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Abstract
A noticeable fraction of Algorithms papers in the last few decades improve the running time
of well-known algorithms for fundamental problems by logarithmic factors. For example, the
O(n2) dynamic programming solution to the Longest Common Subsequence problem (LCS) was
improved to O(n2/ log2 n) in several ways and using a variety of ingenious tricks. This line of
research, also known as the art of shaving log factors, lacks a tool for proving negative results.
Specifically, how can we show that it is unlikely that LCS can be solved in time O(n2/ log3 n)?

Perhaps the only approach for such results was suggested in a recent paper of Abboud, Hansen,
Vassilevska W. and Williams (STOC’16). The authors blame the hardness of shaving logs on
the hardness of solving satisfiability on boolean formulas (Formula-SAT) faster than exhaustive
search. They show that an O(n2/ log1000 n) algorithm for LCS would imply a major advance in
circuit lower bounds. Whether this approach can lead to tighter barriers was unclear.

In this paper, we push this approach to its limit and, in particular, prove that a well-known
barrier from complexity theory stands in the way for shaving five additional log factors for
fundamental combinatorial problems. For LCS, regular expression pattern matching, as well as
the Fréchet distance problem from Computational Geometry, we show that an O(n2/ log7+ε n)
runtime would imply new Formula-SAT algorithms.

Our main result is a reduction from SAT on formulas of size s over n variables to LCS on
sequences of length N = 2n/2 · s1+o(1). Our reduction is essentially as efficient as possible, and it
greatly improves the previously known reduction for LCS with N = 2n/2 · sc, for some c ≥ 100.
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1 Introduction

Since the early days of Algorithms research, a noticeable fraction of papers each year shave
log factors for fundamental problems: they reduce the best known upper bound on the time
complexity from T (n) to T (n)/ logc n, for some c > 0. While in some cases a cynic would
call such results “hacks” and “bit tricks”, there is no doubt that they often involve ingenious
algorithmic ideas and suggest fundamental new ways to look at the problem at hand. In
his survey, Timothy Chan calls this kind of research “The Art of Shaving Logs” [37]. In
many cases, we witness a race of shaving logs for some problem, in which a new upper
bound is found every few months, without giving any hints on when this race is going to
halt. For example, in the last few years, the upper bound for combinatorial Boolean Matrix
Multiplication dropped from O(n3/ log2 n) [16], to O(n3/ log2.25 n) [20], to O(n3/ log3 n)
[38], and most recently to O(n3/ log4 n) [99]. Perhaps the single most important missing
technology for this kind of research is a tool for proving lower bounds.

Consider the problem of computing the Longest Common Subsequence (LCS) of two
strings of length n. LCS has a simple O(n2) time dynamic programming algorithm [93, 46].
Several approaches have been utilized in order to shave log factors such as the “Four
Russians” technique [16, 61, 74, 23, 58], utilizing bit-parallelism [10, 47, 62], and working
with compressed strings [48, 54]. The best known upper bounds are O(n2/ log2 n) for constant
size alphabets [74], and O(n2 log logn/ log2 n) for large alphabets [58]. But can we do better?
Can we solve LCS in O(n2/ log3 n) time? While the mathematical intrigue is obvious, we
remark that even such mild speedups for LCS could be significant in practice. Besides its
use as the diff operation in unix, LCS is at the core of highly impactful similarity measures
between biological data. A heuristic algorithm called BLAST for a generalized version of
LCS (namely, the Local Alignment problem [87]) has been cited more than sixty thousand
times [14]. While such heurisitics are much faster than the near-quadratic time algorithms
above, they are not guaranteed to return an optimal solution and are thus useless in many
applications, and biologists often fall back to (highly optimized implementations of) the
quadratic solutions, see, e.g. [71, 72].

How would one show that it is hard to shave logs for some problem? A successful line of
work, inspired by NP-hardness, utilizes “fine-grained reductions” to prove statements of the
form: a small improvement over the known runtime for problem A implies a breakthrough
algorithm for problem B, refuting a plausible hypothesis about the complexity of B. For
example, it has been shown that if LCS can be solved in O(n2−ε) time, where ε > 0, then
there is a breakthrough (2− δ)n algorithm for CNF-SAT, and the Strong Exponential Time
Hypothesis (SETH, defined below) is refuted [2, 29]. Another conjecture that has been
used to derive interesting lower bounds states that the 3-SUM problem2 cannot be solved
in O(n2−ε) time. It is natural to ask: can we use these conjectures to rule out log-factor
improvements for problems like LCS? And even more optimistically, one might hope to base
the hardness of LCS on a more standard assumption like P 6= NP. Unfortunately, we can
formally prove that these assumptions are not sharp enough to lead to any consequences
for log-factor improvements, if only Turing reductions are used. In Section 3 we prove the

2 3-SUM asks, given a list of n numbers, to find three that sum to zero. The best known upper bound is
O(n2(log log n)2/ log n) for real numbers [59, 53, 56] and O(n2(log log n/ log n)2) for integers [21].
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following theorem which also shows that an O(f(n)/ logc(f(n))) time algorithm for problem
A cannot imply, via a fine-grained reduction, an O(g(n)1−ε) algorithm for problem B, unless
B is (unconditionally) solvable in O(g(n)1−δ) time.

