
Power of d Choices with Simple Tabulation
Anders Aamand1

BARC, University of Copenhagen, Universitetsparken 1, Copenhagen, Denmark.
aa@di.ku.dk

https://orcid.org/0000-0002-0402-0514

Mathias Bæk Tejs Knudsen
University of Copenhagen and Supwiz, Copenhagen, Denmark.
mathias@tejs.dk

https://orcid.org/0000-0001-5308-9609

Mikkel Thorup1

BARC, University of Copenhagen, Universitetsparken 1, Copenhagen, Denmark.
mikkel2thorup@gmail.com

https://orcid.org/0000-0001-5237-1709

Abstract
We consider the classic d-choice paradigm of Azar et al. [STOC’94] in which m balls are put into
n bins sequentially as follows: For each ball we are given a choice of d bins chosen according to
d hash functions and the ball is placed in the least loaded of these bins, breaking ties arbitrarily.
The interest is in the number of balls in the fullest bin after all balls have been placed.

In this paper we suppose that the d hash functions are simple tabulation hash functions which
are easy to implement and can be evaluated in constant time. Generalising a result by Dahlgaard
et al. [SODA’16] we show that for an arbitrary constant d ≥ 2 the expected maximum load is at
most lg lgn

lg d +O(1). We further show that by using a simple tie-breaking algorithm introduced by
Vöcking [J.ACM’03] the expected maximum load is reduced to lg lgn

d lgϕd
+O(1) where ϕd is the rate

of growth of the d-ary Fibonacci numbers. Both of these expected bounds match those known
from the fully random setting.

The analysis by Dahlgaard et al. relies on a proof by Pătraşcu and Thorup [J.ACM’11]
concerning the use of simple tabulation for cuckoo hashing. We require a generalisation to d > 2
hash functions, but the original proof is an 8-page tour de force of ad-hoc arguments that do not
appear to generalise. Our main technical contribution is a shorter, simpler and more accessible
proof of the result by Pătraşcu and Thorup, where the relevant parts generalise nicely to the
analysis of d choices.

2012 ACM Subject Classification Theory of computation→ Pseudorandomness and derandom-
ization, Mathematics of computing → Random graphs, Mathematics of computing → Probabil-
istic algorithms, Theory of computation → Online algorithms, Theory of computation → Data
structures design and analysis, Theory of computation → Bloom filters and hashing

Keywords and phrases Hashing, Load Balancing, Balls and Bins, Simple Tabulation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.5

Related Version A full version of the paper is available at [1], https://arxiv.org/abs/1804.
09684.

1 Research supported by Thorup’s Advanced Grant DFF-0602-02499B from the Danish Council for
Independent Research and by his Investigator Grant 16582, Basic Algorithms Research Copenhagen
(BARC), from the VILLUM Foundation.

EA
T

C
S

© Anders Aamand, Mathias B.T. Knudsen, and Mikkel Thorup;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aa@di.ku.dk
https://orcid.org/0000-0002-0402-0514
mailto:mathias@tejs.dk
https://orcid.org/0000-0001-5308-9609
mailto:mikkel2thorup@gmail.com
https://orcid.org/0000-0001-5237-1709
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.5
https://arxiv.org/abs/1804.09684
https://arxiv.org/abs/1804.09684
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Power of d Choices with Simple Tabulation

1 Introduction

Suppose that we are to place m = O(n) balls sequentially into n bins. If the positions of the
balls are chosen independently and uniformly at random it is well-known that the maximum
load of any bin is2 Θ(logn/ log logn) whp (i.e. with probability 1−O(n−γ) for arbitrarily
large fixed γ). See for example [10] for a precise analysis.

Another allocation scheme is the d-choice paradigm (also called the d-choice balanced
allocation scheme) first studied by Azar et al. [2]: The balls are inserted sequentially by for
each ball choosing d bins, according to d hash functions h1, . . . , hd and placing the ball in
the one of these d bins with the least load, breaking ties arbitrarily. Azar et al. [2] showed
that using independent and fully random hash functions the maximum load surprisingly
drops to at most log logn

log d +O(1) whp. This result triggered an extensive study of this and
related types of load balancing schemes. Currently the paper by Azar et al. has more than
700 citations by theoreticians and practitioners alike. The reader is referred to the text
book [13] or the recent survey [21] for thorough discussions. Applications are numerous and
are surveyed in [11, 12].

An interesting variant was introduced by Vöcking [20]. Here the bins are divided into
d groups each of size g = n/d and for each ball we choose a single bin from each group.
The balls are inserted using the d-choice paradigm but in case of ties we always choose the
leftmost of the relevant bins i.e. the one in the group of the smalles index. Vöcking proved
that in this case the maximum load drops further to log logn

d logϕd
+O(1) whp.

In this paper we study the use of simple tabulation hashing in the load balancing schemes
by Azar et al. and by Vöcking.

1.1 Simple tabulation hashing
Recall that a hash function h is a map from a key universe U to a range R chosen with
respect to some probability distribution on RU . If the distribution is uniform we say that h
is fully random but we may impose any probability distribution on RU .

