, v, newtag, w) to all servers
9: await responses (put-ack) 24: await responses (put-ack)

10: from some majority of servers 25: from some majority of servers

11 return(v) 26: return()

12: At each server s 27: At each server s

13: State v init L, tag init (0, L) 28: Upon receive (put,v’,tag’, j)

14: Upon receive {get, j) 29: if tag’ > tag then

15: send (get-ack, v, tag) to j 30: (tag,v) + (tag’,v")

31: send (put-ack) to j

write operation by performing an additional round in which the replica servers are queried
for their latest tags. Once tags are received from a majority of servers, the writer increments
the timestamp of the highest detected timestamp to produce its new tag. The the second
round is performed as in ABD.

In more detail, the writer performs the “Get” round, broadcasting its request to the
servers in the first exchange (L18). Servers reply with their latest timestamps in the second
exchange (L18-22 and L12-15). The writer determines the highest timestamp among the
replies, increments it, produces a new tag that includes its id, and then performs the “Put”
round in which it in the third exchange broadcasts the new tag and the new value to all
servers (L23-26). On the server side, if the incoming message contains a higher tag, then the
server update its local information and send an acknowledgment in the fourth communication
exchange (L27-31). The write protocol completes once the writer collects acknowledgments
from a majority of servers. The first two exchanges ensure that the writer produces a tag
that is higher than that of any preceding write. Thus a write operation for ABD-Mw takes
four exchanges in comparison with the two exchanges in ABD. The read protocol is identical
to the four-exchange protocol in ABD, the only difference being that tags are used instead
of timestamps. The correctness (atomicity) of this implementation, relies on the fact that
any two majorities have a non-empty intersection and that in each round, the read and write
protocols await responses from at least a majority of servers.

This algorithm places no constrains on the number of readers and writers, and it performs
a modest amount of local computation, resulting in negligible computation overhead. This
algorithm can also be used used with quorum systems instead of majorities [40, 44], because
the only property of majorities that is used is that any two majorities have a non-empty
intersection, just like any two quorums. The failure model for the quorum based solution is
that any pattern of crashes is tolerated, provided that the servers in at least one quorums do
not crash.

Algorithm ABD-mMw established that two rounds are sufficient to implement atomic
read and write operations. The question of whether fast (single round) implementations
are possible was answered in the negative in [17], where it was shown that fast reads are
possible only in the single-writer model SWMR. In particular, fast MWMR implementations
are impossible when the set of readers R and the set of writers W contain more than two
nodes each.

» Theorem 5 ([17]). Let [W| > 2, |R| > 2, and f > 1. Any atomic register implementation
has a run in which some complete read or write operation is not fast.

T. Hadjistasi and A. A. Schwarzmann

Moreover, Georgiou et al. [26] showed that semifast implementations (recall from Section 3
that in a semifast implementation either all reads are fast or all the write operations fast)
are impossible in the MWMR setting.

» Theorem 6 ([26]). If |W| > 2, |R| > 2, and the number of server crashes f > 1, then
semifast atomic register implementation is impossible.

These impossibility results motivated the development of algorithms that allow some

operations to complete in less than two rounds or in less than four communication exchanges.

The work from Englert et al. [18] proposed hybrid approaches where some operations complete
in two and other in four communication exchanges. Their algorithm SFW uses quorum
systems and enables some reads and writes to be fast. In order to decide whether an operation
can terminate after its first round, the algorithm employs two specialized predicates. However,
the predicates are computationally hard (NP-hard), and fast write operations are enabled
only if the quorum system satisfies certain quorum intersection properties, rendering the
algorithm impractical.

Georgiou et al. [24] presented a MWMR algorithm, called CWFR, that allows fast read
operations. The algorithm uses a generalization of client-side decision tools, Quorum Views,
developed for the SWMR setting [25], to analyze the distribution of a value within a quorum
of replies from servers to determine whether fast termination is safe. Since multiple writes can
occur concurrently, an iterative technique is used to discover the latest potentially complete
write operation. Here read operations terminate in either two or four communication
exchanges. The write protocol is essentially the same as in ABD-Mw, taking four exchanges
to complete. Algorithm CWFR does not impose constrains on participation and it performs
a modest amount of local computation, resulting in negligible computation overhead.