I Theorem 1.1 (Informally). If for some c > 0 there is a fine-grained reduction proving that
LCS is not in O(n2/ logc n) time unless SETH fails, then SETH is false.

Note that it also does not suffice to simply make SETH stronger by postulating a higher
running time lower bound for CNF-SAT, since superpolynomial improvements are known for
this problem [81, 34, 49, 8]. Similarly, we cannot base a study of log-factor improvements
on the APSP conjecture, since superlogarithmic improvements are known for APSP [97].
(However, 3SUM could be a candidate to base higher lower bounds on, since only log-factor
improvements are known [59, 53, 56, 21], see Section A of the full version for a discussion.)

Thus, in a time when super-linear lower bounds for problems like LCS are far out of
reach, and our only viable approach to obtaining such negative results is reductions-based,
we are left with two options. We could either leave the study of log-factor improvements in
limbo, without a technology for proving negative results, or we could search for natural and
convincing assumptions that are more fine-grained than SETH that could serve as the basis
for the negative results we desire. Such assumptions were recently proposed by Abboud,
Hansen, Vassilevska Williams and Williams [3]. The authors blame the hardness of shaving
logs on the hardness of solving satisfiability on boolean formulas (Formula-SAT) faster than
exhaustive search3, by polynomial factors (which are log-factors in the runtime), a task for
which there are well known “circuit lower bound” barriers in complexity theory. They show
that an O(n2/ log1000 n) algorithm for LCS would imply a major advance in circuit lower
bounds. In the final section of this paper, we give a more detailed argument in favor of this
approach. Whether one should expect it to lead to tight barriers, i.e. explaining the lack of
O(n2/ log3 n) algorithms for LCS or any other natural problem, was completely unclear.

The Machine Model

We use the Word-RAM model on words of size Θ(logn), where there is a set of operations
on words that can be performed in time O(1). Most papers do not fix the concrete set of
allowed operations, and instead refer to “typical Boolean and arithmetic operations”. In this
paper, we choose a set of operations P that is robust with respect to changing the word size:
For any operation ◦ ∈ P, given two words a, b (of size Θ(logn)) we can compute a ◦ b in
time (logn)1+o(1) on a Word RAM with word size Θ(log logn) and operation set P . In other
words, if we split a, b into Θ(logn/ log logn) words of size Θ(log logn) then a ◦ b can still be
computed very efficiently.

This robustness in particular holds for the following standard set of operations: initializing
a cell with a constant, bitwise AND, OR, NOT, shift, addition, subtraction, multiplication, and
division with remainder (since multiplication and division have near-linear time algorithms).

The results in this paper will get gradually weaker as we relax the restriction on near-linear
time per operation to higher runtimes, however, even with this restriction, to the best of our
knowledge this model captures all log shaving results in the literature (on the “standard”
Word RAM model without fancy word operations).

3 In [3] the authors focus on SAT on Branching Programs (BPs) rather than formulas, but due to standard
transformations between BPs and formulas, the two problems are equivalent up to polynomial factors.
Focusing on Formula-SAT will be crucial to the progress we make in this paper.

ICALP 2018
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Formula-SAT

A boolean formula over n input variables can be viewed as a tree in which every leaf is
marked by an input variable or its negation and every internal node or gate represents some
basic boolean operation. Throughout this introduction we will only talk about deMorgan
formulas, in which every gate is from the set {∧,∨}. The size of the formula is defined to be
the number of leaves in the tree.

In the Formula-SAT problem we are given a formula F of size s over n inputs, and we
have to decide whether there is an input {0, 1}n that makes it output 1. A naive algorithm
takes O(2n · s) time, since evaluating the formula on some input takes O(s) time. Can we
do better? We will call a SAT algorithm non-trivial4 if it has a runtime at most O( 2n

nε ), for
some ε > 0.

It seems like a clever algorithm must look at the given formula F and try to gain a
speedup by analyzing it. The more complicated F can be, the harder the problem becomes.
Indeed, Dantsin and Hirsch [49] survey dozens of algorithms for SAT on CNF formulas which
exploit their structure. For k-CNF formulas of size s there are 2ns/2Ω(n/k) time algorithms
(e.g. [81]), and for general CNF formulas the bound is 2ns/2Ω(n/ log ∆) where ∆ = s/n is
the clause-to-variable ratio [34, 49, 8]. The popular SETH [66, 35] essentially says that this
is close to optimal, and that there is no 2ns/2Ω(n) algorithm for CNF-SAT. For arbitrary
deMorgan formulas, the upper bounds are much worse. A FOCS’10 paper by Santhanam [84]
and several recent improvements [41, 43, 42, 70, 91] solve Formula-SAT on formulas of size
s = n3−16ε in time 2nsO(1)/2nε , which is non-trivial only for s = o(n3), and going beyond
cubic seems extremely difficult. This leads us to the first barrier which we will transform
into a barrier for shaving logs.

I Hypothesis 1.2. There is no algorithm that can solve SAT on deMorgan formulas of size
s = n3+Ω(1) in O( 2n

nε ) time, for some ε > 0, in the Word-RAM model.

Perhaps the main reason to believe this hypothesis is that despite extensive algorithmic
attacks on variants of SAT (perhaps the most extensively studied problem in computer
science) over decades, none of the ideas that anyone has ever come up with seem sufficient to
refute it. Recent years have been particularly productive in non-trivial algorithms designed
for special cases of Circuit-SAT [84, 86, 64, 35, 98, 22, 40, 67, 63, 44, 83, 57] (in addition to
the algorithms for deMorgan formulas above) and this hypothesis still stands.