Simple tabulation hashing was first introduced by Zobrist [23]. In simple tabulation
hashing U = [u] = {0, 1, . . . , u − 1} and R = [2r] for some r. We identify R with the
Z2-vector space (Z2)r. The keys x ∈ U are viewed as vectors consisting of c > 1 characters
x = (x[0], . . . , x[c− 1]) with each x[i] ∈ Σ def= [u1/c]. We always assume that c = O(1). The
simple tabulation hash function h is defined by

h(x) =
c−1⊕
i=0

hi(x[i])

where h0, . . . , hc−1 : Σ → R are chosen independently and uniformly at random from RΣ.
Here ⊕ denotes the addition in R which can in turn be interpreted as the bit-wise XOR of
the elements hi(x[i]) when viewed as bit-strings of length r.

Simple tabulation is trivial to implement, and very efficient as the character tables
h0, . . . , hc−1 fit in fast cache. Pătraşcu and Thorup [15] considered the hashing of 32-bit keys
divided into 4 8-bit characters, and found it to be as fast as two 64-bit multiplications. On
computers with larger cache, it may be faster to use 16-bit characters. We note that the c
character table lookups can be done in parallel and that character tables are never changed
once initialised.

2 All logarithms in this paper are binary.

A. Aamand, M.B. T. Knudsen, and M. Thorup 5:3

In the d-choice paradigm, it is very convenient that all the output bits of simple tabulation
are completely independent (the jth bit of h(x) is the XOR of the jth bit of each hi(x[i])).
Using (dr)-bit hash values, can therefore be viewed as using d independent r-bit hash values,
and the d choices can thus be computed using a single simple tabulation hash function and
therefore only c lookups.

1.2 Main results
We will study the maximum load when the elements of a fixed set X ⊂ U with |X| = m are
distributed into d groups of bins G1, . . . , Gd each of size g = n/d using the d-choice paradigm
with independent simple tabulation hash functions h1, . . . , hd : U → [n/d]. The d choices
thus consist of a single bin from each group as in the scheme by Vöcking but for x ∈ X we
may identify hi(x) with (hi(x), i) ∈ [n/d]× [d] and thus think of all hi as mapping to the
same set of bins like in the scheme by Azar et al.

Dahlgaard et al. [7] analysed the case d = 2 proving that if m = O(n) balls are distributed
into two tables each consisting of n/2 bins according to the two choice paradigm using two
independently chosen simple tabulation hash functions, the maximum load of any bin is
O(log logn) whp. For k = O(1) they further provided an example where the maximum
load is at least bkc−1/2c log logn−O(1) with probability Ω(n−2(k−1)(c−1)). Their example
generalises to arbitrary fixed d ≥ 2 so we cannot hope for a maximum load of (1+o(1)) log logn

log d
or even 100× log logn whp when d is constant. However, as we show in the full version of
this paper [1], their result implies that even with d = O(1) choices the maximum load is
O(log logn) whp.

Dahlgaard et al. also proved that the expected maximum load is at most log logn+O(1)
when d = 2. We prove the following result which generalises this to arbitrary d = O(1).

I Theorem 1. Let d > 1 be a fixed constant. Assume m = O(n) balls are distributed into
d tables each of size n/d according to the d-choice paradigm using d independent simple
tabulation hash functions h1, . . . , hd : U → [n/d]. Then the expected maximum load is at
most log logn

log d +O(1).

When in the d-choice paradigm we sometimes encounter ties when placing a ball — several
bins among the d choices may have the same minimum load. As observed by Vöcking [20]
the choice of tie breaking algorithm is of subtle importance to the maximum load. In the
fully random setting, he showed that if we use the Always-Go-Left algorithm which in
case of ties places the ball in the leftmost of the relevant bins, i.e. in the bin in the group of
the smallest index, the maximum load drops to log logn

d logϕd
+O(1) whp. Here ϕd is the unique

positive real solution to the equation xd = xd−1 + · · ·+ x+ 1. We prove that his result holds
in expectation when using simple tabulation hashing.

I Theorem 2. Suppose that we in the setting of Theorem 1 use the Always-Go-Left algorithm
for tie-breaking. Then the expected maximum load of any bin is at most log logn

d logϕd
+O(1).

Note that ϕd is the rate of growth of the so called d-ary Fibonacci numbers for example
defined by Fd(k) = 0 for k ≤ 0, Fd(1) = 1 and finally Fd(k) = Fd(k − 1) + · · ·+ Fd(k − d)
when k > 1. With this definition we can write ϕd = limk→∞

k
√
Fd(k). It is easy to check

that (ϕd)d>1 is an increasing sequence converging to 2.

1.3 Technical contributions
In proving Theorem 1 we would ideally like to follow the approach by Dahlgaard et al. [7]
for the case d = 2 as close as possible. They show that if some bin gets load k + 1 then

ICALP 2018

5:4 Power of d Choices with Simple Tabulation

either the hash graph (informally, the d-uniform hypergraph with an edge {h1(x), . . . , hd(x)}
for each x ∈ X) contains a subgraph of size O(k) with more edges than nodes or a certain
kind of “witness tree” Tk. They then bound the probability that either of these events occur
when k = log logn+ r for some sufficiently large constant r. Putting k = log logn

log d + r for a
sufficiently large constant r we similarly have three tasks:
(1) Define the d-ary witness trees and argue that if some bin gets load k+ 1 then either (A):

the hash graph contains a such, or (B): it contains a subgraph G = (V,E) of size O(k)
with |V | ≤ (d− 1)|E| − 1.