Hadjistasi et al. [30] sought a MWMR solution that involves three or four communication
exchanges per operation, and developed algorithm OHMAM, which stands for One and o
Half Rounds Multi-writer Atomic Memory. The authors adopted the three-exchange protocol
from the SWMR algorithm OHSAM to the MWMR setting. The read protocol of OHMAM
differs in that it uses tags instead of timestamps. The write protocol is identical to the one
that ABD-Mw uses and completes in four communication exchanges.

The authors then revised the protocol implementing read operations of algorithm OHMAM
to yield a protocol that implements read operations that terminate in either two or three
communication exchanges, the resulting algorithm is called OHMAM’. The idea here is
to expedite the reader’s determination that a majority of servers hold the same tag and
its associated value. This is achieved by having the servers send relay messages to each
other as well as to the requesting reader. While a reader collects the relays and the read
acknowledgments, if it observes in the set of the received relay messages that a majority
of servers holds the same timestamp, then it safely returns the associated value, thus
terminating in two exchanges. If that is not the case, then the reader proceeds similarly
to algorithm OHMAM and terminates in three communication exchanges. The operations
perform insignificant amount of local computation.

Lastly, Georgiou et al. [21], using the SWMR algorithm ERATO as the basis, developed
a MWMR algorithm, ERATO-MW. In adopting the single-writer algorithm, the challenge is
that the read protocol cannot be used directly because it relies on the fact that if a write
is in progress, then the preceding write is complete. Instead the algorithm implements
a three-exchange read protocol based on [30] in combination with the iterative technique
using Quorum Views as in [24]. This technique determines the completion status of a write
operation, and also detects the last potentially complete write operation. Read operations
complete in either two or three exchanges. Writes are similar to ABD-Mw and take four
communication exchanges. This algorithm also has a negligible computation overhead.

1:11

ICALP 2018

1:12

Consistent Distributed Memory Services: Resilience and Efficiency

5 Shared Memory in Dynamic Settings

Additional challenges arise when a shared memory system must be long-lived and must
ensure data longevity. A storage system may be able to tolerate failures of some servers,
but over a long period it is conceivable that all servers may need to be replaced, because no
servers are infallible, and also due to unavoidable changes or planned upgrades. Additionally,
in mobile settings, e.g., remote search-and-rescue or military operations, it may be necessary
to provide migration of data from one collection of servers to another, so that the data can
move as the needs dictate. Whether our concern is data longevity or mobility, the storage
system must provide seamless runtime migration of data: one cannot stop the world and
reconfigure the system in response to failures and changing environment.

We now survey several approaches for providing consistent shared memory in more
dynamic systems, that is, where nodes may not only crash or depart voluntarily, but where
new nodes may join the service, and where the entire collection of servers need to be replaced.
In general, the set of object replicas can substantially evolve over time, ultimately migrating
to a completely different set of replica hosts. Thus, an implementation designed for static
settings, e.g., algorithm ABD, cannot be used directly in dynamic settings because it relies
on the majority of original replica hosts to always be available. In order to use an ABD-like
approach in dynamic settings, one must provide some means for managing the collections of
replica hosts, and to ensure that readers and writers contact suitable such collections.

It is noteworthy that dealing with dynamic settings and managing collections of nodes
does not directly address the provision of consistency in memory services. Instead, these
issues are representative of the broader challenges present in the realm of dynamic distributed
computing. It is illustrative that implementations of consistent shared memory services
can sometimes be constructed using distributed building blocks, such as those designed for
managing collections of participating nodes, for providing suitable communication primitives,
and for reaching agreement (consensus) in dynamic distributed settings. A tutorial covering
several of these topics is presented by Aguilera et al. [2].

We start by presenting the consensus problem because it provides a natural basis for
implementing an atomic memory service by establishing an agreed-upon order of operations,
and because consensus is used in other ways in atomic memory implementations. Next
we present group communication services (GCS) solutions that use strong communication
primitives, such as totally ordered broadcast, to order operations. Finally we focus on
approaches that extend the ideas of algorithm ABD to dynamic settings with explicit
management of the evolving collections of replica hosts.