A well-known “circuit lower bounds” barrier seems to be in the way for refuting Hypoth-
esis 1.2: can we find an explicit boolean function that cannot be computed by deMorgan
formulas of cubic size? Functions that require formulas of size Ω(n1.5) [89] and Ω(n2) [69]
have been known since the 60’s and 70’s, respectively. In the late 80’s, Andreev [15] proved an
Ω(n2.5) which was later gradually improved to Ω(n2.55) by Nisan and Wigderson [65] and to
Ω(n2.63) by Paterson and Zwick [79] until Håstad proved his n3−o(1) lower bound in FOCS’93
[60] (a recent result by Tal improves the no(1) term [90]). All these lower bound results use
the “random restrictions” technique, first introduced in this context by Subbotovskaya in
1961 [89], and it is known that a substantially different approach must be taken in order
to go beyond the cubic barrier. What does this have to do with Formula-SAT algorithms?
Interestingly, this same “random restrictions” technique was crucial to all the non-trivial
Formula-SAT algorithms mentioned above. This is not a coincidence, but only one out of

4 Some works on SAT algorithms used this term for runtimes of the form 2npoly(s)/nω(1). In our context,
we need to be a bit more fine-grained.
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the many examples of the intimate connection between the task of designing non-trivial
algorithms for SAT on a certain class F of formulas or circuits and the task of proving
lower bounds against F . This connection is highlighted in many recent works and in several
surveys [85, 78, 96]. The intuition is that both of these tasks seem to require identifying a
strong structural property of functions in F . There is even a formal connection shown by
Williams [95], which in our context implies that solving Formula-SAT on formulas of size
O(n3.1) in O(2n/n10) time (which is only slightly stronger than refuting Hypothesis 1.2) is
sufficient in order to prove that there is a function in the class ENP that cannot be computed
by formulas of size O(n3.1) (see [3] for more details). This consequence would be the first
polynomial progress on the fundamental question of worst case formula lower bounds since
Håstad’s result.

1.1 Our Results: New Reductions
Many recent papers have reduced CNF-SAT to fundamental problems in P to prove SETH-
based lower bounds (e.g. [80, 82, 6, 4, 27, 18, 7, 1, 33, 5, 19, 75, 39]). Abboud et al. [3] show
that even SAT on formulas, circuits, and more, can be efficiently reduced to combinatorial
problems in P. In particular, they show that Formula-SAT on formulas of size s over n inputs
can be reduced to an instance of LCS on sequences of length N = O(2n/2 · s1000). This acts
as a barrier for shaving logs as follows. A hypothetical O(N2/ logcN) time algorithm for
LCS can be turned into an algorithm for Formula-SAT in time

n1+o(1) · (2n/2 · s1000)2/(log 2Ω(n))c = O(2n · s2000/nc−1),

which for a large enough c ≥ 2001 would refute Hypothesis 1.2. The first n1+o(1) factor
in the runtime comes from the jump from n to N = 2n and our Word-RAM machine
model: whenever the LCS algorithm wants to perform a unit-cost operation on words of
size Θ(logN) (this is much more than the word size of our SAT algorithm which is only
Θ(logn) = Θ(log logN)), the SAT algorithm can simulate it in (logN)1+o(1) = n1+o(1) time
in the Word-RAM model with words of size Θ(logn).

Our main result is a much more efficient reduction to LCS. For large but constant size
alphabets, we get a near-linear dependence on the formula size, reducing the s1000 factor to
just s1+o(1).

I Theorem 1.3. Formula-SAT on formulas of size s on n inputs can be reduced to an instance
of LCS on two sequences over an alphabet of size σ of length N = 2n/2 · s1+O(1/ log logσ), in
O(N) time.

Thus, if LCS on sequences of length N and alphabet of size ω(1) can be solved in
O(N2/ logcN) time, then Formula-SAT can be solved in 2n · s

2+o(1)

nc ·n1+o(1) time. Recall that
the known upper bound for LCS is O(n2/ logc n) for any constant alphabet size, with c = 2,
and we can now report that the barrier of cubic formulas stands in the way of improving it
to c > 7 (see Corollary 1.6 below).

The novelty in the proof of Theorem 1.3 over [3] is discussed in Section 2. As an alternative
to Theorem 1.3, in Section D of the full version we present another reduction to LCS which
is much simpler than all previously known reductions, but uses a larger alphabet.

Fréchet Distance

An important primitive in computational geometry is to judge how similar are two basic geo-
metric objects, such as polygonal curves, represented as sequences of points in d-dimensional
Euclidean space. Such curves are ubiquitous, since they arise naturally as trajectory data of

ICALP 2018
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moving objects, or as time-series data of stock prices and other measures. The most popular
similarity measure for curves in computational geometry is the Fréchet distance, also known
as dog-leash-distance. For formal definitions see Section F of the full version. The Fréchet
distance has found many applications (see, e.g., [76, 26, 30]) and developed to a rich field of re-
search with many generalizations and variants (see, e.g., [11, 17, 13, 51, 36, 45, 32, 50, 73, 68]).