(2) Bound the probability of (A).
(3) Bound the probability of (B).

Step (1) and (2) require intricate arguments but the techniques are reminiscent to those
used by Dahlgaard et al. in [7] and it is not surprising that their arguments generalise to our
setting. Due to space limitations this part of our analysis can be found in the full version of
this paper [1].

Our main technical contribution is our work on step (3) as we now describe. Dealing
with step (3) in the case d = 2 Dahlgaard et al. used the proof by Pătraşcu and Thorup [15]
of the result below concerning the use of simple tabulation for cuckoo hashing3.

I Theorem 3 (Pătraşcu and Thorup [15]). Fix ε > 0. Let X ⊂ U be any set of m keys. Let
n be such that n > 2(1 + ε)m. With probability 1 − O(n−1/3) the keys of X can be placed
in two tables of size n/2 with cuckoo hashing using two independent simple tabulation hash
functions h0 and h1.

Unfortunately for us, the original proof of Theorem 3 consists of 8 pages of intricate
ad-hoc arguments that do not seem to generalise to the d-choice setting. Thus we have
had to develop an alternative technique for dealing with step (3) As an extra reward this
technique gives a new proof of Theorem 3 which is shorter, simpler and more readable and
we believe it to be our main contribution and of independent interest4.

1.4 Alternatives
We have shown that balanced allocation with d choices with simple tabulation gives the same
expected maximum load as with fully-random hashing. Simple tabulation uses c lookups
in tables of size u1/c and c− 1 bit-wise XOR. The experiments from [15], with u = 232 and
c = 4, indicate this to be about as fast as two multiplications.

Before comparing with alternative hash functions, we note that we may assume that
u ≤ n2. If u is larger, we can first apply a universal hash function [3] from [u] to [n2]. This
yields an expected number of

(
n
2
)
/n2 < 1/2 collisions. We can now apply any hash function,

e.g., simple tabulation, to the reduced keys in [n2]. Each of the duplicate keys can increase
the maximum load by at most one, so the expected maximum load increases by at most 1/2.
If u = 2w, we can use the extremely simple universal hash function from [8], multiplying the
key by a random odd w-bit number and performing a right-shift.

Looking for alternative hash functions, it can be checked that O(logn)-independence
suffices to get the same maximum load bounds as with full randomness even with high

3 Recall that in cuckoo hashing, as introduced by Pagh and Rodler [14], we are in the 2-choice paradigm
but we require that no two balls collide. However, we are allowed to rearrange the balls at any point
and so the feasibility does only depend on the choices of the balls.

4 We mention in passing that Theorem 3 is best possible: There exists a set X of m keys such that with
probability Ω(n−1/3) cuckoo hashing is forced to rehash (see [15]).

A. Aamand, M.B. T. Knudsen, and M. Thorup 5:5

probability. High independence hash functions were pioneered by Siegel [17] and the most
efficient construction is the double tabulation of Thorup [18]. It gives independence uΩ(1/c2)

using space O(cu1/c) in time O(c). With c a constant this would suffice for our purposes.
However, looking into the constants suggested in [18], with 16-bit characters for 32-bit keys,
we have 11 times as many character table lookups with double tabulation as with simple
tabulation and we loose the same factor in space, so this is not nearly as efficient.

Another approach was given by Woelfel [22] using the hash functions he earlier developed
with Dietzfelbinger [9]. He analysed Vöcking’s Always-Go-Left algorithm, bounding the error
probability that the maximum load exceeded log logn

d logϕd
+O(1). Slightly simplified and translated

to match our notation, using d+ 1 k-independent hash functions and d lookups in tables of
size n2/c, the error probability is n1+o(1)−k/c. Recall that we may assume n2/c ≥ u1/c, so
this matches the space of simple tabulation with c characters. With, say, c = 4, he needs
5-independent hashing to get any non-trivial bound, but the fastest 5-independent hashing is
the tabulation scheme of Thorup and Zhang [19], which according to the experiments in [15]
is at least twice as slow as simple tabulation, and much more complicated to implement.

A final alternative is to compromise with the constant evaluation time. Reingold et al. [16]
have shown that using the hash functions from [4] yields a maximum load of O(log logn) whp.
The functions use O(logn log logn) random bits and can be evaluated in time O((log logn)2).
Very recently Chen [5] used a refinement of the hash family from [4] giving a maximum load of
at most log logn

log d +O(1) whp and log logn
d logϕd

+O(1) whp using the Always-Go-Left algorithm. His
functions require O(logn log logn) random bits and can be evaluated in time O((log logn)4).
We are not so concerned with the number of random bits. Our main interest in simple
tabulation is in the constant evaluation time with a very low constant.

1.5 Structure of the paper
In Section 2 we provide a few preliminaries for the proofs of our main results. In Section 3
we deal with step (3) described under Technical contributions. To provide some intuition we
first provide the new proof of Theorem 3. Finally, we show how to proceed for general d. For
step (1) and (2) as well as the final deduction of Theorem 1 and Theorem 2 the reader is
referred to the full version of this paper [1].

2 Preliminaries

First, recall the definition of a hypergraph:

I Definition 4. A hypergraph is a pair G = (V,E) where V is a set and E is a multiset
consisting of elements from P(V). The elements of V are called vertices and the elements
of E are called edges. We say that G is d-uniform if |e| = d for all e ∈ E.