Consensus. Reaching agreement in distributed settings is a fundamental problem of com-
puter science. The agreement problem in distributed settings is called consensus. Here a
collection of processes need to agree on a value, where each process may propose a value
for consideration. Any solution must satisfy the following properties: Agreement: no two
processes decide on different values; Validity: the value decided was proposed by some
process; Termination: all correct processes reach a decision. Consensus is a powerful tool
in designing distributed services [39], however, consensus is a notoriously difficult problem
to solve in asynchronous systems, where termination cannot be guaranteed in the presence
of even a single process crash [20] (this is the seminal FLP impossibility result of Fischer,
Lynch, and Paterson); thus consensus must be used with care.

Consensus algorithms can be used directly to implement an atomic data service by
enabling the participants to agree on a global total ordering of all operations [36]. The

T. Hadjistasi and A. A. Schwarzmann

correctness (atomicity) here is guaranteed regardless of the choice of a specific consensus
implementation, but the understanding of the underlying platform characteristics can guide
the choice of the implementation for the benefit of system performance (for a tour de force of
implementations see [39]). Nevertheless, using consensus for each operation is a heavy-handed
approach, especially given that perturbations may delay or even prevent termination. Thus,
when using consensus, one must avoid invoking it in conjunction with individual memory
operations, and make operations independent of the termination of consensus.

We note that achieving consensus is a more difficult problem than implementing atomic
read /write objects. In particular, consensus cannot be solved for two or more processes by
using atomic read/write registers [31, 38].

Group communication services. Among the most important building blocks for distributed
systems are group communication services (GCS) [8]. GCSs enable processes at different
nodes of a network to operate collectively as a group by means of multicast services that
deliver messages to the members of the group, and offer various guarantees about the
order and reliability of delivery. The basis of a GCS is a group membership service. Fach
process, at any time, has a unique view of the group that includes a list of the processes in
the group. Views can change over time, and may become different at different processes.
Another important concept introduced by the GCS approach is virtual synchrony, where
an essential requirement is that processes that proceed together through two consecutive
views deliver the same set of messages between these views. This allows the recipients to
take coordinated action based on the message, the membership set, and the rules prescribed
by the application [8].

GCSs offer one approach for implementing shared memory. For example, one can
implement a global totally ordered multicast service on top of a view-synchronous GCS [19].
The ordered multicast is used to impose an order on the memory access operations, yielding
atomic memory. The main disadvantage in such solutions is that in GCS implementations,
forming a new view takes time, and client memory operations are delayed (or aborted) during
the view-formation period.

Another approach is to integrate a GCS with algorithm ABD as done in the dynamic
primary configuration GCS of [14] that implements atomic memory by using techniques of [6]
within each configuration, where configurations include a group view and a quorum system.

A general methodology for dynamic service replication is presented in [9]. This reconfig-
uration model unifies the virtual synchrony approach with state machine replication, as used
in consensus solutions, in particular, Paxos [36].

DynaStore Algorithm. DynaStore [1] is an implementation of a dynamic atomic memory
service for multi-writer /multi-reader objects. The participants start with a default local
configuration, that is, some common set of replica hosts. The algorithm supports three kinds
of operations: read, write, and reconfig. The read and write operations involve two phases,
and in the absence of reconfigurations, the protocol is similar to ABD. If a participant wishes
to change its current configuration, it uses the reconfig operation and supplies with it a set
of incremental changes.

The implementation of reconfig involves traversals of DAG’s representing possible sequences
of changed configurations. In each traversal the DAG may be revised to reflect multiple
changes to the same configuration. The assumption that a majority of the involved hosts are
not removed and do not crash ensures that there is a path through the DAG that is guaranteed
to be common among all hosts. The traversal terminates when a sink node is reached. The

1:13

ICALP 2018

1:14

Consistent Distributed Memory Services: Resilience and Efficiency

reconfig protocol involves two phases. The goal of the first phase is similar to the Get phase
of ABD: discover the latest value-tag pair for the object. The goal of the second phase is
similar to the Put phase of ABD: convey the latest value-tag pair to a suitable majority of
replica hosts. The main difference is that these two phases are performed in the context of
applying the incremental changes to the configuration, while at the same time discovering
the changes submitted by other participants. This “bootstraps" possible new configurations.
Given that all of this is done by traversing all possible paths—and thus configurations—in
the DAG’s ensures that the common path is also traversed.