This distance measure comes in two variants: the continuous and the discrete. A classic
algorithm by Alt and Godau [12, 55] computes the continuous Fréchet distance in time
O(n2 logn) for two given curves with n vertices. The fastest known algorithm runs in time
O(n2(log logn)2) (on the Word RAM) [31]. If we only want to decide whether the Fréchet
distance is at most a given value δ, this algorithm runs in time O(n2(log logn)2/ logn). For
the discrete Fréchet distance, the original algorithm has running time O(n2) [52], which
was improved to O(n2 log logn/ logn) by Agarwal et al. [9]. Their algorithm runs in time
O(n2 log logn/ log2 n) for the decision version. It is known that both versions of the Fréchet
distance are SETH-hard [27]. However, this does not rule out log factor improvements. In
particular, no reduction from versions of SETH on formulas or branching programs is known.

In this paper we focus on the decision version of the discrete Fréchet distance (which we
simply call “Fréchet distance” from now on). We show that Fréchet distance suffers from the
same barriers for shaving logs like LCS. In particular, this reduction allows us to base the
usual Ω(n2−ε) lower bound on a weaker assumption than SETH, such as NC-SETH (see the
discussion in [3]). This is the first NC-SETH hardness for a problem that does not admit
alignment gadgets (as in [29]).

I Theorem 1.4. Formula-SAT on formulas of size s on n inputs can be reduced to an
instance of the Fréchet distance on two curves of length N = O(2n/2 · s), in O(N) time.

Regular Expression Pattern Matching

Our final example is the fundamental Regular Expression Pattern Matching problem: Decide
whether a given regular expression of length m matches a substring of a text of length
n. Again, there is a classical O(nm) algorithm [92], and the applicability and interest in
this problem resulted in algorithms shaving log factors; the first one by Myers [77] was
improved by Bille and Thorup [24] to time O(mn/ log1.5 n). Recently, Backurs and Indyk
proved an n2−o(1) SETH lower bound [19], and performed an impressive study of the exact
time complexity of the problem with respect to the complexity of the regular expression.
This study was essentially completed by Bringmann, Grønlund, and Larsen [28], up to no(1)

factors. In Section E of the full version we show that this problem is also capable of efficiently
simulating formulas and thus has the same barriers as LCS and Fréchet distance.

I Theorem 1.5. Formula-SAT on formulas of size s on n inputs can be reduced to an instance
of Regular Expression Pattern Matching on text and pattern of length N = O(2n/2 · s log s)
over a constant size alphabet, in O(N) time.

Consequences of the Cubic Formula Barrier

We believe that SAT on formulas can be tightly connected to many other natural problems
in P. As we discuss in the next section, such reductions seem to require problem-specific
engineering and are left for future work. The main point of this paper is to demonstrate
the possibility of basing such ultra fine-grained lower bounds on one common barrier. Our
conditional lower bounds are summarized in the following corollary, which shows that current
log-shaving algorithms are very close to the well-known barrier from complexity theory of
cubic formula lower bounds.



A. Abboud and K. Bringmann 8:7

I Corollary 1.6. For all ε > 0, solving any of the following problems in O(n2/ log7+ε n) time
refutes Hypothesis 1.2, and solving them in O(n2/ log17+ε n) time implies that ENP cannot be
computed by non-uniform formulas of cubic size:

LCS over alphabets of size ω(1)
The Fréchet distance on two curves in the plane
Regular Expression Pattern Matching over constant size alphabets.

The main reason that our lower bounds above are not tight (the gap between 2 and 7) is
that we need to start from SAT on cubic size formulas rather than linear size ones, due to
the fact that clever algorithms do exist for smaller formulas. We remark that throughout the
paper we will work with a class of formulas we call F1 (see Section 2 below), also known
as bipartite formulas, that are more powerful than deMorgan formulas yet our reduction
to LCS can support them as well. This makes our results stronger, since F1-Formula-SAT
could be a harder problem than SAT on deMorgan formulas. In fact, in an earlier version of
the paper we had suggested the hypothesis that F1-Formula-SAT does not have non-trivial
algorithms even on linear size formulas. This stronger hypothesis would give higher lower
bounds. However, Avishay Tal (personal communication) told us about such a non-trivial
algorithm for formulas of size up to n2−Ω(1) using tools from quantum query complexity. We
are optimistic that one could borrow such ideas or the “random restrictions” technique from
SAT algorithms in order to shave more logs for combinatorial problems such as LCS. This is
an intriguing direction for future work.

2 Technical Overview and the Reduction to LCS

We first define the class of frmulas F1. A formula F of size s over n variables x1, . . . , xn is
in the class F1 iff it has the following properties. The gates in the first layer (nodes in the
tree whose children are all leaves) compute arbitrary functions C : {0, 1}n/2 → {0, 1}, as
long as C can be computed in 2o(n) time and all children of a gate are marked with variables
in {x1, . . . , xn/2} or with variables in {xn/2+1, . . . , xn} but not with both. W.l.o.g. we can
assume that the inputs are only connected to nodes in the first layer. The gates in the other
layers compute deMorgan gates, i.e., OR and AND gates. The size of F is considered to be
the number of gates in the first layer. Since F is a formula and thus has fanout 1, our size
measure is up to constant factors equal to the total number of all gates except the inputs.
Note that the complexity of the functions in the first layer and their number of incoming
wires, i.e. the number of leaves in the tree, do not count towards the size of F .