When using the d-choice paradigm to distribute a set of keys X there is a natural d-uniform
hypergraph associated with the keys of X.

I Definition 5. Given a set of keys X ⊂ U the hash graph is the d-uniform hypergraph
on [n/d]× [d] with an edge {(h1(x), 1), . . . , (hd(x), d)} for each x ∈ X.

When working with the hash graph we will hardly ever distinguish between a key x and
the corresponding edge, since it is tedious to write {(hi(x), i)}1≤i≤d. Statements such as
“P = (x1, . . . , xt) is a path” or “The keys x1 and x2 are adjacent in the hash graph” are
examples of this abuse of notation.

ICALP 2018

5:6 Power of d Choices with Simple Tabulation

Figure 1 Double cycles - the minimal obstructions for cuckoo hashing.

Now we discuss the independence of simple tabulation. First recall that a position
character is an element (j, α) ∈ [c]× Σ. With this definition a key x ∈ U can be viewed as
the set of position characters {(i, x[i])}c−1

i=0 but it is sensible to define h(S) =
⊕k

i=1 hji(αi)
for any set S = {(j1, α1), . . . , (jk, αk)} of position characters.

In the classical notion of independence of Carter and Wegman [3] simple tabulation is
not even 4-independent. In fact, the keys (a0, b0), (a0, b1), (a1, b0) and (a1, b1) are dependent,
the issue being that each position character appears an even number of times and so the
bitwise XOR of the hash values will be the zero string. As proved by Thorup and Zhang [19]
this property in a sense characterises dependence of keys.

I Lemma 6 (Thorup and Zhang [19]). The keys x1, . . . , xk ∈ U are dependent if and only if
there exists a non-empty subset I ⊂ {1, . . . , k} such that each position character in (xi)i∈I
appears an even number of times. In this case we have that

⊕
i∈I h(xi) = 0.

When each position character appears an even number of times in (xi)i∈I we will write⊕
i∈I xi = ∅ which is natural when we think of a key as a set of position characters and ⊕ as

the symmetric difference. As shown by Dahlgaard et al. [6] the characterisation in Lemma 6
can be used to bound the independence of simple tabulation.

I Lemma 7 (Dahlgaard et al. [6]). Let A1, . . . , A2t ⊂ U . The number of 2t-tuples (x1, . . . , x2t)
∈ A1 × · · · ×A2t such that x1 ⊕ · · · ⊕ x2t = ∅ is at most5 ((2t− 1)!!)c

∏2t
i=1
√
|Ai|.

This lemma will be of extreme importance to us. In the full version of this paper [1] proofs
of both Lemma 6 and Lemma 7 can be found.

3 Cuckoo hashing and generalisations

The following result is a key ingredient in the proofs of Theorem 1 and Theorem 2.

I Theorem 8. Suppose that we are in the setting of Theorem 1 i.e. d > 1 is a fixed constant,
X ⊂ U with |X| = m = O(n) and h1, . . . , hd : U → [n/d] are independent simple tabulation
hash functions. The probability that the hash graph contains a subgraph G = (V,E) of size
|E| = O(log logn) with |V | ≤ (d− 1)|E| − 1 is at most n−1/3+o(1).

Before giving the full proof however we provide the new proof of Theorem 3 which is more
readable and illustrates nearly all the main ideas.

Proof of Theorem 3. It is well known that cuckoo hashing is possible if and only if the hash
graph contains no subgraph with more edges than nodes. A minimal such graph is called a
double cycle and consists of two cycles connected by a path or two vertices connected by

5 Recall the double factorial notation: If a is a positive integer we write a!! for the product of all the
positive integers between 1 and a that have the same parity as a.

A. Aamand, M.B. T. Knudsen, and M. Thorup 5:7

x

x1
x2

x3

x4

x5
x6

x7

x8 x9x2

x3

x1

x4

x2

x4

x1

x3

y1

y3

y2y2

y1

y3

z2

z1

z3
z4

z1

z2

z4

z3

x = y

z z
x y

Figure 2 Non-black edges: Two tridents and a lasso. Black edges: Keys that are each dependent
on the set of coloured keys.

three disjoint paths (see Figure 1). Hence, it suffices to bound the probability that the hash
graph contains a double cycle by O(n−1/3).

We denote by g the number of bins in each of the two groups. Thus in this setting
g = n/2 ≥ (1 + ε)m. First of all, we argue that we may assume that the hash graph contains
no trail of length at least ` = 4

3
logn

log(1+ε) consisting of independent. Indeed, the keys of a
such can be chosen in at most m` ways and since we require ` − 1 equations of the form
hi(x) = hi(y), i ∈ {1, 2} to be satisfied and since these events are independent the probability
that the hash graph contains such a trail is by a union bound at most

2m`

g`−1 ≤
n

(1 + ε)` = n−1/3.

Now we return to the double cycles. Let A` denote the event that the hash graph contains
a double cycle of size ` consisting of independent keys. The graph structure of a such can
be chosen in O(`2) ways and the keys (including their positions) in at most m` ways. Since
there are `+ 1 equations of the form hi(x) = hi(y), i ∈ {1, 2} to be satisfied the probability
that the hash graph contains a double cycle consisting of independent keys is at most

m∑
`=3

P(A`) = O

(
m∑
`=3

`2
m`

g`+1

)
= O

(
1
n

m∑
`=3

`2

(1 + ε)`

)
= O(n−1).

