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Abstract
We give faster and simpler approximation algorithms for the (1, 2)-TSP problem, a well-studied
variant of the traveling salesperson problem where all distances between cities are either 1 or 2.

Our main results are two approximation algorithms for (1, 2)-TSP, one with approximation
factor 8/7 and run time O(n3) and the other having an approximation guarantee of 7/6 and run
time O(n2.5). The 8/7-approximation matches the best known approximation factor for (1, 2)-
TSP, due to Berman and Karpinski (SODA 2006), but considerably improves the previous best
run time of O(n9). Thus, ours is the first improvement for the (1, 2)-TSP problem in more than
10 years. The algorithm is based on combining three copies of a minimum-cost cycle cover of
the input graph together with a relaxed version of a minimum weight matching, which allows
using “half-edges”. The resulting multigraph is then edge-colored with four colors so that each
color class yields a collection of vertex-disjoint paths. The paths from one color class can then
be extended to an 8/7-approximate traveling salesperson tour. Our algorithm, and in particular
its analysis, is simpler than the previously best 8/7-approximation.

The 7/6-approximation algorithm is similar and even simpler, and has the advantage of not
using Hartvigsen’s complicated algorithm for computing a minimum-cost triangle-free cycle cover.
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1 Introduction

The metric traveling salesperson problem (TSP) is one of the most fundamental combinatorial
optimization problems. Given a complete undirected graph G with a metric cost function c
on the edges of G, the goal is to find a tour T (i.e., a Hamiltonian cycle) of minimum cost in
G, where the cost of T is the sum of costs of the edges traversed by T . Four decades ago,
Christofides [8] devised a polynomial-time algorithm that always outputs a tour with cost
at most 3/2 times the cost of an optimal tour. Improving this factor remains a major open
problem in the area of approximation algorithms.
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9:2 New Approximation Algorithms for (1,2)-TSP

The metric TSP is well-known to be NP-hard; it is one of Karp’s 21 NP-complete
problems [16]. In fact, Karp showed that the special case of metric TSP in which all distances
between the cities are either 1 or 2, i.e., the cost function is of the form c : E(G)→ {1, 2},
is NP-hard. This special case is generally known as the (1, 2)-TSP problem. Notice that
any instance of (1, 2)-TSP satisfies the triangle inequality. The (1, 2)-TSP problem has been
considered in numerous papers [1, 2, 4, 10, 12, 16, 18, 19, 21, 24].

After Karp established the NP-hardness of (1, 2)-TSP, Papadimitriou and Yannakakis
showed the problem to be APX-hard [24]. The currently best known inapproximability bound
for (1, 2)-TSP is 535/534 [18]. A certain restriction of (1, 2)-TSP was considered by Fernandez
de la Vega and Karpinski [10]. It was this restriction of (1, 2)-TSP that Trevisan [27] reduced
from to establish the inapproximability of TSP in Rlog n under any `p metric. This hardness
complemented Arora’s breakthrough result [3] that TSP in R2 admits a PTAS under any `p

metric.
One can also view the (1, 2)-TSP problem as the problem of finding a traveling salesperson

tour that uses the maximum number of 1-edges in the given instance; here and throughout the
paper, we will refer to edges of cost i as i-edges, for i ∈ {1, 2}. Alternatively, (1, 2)-TSP may
be seen as a generalization of the Hamiltonian Cycle problem with non-edges represented
by 2-edges.

Both (1, 2)-TSP and (1, 2)-ATSP (i.e., when the underlying graph G is a complete directed
graph) are well-studied from the approximation point of view. For (1, 2)-TSP, it is NP-hard to
obtain a performance guarantee better than 535/534 [18]. Papadimitriou and Yannakakis [24]
gave a 7/6-approximation algorithm for (1, 2)-TSP; their algorithm works by successively
merging cycles of a triangle-free cycle cover of the graph which they obtained by running
Hartvigsen’s algorithm [14]. The approximation factor was improved by Bläser and Ram [5]
to 65/56, and to 8/7 by Berman and Karpinski [4]. Berman and Karpinski [4] used a local
search approach: starting from a path cover they employ local improvements according to
certain criteria, and finally connect the paths arbitrarily to a tour. Their algorithm takes
time O(n9) for n-city instances.