All the reductions from SAT to problems in P mentioned in the introduction start with a
split-and-list reduction to some “pair finding" problem. In the SETH lower bounds, CNF-SAT
is reduced to the Orthogonal-Vectors problem of finding a pair a ∈ A, b ∈ B,A,B ⊆ {0, 1}d
that are orthogonal [94]. When starting from Formula-SAT, we get a more complex pair-
finding problem. In Section B of the full version we show a simple reduction from SAT on
formulas from the class F1 (which contains deMorgan formulas) to the following problem.

I Definition 2.1 (Formula-Pair Problem). Given a deMorgan formula over 2m variables
F = F (x1, . . . , xm, y1, . . . , ym) (each appearing once in F ), and two sets of vectors A,B ⊆
{0, 1}m of size n, decide if there is a pair a ∈ A, b ∈ B such that F (a1, . . . , am, b1, . . . , bm) =
true.

In Section B of the full version we show a Four-Russians type algorithm that solves
Formula-Pair in O(n2m/ log2 n) time, and even when m = |F | = (logn)1+o(1) no
O(n2/ log1+ε n) upper bound is known. By our reduction, such an upper bound would
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imply a non-trivial algorithm for SAT on formulas from F1. Moreover, Hypothesis 1.2 implies
that we cannot solve Formula-Pair in O(n2/ logε n) time, for m = (logn)3+Ω(1). In the
next sections, we reduce Formula-Pair to LCS, from which Theorem 1.3 follows. A simpler
reduction using much larger alphabet size can be found in Section D of the full version.

I Theorem 2.2. Formula-Pair on formulas of size s and lists of size n can be reduced to
an instance of LCS on two strings over alphabet of size σ ≥ 2 of length O(n · s1+O(1/ log logσ)),
in linear time.

The reduction constructs strings x, y and a number ρ such that LCS(x, y) ≥ ρ holds if and
only if the given Formula-Pair instance (F,A,B) is satisfiable. The approach is similar to the
reductions from Orthogonal-Vectors to sequence alignment problems (e.g. [6, 27, 18, 2, 29]).
The big difference is that our formula F can be much more complicated than a CNF, and so
we will need more powerful gadgets. Sequence gadgets that are able to simulate the evaluation
of deMorgan formulas were (implicitly) constructed in [3] with a recursive approach. Our
main contribution is an extremely efficient implementation of such gadgets with LCS.

The main part of the reduction is to construct gate gadgets: for any vectors a, b ∈ {0, 1}m
and any gate g of F , we construct strings x(g, a) and y(g, b) whose LCS determines whether
gate g evaluates to true for input (a, b) to F (see Section 2.1). Once we have this, to find a
pair of vectors a ∈ A, b ∈ B satisfying F , we combine the strings x(r, a), y(r, b), constructed
for the root r of F , using a known construction of so-called alignment gadgets [2, 29] from
previous work (see Section C.1 of the full version).

Let us quickly explain how [3] constructed gate gadgets and the main ideas that go into
our new construction. There are two kinds of gadgets, corresponding to the two types of gates
in F : AND and OR gates. Since the AND gadgets will be relatively simple, let us consider
the OR gadgets. Fix two inputs a, b, and let g = (g1 ∨ g2) be an OR gate, and assume
that we already constructed gate gadgets for g1, g2, namely x1 = x(g1, a), y1 = y(g1, b), x2 =
x(g2, a), y2 = y(g2, b) so that for i ∈ {1, 2} we have that LCS(xi, yi) is large if the gate gi
outputs true on input (a, b), and it is smaller otherwise. In [3], these gadgets were combined
as follows. Let β be an upper bound on the total length of the gadgets xi, yi. We add a
carefully chosen padding of 0’s and 1’s, so that any optimal matching of the two strings will
have to match either x1, y1 or x2, y2 but not both.

x := 04β x1 1β x2 04β

y := y1 1β04β1β y2

One then argues that, in any optimal LCS matching of x, y, the 04β block of y must
be matched either left or right. If it’s matched left, then the total score will be equal
to 4β + β + LCS(x2, y2) while if it’s matched right, we will get 4β + β + LCS(x1, y1).
Thus, LCS(x, y) is determined by the OR of g1, g2. The blowup of this construction is a
multiplicative factor of 11 with every level of the formula, and the length of the gadget of
the root will end up roughly 11depth(F ). To obtain our tight lower bounds, we will need to
decrease this blowup to 1 + εσ at every level, where εσ goes to 0 when the alphabet size σ
tends to infinity. With the above construction, decreasing the length of the padding will
allow the optimal LCS matching to cheat, e.g. by matching y1 to both x1 and x2, and no
longer corresponding to the OR of g1, g2.

Our first trick is an ultra-efficient OR gadget in case we are allowed unbounded alphabet
size. We take x1, y1 and transform all their letters into a new alphabet Σg1 , and we take
x2, y2 and transform their letters into a disjoint alphabet Σg2 . Then our OR gadget does not
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require any padding at all:

x := x1 x2

y := y2 y1

The crossing structure of this construction means that any LCS matching that matches letters
from x1, y1 cannot also match letters from x2, y2, and vice versa, while the disjoint alphabets
make sure that there can be no matches between x1, y2 or x2, y1. With such gadgets we can
encode a formula of size s with O(s) letters, for details see Section D of the full version.