The argument above is the same as in the fully random setting. We now turn to the issue of
dependencies in the double cycle starting with the following definition.

I Definition 9. We say that a graph is a trident if it consists of three paths P1, P2, P3 of
non-zero lengths meeting at a single vertex v. (see the non-black part of Figure 2).

We say that a graph is a lasso if it consists of a path that has one end attached to a
cycle (see the non-black part of Figure 2).

We claim that in any double cycle D consisting of dependent keys we can find one of the
following structures (see Figure 2):

S1: A lasso L consisting of independent keys together with a key x not on L and incident
to the degree 1 vertex of L such that x is dependent on the keys of L.
S2: A trident T consisting of independent keys together with 3 (not necessarily distinct)
keys x, y, z not on T but each dependent on the keys of T and incident to the 3 vertices
of degree 1 on T

To see this suppose first that one of the cycles C of D consists of independent keys. In
this case any maximal lasso of independent keys in D containing the edges of C is an S1.

ICALP 2018

5:8 Power of d Choices with Simple Tabulation

On the other hand if all cycles contained in D consist of dependent keys we pick a vertex
of D of degree at least 3 and 3 incident edges. These 3 edges form an independent trident
(simple tabulation is 3-independent) and any maximal independent trident contained in D
and containing these edges forms an S2.

Our final step is thus to show that the probability that these structures appear in the
hash graph is O(n−1/3)

The lasso (S1):

Since the edges of the lasso form an independent trail it by the initial observation suffices to
bound the probability that the hash graph contains an S1 of size ` for any ` = O(logn).

Fix the size ` of the lasso. The number of ways to choose the graph structure of the lasso
is `− 2 < `. Denote the set of independent keys of the lasso by S = {x1, . . . , x`} and let x be
the dependent key in S1. By Lemma 6 we may write x =

⊕
i∈I xi for some I ⊂ {1, . . . , `}.

Fix the size |I| = t ≥ 3 (which is necessarily odd). By Lemma 7 the number of ways to choose
the keys of (xi)i∈I (including their order) is at most (t!!)cm(t+1)/2 and the number of ways to
choose their positions in the lasso is

(
`
t

)
. The number of ways to choose the remaining keys

of S is trivially bounded by m`−t and the probability that the choice of independent keys
hash to the correct positions in the lasso is at most 2/g`. By a union bound the probability
that the hash graph contains an S1 for fixed values of ` and t is at most

`(t!!)cm(t+1)/2m`−t
(
`

t

)
2
g`
.

This is maximised for t = 3. In fact, when ` ≤ m1/(c+2) and t ≤ `− 2 we have that

((t+ 2)!!)cm(t+3)/2m`−t−2(`
t+2
)

(t!!)cm(t+1)/2m`−t
(
`
t

) = (t+ 2)c

m

(
`−t
2
)(

t+2
2
) ≤ `c+2

m
≤ 1.

Thus the probability that the hash graph contains an S1 of size O(logn) is at most

O(logn)∑
`=3

∑̀
t=3

`3c
(
`

3

)
2m`−1

g`
= O

O(logn)∑
`=3

`5

n(1 + ε)`−1

 = O(n−1).

The trident (S2):

Fix the size ` of the trident. The number of ways to choose the structure of the trident is
bounded by `2 (once we choose the lengths of two of the paths the length of the third becomes
fixed). Let P1 = (x1, . . . , xt1), P2 = (y1, . . . , yt2) and P3 = (z1, . . . , zt3) be the three paths of
the trident meeting in xt1 ∩yt2 ∩ zt3 . As before we may assume that each has length O(logn).
Let S denote the keys of the trident and enumerate S = {w1, . . . , w`} in some order. Write
x =

⊕
i∈I wi, y =

⊕
j∈J wj and z =

⊕
k∈K wk for some I, J,K ⊂ {1, . . . , `}. By a proof

almost identical to that given for the lasso we may assume that |I| = |J | = |K| = 3. Indeed,
if for example |I| ≥ 5 we by Lemma 7 save a factor of nearly m2 when choosing the keys
of S and this makes up for the fact that the trident contains no cycles and hence that the
probability of a fixed set of independent keys hashing to it is a factor of g larger.

The next observation is that we may assume that |I ∩ J |, |J ∩K|, |K ∩ I| ≥ 2. Again the
argument is of the same flavour as the one given above. If for example |I ∩ J | = 1 we by
an application of Lemma 7 obtain that the number of ways to choose the keys of (wi)i∈I is
O(m2). Conditioned on this, the number of ways to choose the keys (wj)j∈J is O(m3/2) by

A. Aamand, M.B. T. Knudsen, and M. Thorup 5:9

another application of Lemma 7 with one of the Ai’s a singleton. Thus we save a factor of
m3/2 when choosing the keys of S which will again suffice. The bound gets even better when
|I ∩ J | = 0 where we save a factor of m2.