The read follows the implementation of reconfig, with the differences being: (a) the set of
configuration changes is empty, and (b) the discovered value is returned to the client. The
write also follows the implementation of reconfig, with the differences being: (a) the set of
changes is empty, (b) a new, higher tag is produced upon the completion of the first phase,
and (c) the new value-tag pair is propagated in the second phase.

We note that DynaStore implementation does not incorporate consensus for reconfig-
uration. On the other hand, reconfigurations are accomplished by additions and removals
of individual nodes and this may lead to larger overheads as compared to approaches that
evolve the system by replacing a complete configuration with another. Thus the latency of
read and write operations are more dependent on the rate of reconfigurations. Finally, in
order to guarantee termination, DynaStore assumes that reconfigurations eventually subside.

Rambo Framework. RAMBO is a dynamic memory service supporting MWMR objects [28];
RAMBO stands for Reconfigurable Atomic Memory for Basic Objects. This algorithm uses
configurations, each consisting of a set of replica hosts plus a quorum system defined over these
hosts, and supports reconfiguration, by which configurations can be replaced. Notably, any
quorum configuration may be installed at any time, and quorums from distinct configurations
are not required to have non-empty intersections. The algorithm ensures atomicity in all
executions. During quiescent periods when there are no reconfigurations, the algorithm
operates similarly to algorithm ABD [6, 40]. To enable long-term operation of the service,
quorum configurations can be reconfigured. Reconfigurations are performed concurrently with
any ongoing read and write operations, and do not directly affect such operations. Additionally,
multiple reconfigurations may be in progress concurrently. Reconfiguration involves two
decoupled protocols: (1) introduction of a new configuration by the component called Recon,
and (2) upgrade to the new configuration and garbage collection of obsolete configuration(s).
Recon always emits a unique new configuration. Different reconfiguration proposals are
reconciled by executing consensus among the members of an existing configuration. Note that
termination of read and write operations does not depend on termination of reconfiguration.
It is the duty of a decoupled upgrade protocol to garbage collect old configurations and
propagate the information about the object to the latest locally-known configuration. The
main algorithm performs read and write operations using a two-phase strategy. The first
phase gathers information from the quorums of active configurations, then the second phase
propagates information to the quorums of active configurations. Note that during each phase
new configurations may be discovered. To handle this each phase is terminated by a fized
point condition that involves a quorum from each active configuration.

Lastly, RAMBO is used as a framework for refinements and optimizations, and several
subsequent works focused on practical considerations [29, 12, 22, 23, 33]. GeoQuorums [16]
is an approach to implementing atomic shared memory on top of a physical platform that is
based on mobile nodes moving in arbitrary patterns. The algorithm simplifies reconfiguration
of RAMBO by using a finite set of possible configurations, and as the result it avoids the use
of consensus. Here it is sufficient for a mobile node to discover the latest configuration, and
contact and propagate the latest register information to all configurations.

T. Hadjistasi and A. A. Schwarzmann

6 Discussion

We presented several approaches for implement atomically consistent memory services in
distributed message-passing systems. Our focus is on atomic consistency because it is an
intuitive notion that hides the complexities of underlying implementations, presenting a
convenient abstraction to the software builders. This is particularly valuable because of
the common perception that the shared-memory paradigm is easier to deal with than the
message-passing paradigm in designing distributed algorithms. The solutions presented in this
work are representative of the different design choices available for implementing distributed
memory services, and we emphasized the trade-offs present in different approaches.

We discussed in detail the issues of resilience and efficiency in the single-writer and
multi-writer models in static settings. We then surveyed several approaches that implement
consistent shared memory in these settings. In the established implementations frameworks
some open problems remain regarding out ability to further improve the efficiency of services
that use variable number of exchanges (two, three, and four) in implementing read and
write operations. We also anticipate that additional lower bounds will be established to
help better understand limitations on efficient implementations. For the static setting, it
is also interesting to investigate the possibility of devising consistent implementations with
zero-delay operations. That is, where operations are able to complete without additional

communication, perhaps only relying on the knowledge obtain through prior communications.

If the answer is in the negative, then it will still be interesting to understand the possibility
of obtaining such implementations for notions of consistency weaker than atomicity, e.g.,
eventual consistency, or by weakening the power of adversity. As an example of this direction,
the work of Chandra et al. [11] assumes a partially synchronous system using synchronized
local clocks. Such solutions are particularly interesting for applications that are either read
or write dominated.