But how would such an idea work for constant size alphabets? Once we allow x1 and
y2 to share even a single letter, this argument breaks. Natural attempts to simulate this
construction with smaller alphabets, e.g. by replacing each letter with a random sequence, do
not seem to work, and we do not know how to construct such an OR gadget with a smaller
alphabet in a black box way. The major part of our proof will be a careful examination of
the formula and the sub-gadgets g1, g2 in order to reduce the alphabet size to a large enough
constant, while using padding that is only 1 + εσ times the length of the sub-gadgets. We
achieve this by combining this crossing gadget with a small padding that will reuse letters
from alphabets that were used much deeper in the formula, and we will argue that the noise
we get from recycling letters is dominated by our paddings, in any optimal matching.

We remark that the reduction of [3] can be implemented in a generic way with any
problem that admits alignment gadgets as defined in [29], giving formula-gadgets of size
sO(1). The list of such problems includes LCS and Edit-Distance on binary strings. However,
to get gadgets of length s1+o(1) it seems that problem-specific reductions are necessary. A
big open question left by our work is to find the most efficient reduction from Formula-SAT
to Edit-Distance. A very efficient OR gadget, even if the alphabet is unbounded, might be
(provably) impossible. Can we use this intuition to shave more log factors for Edit-Distance?

Fréchet Distance falls outside the alignment gadgets framework of [29] and no reduction
from Formula-SAT was known before. In Section F of the full version we prove such a
reduction by a significant boosting of the SETH-lower bound construction of [27]. In order
to implement recursive AND/OR gadgets, our new proof utilizes the geometry of the curves,
in contrast to [27] which only used ten different points in the plane.

In the remainder of this section we present the details of the reduction to LCS. Some
missing proofs can be found in Section C of the full version.

2.1 Implementing Gates
Fix vectors a, b ∈ {0, 1}m (where 2m is the number of inputs to F ). In this section we prove
the following lemma which demonstrates our main construction.

I Lemma 2.3. For any sufficiently large σ > 0 let τ = (log σ)1/4. We can inductively
construct, for each gate g of F , strings x(g) = x(g, a) and y(g) = y(g, b) over alphabet size
5σ2 and a number ρ(g) such that for L(g) := LCS(x(g), y(g)) we have (1) L(g) ≤ ρ(g) and
(2) L(g) = ρ(g) if and only if gate g evaluates to true on input (a, b) to F . Moreover, we
have |x(g)| = |y(g)| = n(g) ≤ 6τ · |Fg|(1 + 7/τ)depth(Fg), where Fg is the subformula of F
below g.

In this construction, we use disjoint size-5 alphabets Σ1, . . . ,Σσ2 , determining the total
alphabet size as 5σ2. Each gate g is assigned an alphabet Σf(g). We fix the function f later.

In the following, consider any gate g of F , and write the gate alphabet as Σf(g) =
{0, 1, 2, 3, 4}. For readability, we write x = x(g) and similarly define y, n, L, ρ. If g has fanin
2, write g1, g2 for the children of g. Moreover, let x1 = x(g1) and similarly define y1, n1, L1, ρ1
and x2, y2, n2, L2, ρ2.
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Input Gate

The base case is an input bit ai to F (input bits bj are symmetric). Interpreting ai as a
string of length 1 over alphabet {0, 1}, note that LCS(ai, 1) = ai. Hence, the strings x = ai
and y = 1, with n = ρ = 1, trivially simulate the input bit ai.

AND Gates

Consider an AND gate g and let β := d(n1 + n2)/τ2e. We construct strings x, y as

x := x1 0β 1β x2

y := y1 0β 1β y2

I Lemma 2.4. If LCS(x2, y1),LCS(x1, y2) ≤ β/4 and the symbols 0, 1 appear at most β/16
times in each of x1, x2, y1, and y2, then we have L = LCS(x, y) = 2β + L1 + L2.

Later we will choose the gate alphabets Σf(g) such that the precondition of the above
lemma is satisfied. Setting ρ := 2β + ρ1 + ρ2 we thus inductively obtain (1) L ≤ ρ and (2)
L = ρ if and only if g1 and g2 both evaluate to true. Thus, we correctly simulated the AND
gate g. It remains to prove the lemma.

Proof. Clearly, we have L ≥ LCS(x1, y1) + LCS(0β , 0β) + LCS(1β , 1β) + LCS(x2, y2) = 2β +
L1+L2. For the other direction, consider any LCS z of x, y. If z does not match any symbol of
the left half of x, x10β , with any symbol of the right half of y, 1βy2, and it does not match any
symbol of the right half of x, 1βx2, with any symbol of the left half of y, y10β , then we can split
both strings in the middle and obtain L = |z| ≤ LCS(x10β , y10β) +LCS(1βx2, 1βy2). Greedy
suffix/prefix matching now yields L ≤

(
LCS(x1, y1) +β

)
+
(
β+LCS(x2, y2)

)
= 2β+L1 +L2.