Suppose now that x1 is not a summand of
⊕

i∈I wi. Write x = wa ⊕ wb ⊕ wc and let A
be the event that the independent keys of S hash to the trident (with the equation involving
x1 and x2 being h2(x1) = h2(x2) without loss of generality). Then P(A) = 1

g`−1 . We observe
that

P(h1(x) = h1(x1) |A) = P(h1(x1) = h1(wa)⊕ h1(wb)⊕ h1(wc) |A) = g−1

since A is a conjunction of events of the form {hi(w) = hi(w′)} none of them involving
h1(x1)6. A union bound then gives that the probability that this can happen is at most

O(logn)∑
`=3

`2
(
`

3

)
(3!!)cm2m`−3

(
1
g

)`
= O

(
1
n

∞∑
`=3

`5

(1 + ε)`−1

)
= O(n−1).

Thus we may assume that x1 is a summand of
⊕

i∈I wi and by similar arguments that y1 is
a summand of

⊕
j∈J wj and that z1 is a summand of

⊕
k∈K wk.

To complete the proof we need one final observation. We can define an equivalence
relation on X ×X by (a, b) ∼ (c, d) if a⊕ b = c⊕ d. Denote by C = {C1, . . . , Cr} the set of
equivalence classes. One of them, say C1, consists of the elements (x, x)x∈X . We will say
that the equivalence class Ci is large if |Ci| ≥ m2/3 and small otherwise. Note that

r∑
i=1
|Ci|2 = |{(a, b, c, d) ∈ X4 : a⊕ b⊕ c⊕ d = ∅}| ≤ 3cm2

by Lemma 7. In particular the number of large equivalence classes is O(m2/3).
If h is a simple tabulation hash function we can well-define a map h̃ : C → R by

h̃(a, b) = h(a)⊕h(b). Since the number of large equivalence classes is O(m2/3) the probability
that h̃i(C) = 0 for some large C ∈ C\{C1} and some i ∈ {1, 2} is O(m2/3/n) = O(n−1/3)
and we may thus assume this does not happen.

In particular, we may assume that (x, x1), (y, y1) and (z, z1) each represent small equival-
ence classes as they are adjacent in the hash graph. Now suppose that y1 is not a summand
in x =

⊕
i∈I wi. The number of ways to pick (xi)i∈I is at most 3cm2 by Lemma 7. By doing

so we fix the equivalence class of (y, y1) but not y1 so conditioned on this the number of
ways to pick (yj)j∈J is at most m2/3. The number of ways to choose the remaining keys is
bounded by m`−4 and a union bound gives that the probability of having such a trident is at
most

O(logn)∑
`=3

`23
(
`

2

)
3cm2m2/3m`−4

(
1
g

)`−1
= O

(
n−1/3

∞∑
`=3

`4

(1 + ε)`−4/3

)
= O(n−1/3),

which suffices.
We may thus assume that y1 is a summand in

⊕
i∈I wi and by an identical argument that

z1 is a summand in
⊕

i∈I wi and hence x = x1 ⊕ y1 ⊕ z1. But the same arguments apply to
y and z reducing to the case when x = y = z = x1 ⊕ y1 ⊕ z1 which is clearly impossible. J

6 If x1 = wa, say, we don’t necessarily get the probability g−1. In this case the probability is P(h1(wb) =
h1(wc) | A) and the event {h(wb) = h(wc)} might actually be included in A in which case the probability
is 1. This can of course only happen if the keys wb and wc are adjacent in the trident so we could
impose even further restrictions on the dependencies in S2.

ICALP 2018

5:10 Power of d Choices with Simple Tabulation

3.1 Proving Theorem 8
Now we will explain how to prove Theorem 8 proceeding much like we did for Theorem 3.
Let us say that a d-uniform hypergraph G = (V,E) is tight if |V | ≤ (d− 1)|E| − 1. With
this terminology Theorem 8 states that the probability that the hash graph contains a tight
subgraph of size O(log logn) is at most n−1/3+o(1). It clearly suffices to bound the probability
of the existence of a connected tight subgraph of size O(log logn).

We start with the following two lemmas. The counterparts in the proof of Theorem 3 are
the bounds on the probability of respectively an independent double cycle and an independent
lasso with a dependent key attached.

I Lemma 10. Let A1 denote the event that the hash graph contains a tight subgraph
G = (V,E) of size O(log logn) consisting of independent keys. Then P(A1) ≤ n−1+o(1).

Proof. Let ` = |E| be fixed. The number of ways to choose the keys of E is trivially bounded
by m` and the number of ways to choose the set of nodes V in the hash graph is

(
n

(d−1)`−1
)
.

For such a choice of nodes let ai denote the number of nodes of V in the i’th group. The
probability that one of the keys hash to V is then

d∏
i=1

dai
n
≤
(
a1 + · · ·+ ad

n

)d
≤
(
d`

n

)d
.

By the independence of the keys and a union bound we thus have that

P(A1) ≤
O(log logn)∑

`=2
m`

(
n

(d− 1)`− 1

)(
d`

n

)d`
≤
O(log logn)∑

`=2

1
n

(m
n

)`
(d`)d` = n−1+o(1),

as desired. J

I Lemma 11. Let A2 be the event that the hash graph contains a subgraph G = (V,E) with
|V | ≤ (d − 1)|E| and |E| = O(log logn) such that the keys of E are independent but such
that there exists a key y /∈ E dependent on the keys of E. Then P(A2) ≤ n−1+o(1).