The algorithms that we surveyed for the static settings may have difference fault-tolerance
guarantees and be subject to efficiency trade-offs. This prompted researchers to perform
empirical studies of their proposed algorithms [25, 24, 4, 3, 30, 21]. Here a goal is to
understand how the analytical results are are reflected in practical efficiency. In addition to
simulations, full scale cloud-based experimental evaluations will be certain to yield valuable
observations in realistic settings.

In this paper we also surveyed several approaches for providing consistent shared memory
in more dynamic systems, that is, where nodes may not only crash or depart voluntarily, but
where new nodes may join, and where servers in one configurations can be replaced with
entirely new configurations. Providing efficient atomic implementations remains challenging
for dynamic settings. Here the expectation is that solutions are found by integrating static
algorithms with a reconfiguration framework so that during periods of relative stability one
benefits from the efficiency of static algorithms, and where during the more turbulent times
performance degrades gracefully when reconfigurations are needed. One of the open questions
here is whether consensus is truly necessary for implementing consistent memory services for
long-lived dynamic systems.

The technical challenges and performance overheads in the dynamic setting may be the
reasons why the existing distributed storage solutions shy away from atomic consistency
guarantees. Commercial solutions, such as Google’s File System (GFS) [27], Amazon’s

Dynamo [15], and Facebook’s Cassandra [34], provide less-than-intuitive, unproved guarantees.
The concepts discussed in section 5 are echoed in the design decisions of production systems.

For instance, consensus is used in GFS [27] to ensure agreement on system configuration as it

1:15

ICALP 2018

1:16

Consistent Distributed Memory Services: Resilience and Efficiency

is done in RAMBO; global time is used in Spanner [13] as it is done in GeoQuorums; replica
access protocols in Dynamo [15] use quorums as in some approaches surveyed here. These
examples provide motivation for pursuing rigorous algorithmic approaches in the study of
consistent data services for dynamic networked systems. For a more detailed discussion, we
direct the interested reader to related work that surveys atomic shared implementations for
dynamic settings [42].

Consistent storage systems continues to be an area of active research and advanced
development, and there are good reasons to believe that as high performance memory
systems with superior fault-tolerance become available, they will play a significant role in
the construction of sophisticated distributed applications. The demand for implementations
providing atomic read/write memory will ultimately be driven by the needs of distributed
applications that require provable consistency and performance guarantees.

—— References

1 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic
storage without consensus. J. ACM, 58:7:1-7:32, April 2011. doi:10.1145/1944345.
1944348.

2 Marcos K. Aguilera, Idit Keidary, Dahlia Malkhi, Jean-Philippe Martin, and Alexander
Shraery. Reconfiguring replicated atomic storage: A tutorial. Bulletin of the EATCS,
102:84-081, 2010.

3 Antonio Ferndndez Anta, Theophanis Hadjistasi, and Nicolas C. Nicolaou. Computationally
light "multi-speed" atomic memory. In 20th International Conference on Principles of
Distributed Systems, OPODIS 2016, December 13-16, 2016, Madrid, Spain, pages 29:1—
29:17, 2016. doi:10.4230/LIPIcs.0PODIS.2016.29.

4 Antonio Ferndndez Anta, Nicolas C. Nicolaou, and Alexandru Popa. Making "fast" atomic
operations computationally tractable. In 19th International Conference on Principles of
Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, pages 19:1—
19:16, 2015. doi:10.4230/LIPIcs.0PODIS.2015.19.

5 H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems.
Journal of the ACM, 42(1):124-142, 1996.

6 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. J. ACM, 42(1):124-142, 1995. doi:10.1145/200836.200869.

7 Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability. ACM
Trans. Comput. Syst., 12(2):91-122, 1994. doi:10.1145/176575.176576.

8 Ken Birman. A history of the virtual synchrony replication model. In Replication: Theory
and Practice, volume 5959 of Lecture Notes in Computer Science, pages 91-120, 2010.

9 Ken Birman, Dahlia Malkhi, and Robbert Van Renesse. Virtually synchronous methodology
for dynamic service replication. Technical report, MSR-TR-~2010-151, Microsoft Research,
2010.