In the remaining case, there is a matching from some left half to some right half. By
symmetry, we can assume that there is a matching from the left half of x to the right
half of y. We can moreover assume that z matches a symbol of x1 with a symbol of
1βy2, since the case that z matches a symbol of y2 with a symbol of x10β is symmetric.
Now no symbol in 0β in x can be matched with a symbol in 0β in y. We obtain a rough
upper bound on L = |z| by summing up the LCS length of all remaining 4 · 4 − 1 = 15
pairs of a part x′ ∈ {x1, 0β , 1β , x2} in x and a part y′ ∈ {y1, 0β , 1β , y2} in y. This yields
L ≤ L1 + L2 + β + 2 · β/4 + 8 · β/16 = 2β + L1 + L2, finishing the proof. J

OR Gates

Consider an OR gate g and again let β := d(n1+n2)/τ2e. We first make the LCS target values
equal by adding 4|ρ1−ρ2| to the shorter of x2/y2 and x1/y1, i.e., we set x′1 := 4max{0,ρ2−ρ1}x1
and similarly y′1 := 4max{0,ρ2−ρ1}y1, x′2 := 4max{0,ρ1−ρ2}x2, y′2 := 4max{0,ρ1−ρ2}y2. Note that
the resulting strings satisfy L′1 := LCS(x′1, y′1) ≤ ρ′ := max{ρ1, ρ2} and L′1 = ρ′ if and only
if g1 evaluates to true, and similarly L′2 := LCS(x′2, y′2) ≤ ρ′ and L′2 = ρ′ if and only if g2
evaluates to true. We construct the strings x, y as

x := 0β1β x′1 2β3β x′2 0β1β

y := 2β3β y′2 0β1β y′1 2β3β

I Lemma 2.5. If LCS(x2, y1),LCS(x1, y2) ≤ β/8 and the symbols 0, 1, 2, 3 appear at most
β/48 times in each of x1, x2, y1, and y2, then L = LCS(x, y) = 4β + max{L′1, L′2}.
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Later we will choose the gate alphabets Σf(g) such that the precondition of the above
lemma is satisfied. Setting ρ := 4β + ρ′ = 4β + max{ρ1, ρ2} we thus inductively obtain (1)
L ≤ ρ and (2) L = ρ if and only if at least one of g1 and g2 evaluates to true, so we correctly
simulated the OR gate g. The proof of the Lemma is in Section C of the full version.

Analyzing the Length

Note that the above constructions inductively yields strings x(g), y(g) simulating each gate
g. We inductively prove bounds for n(g) and ρ(g). See Section C of the full version.

I Lemma 2.6. We have n(g) ≤ 6τ · |Fg|(1 + 7/τ)depth(Fg) and ρ(g) ≤ 6|Fg|(1 + 7/τ)depth(Fg)

for any gate g, where Fg is the subformula of F below g.

Fixing the Gate Alphabets

Now we fix the gate alphabet Σf(g) for any gate g. Again let Σ(i,j), i, j ∈ [σ], be disjoint
alphabets of size 5, and let Σ :=

⋃
i,j Σ(i,j). For any gate g of F , we call its distance to the

root the height h(g). For any h, order the gates with height h from left to right, and let ι(g)
be the index of gate g in this order, for any gate g with height h. Note that (h(g), ι(g)) is a
unique identifier of gate g. We define f(g) := (h(g) mod σ, ι(g) mod σ), i.e., we set the gate
alphabet of g to Σf(g) = Σ(h(g) mod σ,ι(g) mod σ). Note that the overall alphabet Σ has size
5σ2. Recall that we set τ := (log σ)1/4.

It remains to show that the preconditions of Lemmas 2.4 and 2.5 are satisfied. Specifically,
consider a gate g with children g1, g2. As before, let x, y, n be the strings and string length
constructed for gate g, and let xi, yi, ni be the corresponding objects for gi, i ∈ {1, 2}. We
need to show:
(1) LCS(x2, y1),LCS(x1, y2) ≤ (n1 + n2)/(8τ2), and
(2) each c ∈ Σf(g) appears at most (n1 + n2)/(48τ2) times in each of x1, x2, y1, and y2.

We call a gate g′ in the subformula Fg d-deep if h(g′) ≥ h(g) +d, and d-shallow otherwise.
For each symbol c in x or y we can trace our construction to find the gate g′ in Fg at which
we introduced c to x or y. In other words, each symbol in x, y stems from some gate g′
below g.

First consider (2). Observe that all symbols in x, y stemming from σ-shallow gates do
not belong to the gate alphabet Σf(g), since the function f(g′) has (h(g′) mod σ) as the first
component, which repeats only every σ levels. Thus, if a symbol c ∈ Σf(g) occurs in xi or yi,
then this occurence stems from a σ-deep gate. We now argue that only few symbols in x, y
stem from deep gates. For any d > 0, let Nd be the number of symbols in x (or, equivalently, y)
steming from d-deep gates. Note that Nd is equal to the total string length

∑
n(g′), summed

over all gates g′ in Fg with height h(g′) = h(g) + d. Observe that our construction increases
the string lengths in each step by at least a factor 1 + 1/τ2, i.e., Nd ≥ (1 + 1/τ2)Nd+1 holds
for any d. It follows that Nσ ≤ N1/(1 + 1/τ2)σ−1 = (n1 + n2)/(1 + 1/τ2)σ−1. Hence, each
symbol in Σf(g) appears at most (n1 +n2)/(1 + 1/τ2)σ−1 times in each of x1, x2, y1, y2. Since
τ = (log σ)1/4, we have (1 + 1/τ2)σ−1 = 2Ω(σ/