Proof. Let |E| = ` be fixed and write E = {x1, . . . , x`} . We want to bound the number of
ways to choose the keys of E. By Lemma 6, y =

⊕
i∈I xi for some I ⊂ {1, . . . , `} with |I| = r

for some odd r ≥ 3. Let r be fixed for now. Using Lemma 7, we see that the number of ways
to choose the keys of E is no more than (r!!)cm r+1

2 m`−r. For fixed ` and r the probability is
thus bounded by

(r!!)cm`− r−1
2

(
n

`(d− 1)

)(
d`

n

)d`
= n−1+o(1)

and a union bound over all ` = O(log logn) and r ≤ ` suffices. J

We now generalise the notion of a double cycle starting with the following definition.

I Definition 12. Let G = (V,E) be a d-uniform hypergraph. We say that a sequence of
edges P = (e1, . . . , et) of G is a path if |ei ∩ ei+1| = 1 for 1 ≤ i ≤ t− 1 and ei ∩ ej = ∅ when
i < j − 1.

We say that C = (e1, . . . , et) is a cycle if t ≥ 3, |ei ∩ ei+1| = 1 for all i (mod t) and
ei ∩ ej = ∅ when i 6= j ± 1 (mod t).

Next comes the natural extension of the definition of double cycles to d-uniform hypergraphs.

A. Aamand, M.B. T. Knudsen, and M. Thorup 5:11

Figure 3 Double cycles in the case d = 3. The triangles represent edges of the graph and the
corners represent the vertices.

I Definition 13. A d-uniform hypergraph G is called a double cycle if it has either of the
following forms (see Figure 3).

D1: It consists of of two vertex disjoint cycles C1 and C2 connected by a path P =
(x1, . . . , xt) such that |x1∩V (C1)| = |xt∩V (C2)| = 1 and xi+1∩V (C1) = xi∩V (C2) = ∅
for 1 ≤ i ≤ t− 1 . We also allow P to have zero length and |V (C1) ∩ V (C2)| = 1.
D2: It consist of a cycle C and a path P = (x1, . . . , xt) of length t ≥ 2 such that
|x1 ∩ V (C)| = |xt ∩ V (C)| = 1 and xi ∩ V (C) = ∅ for 2 ≤ i ≤ t− 1. We also allow t = 1
and |x1 ∩ C| = 2.

Note that a double cycle always has |V | = (d− 1)|E| − 1.
Now assume that the hash graph contains a connected tight subgraph G = (V,E) of size

O(log logn) but that neither of the events of Lemma 10 and 11 has occurred. In particular
no two edges e1, e2 of G has |e1 ∩ e2| ≥ 2 and no cycle consists of independent keys.

It is easy to check that under this assumption G contains at least two cycles. Now pick a
cycle C1 of least possible length. Since simple tabulation is 3-independent the cycle consists
of at least 4 edges. If there exists an edge x not part of C1 with |x ∩ V (C1)| = 2 we get a
double cycle of type D2. If |x ∩ V (C1)| ≥ 3 we can use x to obtain a shorter cycle than C1
which is a contradiction7. Using this observation we see that if there is a cycle C2 6= C1 such
that |V (C1) ∩ V (C2)| ≥ 2 then we can find a D2 in the hash graph. Thus we may assume
that any cycle C2 6= C1 satisfies |V (C2) ∩ V (C1)| ≤ 1.

Now pick a cycle C2 different from C1 of least possible length. As before we may argue
that any edge x not part of C2 satisfies that |x ∩ V (C2)| ≤ 1. Picking a shortest path
connecting C1 and C2 (possibly the length is zero) gives a double cycle of type D1.

Next we define tridents (see the non-grey part of Figure 4).

I Definition 14. We call a d-uniform hypergraph T a trident if it consists of paths
P1 = (x1, . . . , xt1), P2 = (y1, . . . , yt2) and P3 = (z1, . . . , zt3) of non-zero length such that
either:

There is a vertex v such that xt1 ∩ yt2 ∩ zt3 = {v}, v is contained in no other edge of T
and no vertex different from v is contained in more than one of the three paths.
P1, P2 and P3\{zt3} = (z2, . . . , zt3) are vertex disjoint and (x1, . . . , xt1 , zt3 , yt2 , . . . , y1) is
a path.

Like in the proof of of Theorem 3 the existence of a double cycle not containing a cycle
of independent keys implies the existence of the following structure (see Figure 4):

7 Here we use that the length of C1 is at least 4. If C1 has length t the fact that x contains three nodes
of C1 only guarantees a cycle of length at most 3 + b t−3

3 c.

ICALP 2018

5:12 Power of d Choices with Simple Tabulation

Figure 4 The case d = 3. Non-grey edges: Tridents. Grey edges: Keys that are each dependent
on the set of non-black keys.

S1: A trident consisting of three paths P1 = (x1, . . . , xt1), P2 = (y1, . . . , yt2) and
P3 = (z1, . . . , zt3) such that the keys of the trident are independent and such that there
are, not necessarily distinct, keys x, y, z not in the trident extending the paths P1, P2
and P3 away from their common meeting point such that x, y and z are each dependent
on the keys in the trident.