10 Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie,
Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakrav-
arthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay
Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhard-
waj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha
Manivannan, and Leonidas Rigas. Windows azure storage: a highly available cloud storage
service with strong consistency. In Ted Wobber and Peter Druschel, editors, Proceedings of
the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais, Por-
tugal, October 23-26, 2011, pages 143—157. ACM, 2011. doi:10.1145/2043556.2043571.

http://dx.doi.org/10.1145/1944345.1944348
http://dx.doi.org/10.1145/1944345.1944348
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.29
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.19
http://dx.doi.org/10.1145/200836.200869
http://dx.doi.org/10.1145/176575.176576
http://dx.doi.org/10.1145/2043556.2043571

T. Hadjistasi and A. A. Schwarzmann

11

12

13

14

15

16

17

18

19

20

21

22

23

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. An algorithm for replicated
objects with efficient reads. In Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 325-334,
2016. doi:10.1145/2933057.2933111.

Gregory Chockler, Seth Gilbert, Vincent Gramoli, Peter M. Musial, and Alexander A.
Shvartsman. Reconfigurable distributed storage for dynamic networks. Journal of Parallel
and Distributed Computing, 69(1):100-116, 2009.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi
Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Span-
ner: Google’s globally-distributed database. In 10th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-
10, 2012, pages 261-264, 2012. URL: https://www.usenix.org/conference/osdil2/
technical-sessions/presentation/corbett.

Roberto De Prisco, Alan Fekete, Nancy A. Lynch, and Alexander A. Shvartsman. A
dynamic primary configuration group communication service. In Proc. of the 13th Int-l
Symposium on Distributed Computing, pages 64-78. Springer-Verlag, 1999. URL: http:
//dl.acm.org/citation.cfm?id=645956.675955.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: amazon’s highly available key-value store. SIGOPS Oper. Syst. Rewv.,
41(6):205-220, 2007. doi:10.1145/1323293.1294281.

S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geoquorums: Implementing
atomic memory in mobile ad hoc networks. In Proceedings of 17th International Symposium
on Distributed Computing (DISC), 2003.

Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How fast can
a distributed atomic read be? In Proceedings of the 23rd ACM symposium on Principles
of Distributed Computing (PODC), pages 236-245, 2004.

Burkhard Englert, Chryssis Georgiou, Peter M. Musial, Nicolas Nicolaou, and Alexander A.
Shvartsman. On the efficiency of atomic multi-reader, multi-writer distributed memory. In
Proceedings 13th International Conference On Principle Of DIstributed Systems (OPODIS
09), pages 240-254, 2009.

Alan Fekete, Nancy A. Lynch, and Alexander A. Shvartsman. Specifying and using a
partitionable group communication service. ACM Trans. Comput. Syst., 19(2):171-216,
2001. d0i:10.1145/377769.377776.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of ACM, 32(2):374-382, 1985. doi:10.1145/
3149.214121.

Chryssis Georgiou, Theophanis Hadjistasi, Nicolas C. Nicolaou, and Alexander A. Schwar-
zmann. Unleeshing and speeding up readers in atomic object implementations. In Net-
worked Systems - 6th International Conference, NETYS 2018, Essaouria, Morocco, May
9-11, 2018, Proceedings, 2018.

Chryssis Georgiou, Peter M. Musial, and Alex A. Shvartsman. Long-lived RAMBO: Trading
knowledge for communication. Theoretical Computer Science, 383(1):59-85, 2007.
Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman. Developing a consistent
domain-oriented distributed object service. IEEFE Transactions of Parallel and Distributed
Systems (TPDS), 20(11):1567-1585, 2009. A preliminary version of this work appeared

1:17

ICALP 2018

http://dx.doi.org/10.1145/2933057.2933111
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
http://dl.acm.org/citation.cfm?id=645956.675955
http://dl.acm.org/citation.cfm?id=645956.675955
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/377769.377776
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121

1:18

Consistent Distributed Memory Services: Resilience and Efficiency

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

in the proceedings of the 4th IEEE International Symposium on Network Computing and
Applications (NCA’05).

Chryssis Georgiou, Nicolas Nicolaou, Alexander Russel, and Alexander A. Shvartsman.
Towards feasible implementations of low-latency multi-writer atomic registers. In 10th
Annual IEEE International Symposium on Network Computing and Applications, 2011.
Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. On the robustness
of (semi) fast quorum-based implementations of atomic shared memory. In DISC ’08:
Proceedings of the 22nd international symposium on Distributed Computing, pages 289—
304, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-87779-0_20.
Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Fault-tolerant
semifast implementations of atomic read/write registers. Journal of Parallel and Distributed
Computing, 69(1):62-79, 2009. doi:10.1016/j.jpdc.2008.05.004.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems principles, SOSP 03,
pages 29-43, New York, NY, USA, 2003. ACM. doi:10.1145/945445.945450.