√
logσ) ≥ 48

√
log σ = 48τ2 for sufficiently

large σ. This proves (2).
For (1), remove all log(σ)-deep symbols from x1 and y2 to obtain strings x′1, y′2. Note

that we removed exactly Nlogσ symbols from each of x1, y2. This yields LCS(x1, y2) ≤
2Nlogσ + LCS(x′1, y′2). For x′1, y′2, we claim that any log(σ)-shallow gates g′1 6= g′2 in Fg have
disjoint alphabets Σf(g′

1),Σf(g′
2). Indeed, if h(g′1) 6= h(g′2) then since the first component

(h(g′) mod σ) of f(g′) repeats only every σ levels we have f(g′1) 6= f(g′2). If h(g′1) = h(g′2) =: h,
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then note that each gate g′ in height h has a unique label ι(g′) mod σ, since there are σ such
labels and there are at most 2h−h(g) < σ gates with height h in Fg. Hence, x′1 and y′2 use
disjoint alphabets, and we obtain LCS(x′1, y′2) = 0. Thus, LCS(x1, y2) ≤ 2Nlogσ. As above, we
bound Nlogσ ≤ (n1 +n2)/(1+1/τ2)logσ−1, so that LCS(x1, y2) ≤ 2(n1 +n2)/(1+1/τ2)logσ−1.
Since τ = (log σ)1/4, we have (1+1/τ2)logσ−1/2 = 2Ω(

√
logσ) ≥ 8

√
log σ = 8τ2 for sufficiently

large σ. This yields (1), since the strings x2, y1 are symmetric, finishing the proof of
Lemma 2.3.

Finalizing the Proof

Let us sketch how we complete the proof of Theorem 2.2. The full details are in Section C.1
of the full version. First, for all vectors a ∈ A, b ∈ B we construct gate gadgets for the output
gate of the formula, i.e. formula gadgets, by invoking Lemma 2.3. Then we combine all these
gadgets by applying a standard alignment gadget [2, 29] to get our final sequences of length
O
(
nτ |F |(1 + 7/τ)depth(F )) and with alphabet of size O(σ2). The LCS of the final sequence

will be determined by the existence of a satisfying pair. Since a priori the depth of F could
be as large as |F |, the factor (1 + 7/τ)depth(F ) in our length bound is not yet satisfactory.
Thus, as a preprocessing before the above construction, we decrease the depth of F using
a depth-reduction result of Bonet and Buss [88, 25]: for all k ≥ 2 there is an equivalent
formula F ′ with depth at most (3k ln 2) log |F | and size |F ′| ≤ |F |1+1/(1+log(k−1)). Choosing
the parameters correctly, we get final sequences of length O

(
n|F |1+O(1/ log logσ)).

3 On the Limitations of Fine-Grained Reductions

With the increasingly complex web of reductions and conjectures used in the “Hardness in P"
research, one might oppose to our use of nonstandard assumptions. Why can’t we base the
hardness of shaving logs on one of the more established assumptions such as SETH, or even
better, on P 6= NP? We conclude the paper with a proof that such results are not possible if
one is restricted to fine-grained reductions, which is essentially the only tool we have in this
line of research.

Let A be a problem with best known upper bound of TA(n) on inputs of size n, and let
B be a problem with best known upper bound of TB(n) on inputs of size n. Throughout
this section we assume that these runtime are non-decreasing functions, such as 2n or n2. A
fine-grained reduction from “solving A in time TA(n)/g(n)" to “solving B in time TB(n)/f(n)"
proves that improving TB(n) to TB(n)/f(n) improves TA to TA(n)/g(n). Formally, it is
an algorithm X that solves A and it is allowed to call an oracle for problem B, as long as
the following bound holds. Let ni be the size of the instance in the ith call to problem B

that our algorithm performs, where i ≤ t for some value t, and let TX(n) be the runtime
of X excluding the time it takes to answer all the instances of problem B. It must be that
TX(n) +

∑t
i=1 TB(ni)/f(ni) ≤ TA(n)/g(n). This is a natural adaptation of the definition of

fine-grained reductions from previous works, where the improvements were restricted to be by
polynomial factors. We can now give a formal version of Theorem 1.1 from the introduction.

I Theorem 3.1. If for some c, ε > 0 and all k ≥ 2 there is a fine-grained reduction from
solving k-SAT in time poly(n,m)2n/2εn to solving LCS in time O(n2/ logc n), then SETH
is false.

Proof. Assume there was a fine-grained reduction from k-SAT to LCS as above. This means
that there is an algorithm X for k-SAT that makes t calls to LCS with instances of size
n1, . . . , nt such that TX(n) +

∑t
i=1 n

2
i / logc ni = O(poly(n,m)2n/2εn). But then consider
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algorithm X ′ which simulates X and whenever X makes a call to the LCS oracle with an
instance of size ni, our algorithm will execute the known quadratic time solution for LCS.
Let nmax be the size of the largest instance we call, and note that nmax < 2n. Simple
calculations show that X ′ solves k-SAT and has a running time of TX(n) +

∑t
i=1 n

2
i =

O
(
poly(n,m)2n/2εn

)
· logc nmax = O(poly(n,m)2n/2εn) for all k, refuting SETH. J
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