We can bound the probability of this event almost identically to how we proceeded in
the proof of Theorem 3. The only difference is that when making the ultimate reduction to
the case where x = y = z = x1 ⊕ y1 ⊕ z1 this event is in fact possible (see Figure 4). In this
case however, there are three different hash function hx, hy and hz such that hx(x1) = hx(x),
hy(y1) = hy(x) and hz(z1) = hz(x). However, it is easy to bound the probability that this
occur: The number of ways to choose the keys (x, x1, y1, z1) is at most 3cm2 by Lemma 7.
The number of ways to choose the hash functions is upper bounded by d3. Since the hash
functions h1, . . . , hd are independent the probability that this can happen in the hash graph
is by a union bound at most

d33cm2
(
d

n

)3
= O(n−1)

which suffices to complete the proof of Theorem 8.

Summing up
For now we have spent most of our energy proving Theorem 8. At this point it is perhaps
not clear to the reader why it is important so let us again highlight the steps to Theorem 1.
First of all let k = log logn

log d + r for r a sufficiently large constant. The steps are:

(1) Show that if some bin has load k then either the hash graph contains a tight subgraph
of size O(k) or a certain kind of witness tree Tk.

(2) Bound the probability that the hash graph contains a Tk by O((log logn)−1).
(3) Bound the probability that the hash graph contains a tight subgraph of size O(k) by

O((log logn)−1).

We can now cross (3) of the list. In fact, we have a much stronger bound than we require.
The remaining steps as well as the final proofs of Theorem 1 and Theorem 2 are dealt with
in the full version of this paper [1]. As already mentioned the proofs of all the above steps
(except step (3)) are intricate but straightforward generalisations of the methods in [7].

A. Aamand, M.B. T. Knudsen, and M. Thorup 5:13

References
1 Anders Aamand, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. Power of d choices with

simple tabulation. CoRR, abs/1804.09684, 2018. URL: https://arxiv.org/abs/1804.
09684.

2 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM
Journal of Computation, 29(1):180–200, 1999. See also STOC’94.

3 Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979. See also STOC’77.

4 L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins: Smaller hash
families and faster evaluation. In IEEE 52nd Symposium on Foundations of Computer
Science, FOCS, pages 599–608, 2011.

5 Xue Chen. Derandomized balanced allocation. CoRR, abs/1702.03375, 2017. Preprint.
URL: http://arxiv.org/abs/1702.03375, arXiv:1702.03375.

6 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. Hashing
for statistics over k-partitions. In Proc. 56th Symposium on Foundations of Computer
Science, FOCS, pages 1292–1310, 2015.

7 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. The
power of two choices with simple tabulation. In Proc. 27. ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1631–1642, 2016.

8 Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable
randomized algorithm for the closest-pair problem. Journal of Algorithms, 25(1):19–51,
1997. doi:10.1006/jagm.1997.0873.

9 Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple hash func-
tions. In Proc. 35th ACM Symposium on Theory of Computing, STOC, pages 629–638,
2003. doi:10.1145/780542.780634.

10 Gaston H. Gonnet. Expected length of the longest probe sequence in hash code searching.
Journal of the ACM, 28(2):289–304, 1981.

11 Michael Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distribed Systems, 12(10):1094–1104, 2001.

12 Michael Mitzenmacher, Andrea W. Richa, and Ramesh Sitaraman. The power of two
random choices: A survey of techniques and results. Handbook of Randomized Computing,
1:255–312, 2001.

13 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

14 Rasmus Pagh and Flemming F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–
144, 2004. See also ESA’01.

15 Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing. Journal of
the ACM, 59(3):14:1–14:50, 2012. Announced at STOC’11.

16 Omer Reingold, Ron D. Rothblum, and Udi Wieder. Pseudorandom graphs in data struc-
tures. In Proc. 41st International Colloquium on Automata, Languages and Programming,
ICALP, pages 943–954, 2014. doi:10.1007/978-3-662-43948-7_78.

17 Alan Siegel. On universal classes of extremely random constant-time hash functions. SIAM
Journal of Computing, 33(3):505–543, 2004. See also FOCS’89.

18 Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high independ-
ence. In Proc. 54th Symposium on Foundations of Computer Science, FOCS, pages 90–99,
2013.

19 Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM Journal of Computing, 41(2):293–
331, apr 2012. Announced at SODA’04 and ALENEX’10.

ICALP 2018

https://arxiv.org/abs/1804.09684
https://arxiv.org/abs/1804.09684
http://arxiv.org/abs/1702.03375
http://arxiv.org/abs/1702.03375
http://dx.doi.org/10.1006/jagm.1997.0873
http://dx.doi.org/10.1145/780542.780634
http://dx.doi.org/10.1007/978-3-662-43948-7_78

5:14 Power of d Choices with Simple Tabulation

20 Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4):568–
589, 2003. See also FOCS’99.

21 Udi Wieder. Hashing, load balancing and multiple choice. Foundations and Trends in
Theoretical Computer Science, 12(3-4):275–379, 2017. doi:10.1561/0400000070.

22 Philipp Woelfel. Asymmetric balanced allocation with simple hash functions. In Proc. 17th
ACM-SIAM Symposium on Discrete Algorithm, SODA, pages 424–433, 2006.

23 Albert L. Zobrist. A new hashing method with application for game playing. Technical re-
port, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 1970.

http://dx.doi.org/10.1561/0400000070

	Introduction
	Simple tabulation hashing
	Main results
	Technical contributions
	Alternatives
	Structure of the paper

	Preliminaries
	Cuckoo hashing and generalisations
	Proving Theorem 8