S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO: A robust, reconfigurable atomic
memory service for dynamic networks. Distributed Computing, 23(4):225-272, December
2010.

Vincent Gramoli, Peter M. Musial, and Alexander A. Shvartsman. Operation liveness
and gossip management in a dynamic distributed atomic data service. In Proceedings of
the ISCA 18th International Conference on Parallel and Distributed Computing Systems,
September 12-1/4, 2005 Imperial Palace Hotel, Las Vegas, Nevada, US, pages 206-211, 2005.
Theophanis Hadjistasi, Nicolas C. Nicolaou, and Alexander A. Schwarzmann. Oh-ram! one
and a half round atomic memory. In Networked Systems - 5th International Conference,
NETYS 2017, Marrakech, Morocco, May 17-19, 2017, Proceedings, pages 117-132, 2017.
doi:10.1007/978-3-319-59647-1_10.

Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124—
149, 1991. doi:10.1145/114005.102808.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463-492, 1990. doi:10.1145/78969.78972.

Kishori M. Konwar, Peter M. Musial, Nicolas C. Nicolaou, and Alexander A. Shvartsman.
Implementing atomic data through indirect learning in dynamic networks. In Sizth IEEE
International Symposium on Network Computing and Applications (NCA 2007), 12 - 1}
July 2007, Cambridge, MA, USA, pages 223-230, 2007. doi:10.1109/NCA.2007.30.
Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44(2):35-40, 2010. doi:10.1145/1773912.1773922.
L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
progranm. [EEE Trans. Comput., 28(9):690-691, 1979. doi:10.1109/TC.1979.1675439.
Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133-169, 1998. doi:10.1145/279227.279229.

Barbara Liskov. The power of abstraction. In Nancy A. Lynch and Alexander A. Shvarts-
man, editors, Distributed Computing, 24th Int-1 Symposium, DISC 2010 Proc., volume 6343
of LNCS. Springer, 2010. doi:10.1007/978-3-642-15763-9.

Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. In Franco P. Preparata, editor, Parallel and Distrib-
uted Computing, volume 4 of Advances in Computing Research, pages 163-183. JAT Press,
Greenwich, Conn., 1987.

N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

http://dx.doi.org/10.1007/978-3-540-87779-0_20
http://dx.doi.org/10.1016/j.jpdc.2008.05.004
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1007/978-3-319-59647-1_10
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1109/NCA.2007.30
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1007/978-3-642-15763-9

T. Hadjistasi and A. A. Schwarzmann

40

41

42

43

44

Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant
Computing, pages 272-281, 1997.

Achour Mostéfaoui and Michel Raynal. Time-efficient read/write register in crash-prone
asynchronous message-passing systems. In Networked Systems - jth International Confer-
ence, NETYS 2016, Marrakech, Morocco, May 18-20, 2016, Revised Selected Papers, pages
250265, 2016. doi:10.1007/978-3-319-46140-3_21.

Peter M. Musial, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Implementing
distributed shared memory for dynamic networks. Commun. ACM, 57(6):88-98, 2014.
doi:10.1145/2500874.

René Peeters. The maximum edge biclique problem is np-complete. Discrete Applied
Mathematics, 131(3):651-654, 2003. doi:10.1016/S0166-218X(03)00333-0.

Marko Vukolic. Quorum Systems: With Applications to Storage and Consensus. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2012. doi:
10.2200/S00402ED1V01Y201202DCT009.

1:19

ICALP 2018

http://dx.doi.org/10.1007/978-3-319-46140-3_21
http://dx.doi.org/10.1145/2500874
http://dx.doi.org/10.1016/S0166-218X(03)00333-0
http://dx.doi.org/10.2200/S00402ED1V01Y201202DCT009
http://dx.doi.org/10.2200/S00402ED1V01Y201202DCT009

	Introduction
	Distribution and Consistency
	SWMR Implementations
	MWMR Implementations
	Shared Memory in Dynamic Settings
	Discussion