1.1 Our Results
Our main results are novel approximation algorithms for (1, 2)-TSP that obtain the ap-
proximation ratios of 8/7 and 7/6, respectively.. The 8/7-approximation matches the best
approximation factor known for (1, 2)-TSP, obtained by Berman and Karpinski [4], while
improving the run time from O(n9) to O(n3). This is the first improvement for this classical
problem in over 10 years.

I Theorem 1. The (1,2)-TSP problem admits an 8/7-approximation in time O(n3), and a
7/6-approximation in time O(n2.5).

In this extended abstract we focus on presenting the 7/6-approximation algorithm, which is
the simpler of our two algorithms. It is worth noting that it does not rely on Hartvigsen’s
involved algorithm [14] for computing a minimum-cost triangle-free cycle cover; in contrast,
the 7/6-approximation by Papadimitriou and Yannakakis [24] relies on Hartvigsen’s algorithm.
(Papadimitriou and Yannakakis also gave an 11/9-approximation algorithm that does not
use Hartvigsen’s algorithm.) We defer the full details of our 8/7-approximation algorithm to
the full version of this paper.

Outline of the approach. The idea of the 7/6-approximation algorithm is as follows. We
start with computing a minimum cost cycle cover Cmin of the input graph G. Recall that a
cycle cover of a graph G is a collection of simple cycles of G such that each vertex belongs to
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exactly one cycle. Notice that the cost of Cmin is a lower bound on opt(G, c), where opt(G, c)
denotes the cost of an optimal traveling salesperson tour in the graph G with cost function c.
The cost of a minimum cost perfect matching Mmin of G is also a lower bound, but this
time on opt(G, c)/2. This leads to our key idea of constructing a multigraph Ĝ on V (G)
from two copies of Cmin and one copy of Mmin. It readily follows that the cost of Ĝ satisfies
c(Ĝ) ≤ 5

2 opt(G, c).
Next, we would like to color each edge of Ĝ with one of three colors so that each color

class consists of vertex-disjoint paths, i.e., we would like to “path-3-color” Ĝ. Given a
path-3-coloring of Ĝ, the paths of the color class that contains the maximum number of
1-edges can be patched in an arbitrary manner to form a traveling salesperson tour of weight
not exceeding 7

6 opt(G, c). The exact calculation is given in Sect. 3.1.
However, we observe that not every multigraph Ĝ obtained from Cmin and Mmin in the

above way is path-3-colorable. For example, a subgraph of Ĝ obtained from a 4-cycle (called a
square) C ∈ Cmin such that two edges of Mmin connect vertices of C cannot be path-3-colored.
The reason is that Ĝ has two copies of each edge of C and additionally two more edges
coming from Mmin, and clearly it is not possible to color these ten edges with three colors
without creating a monochromatic cycle.

Similarly, a subgraph of Ĝ obtained from a 3-cycle (called a triangle) C ∈ Cmin such that
one of the edges of Mmin connects vertices of C cannot be path-3-colored. An edge of Mmin
connecting two vertices of a cycle C ∈ Cmin is going to be called an internal edge of C).

While triangles of the above sort can be handled, by flipping edges, squares with two
internal edges of Mmin are problematic. Moreover, there are problem instances where every
perfect matching of weight at most opt/2 uses two internal edges of some square of Cmin.

To get around this obstacle, we relax the notion of a matching and allow it to contain
“half-edges”. A half-edge of an edge e is, informally speaking, half of the edge e that contains
exactly one of its endpoints. The notion of half-edges has been introduced by Paluch et
al. [23]. We call such a relaxed matching M 1

2 with half-edges perfect if every vertex of the
graph has exactly one edge or half-edge of M 1

2 incident to it. Now, we would like to compute
a minimum-cost perfect matching M

1
2

min with half-edges, such that the half-edges can appear
in a controlled way. In particular, for each 4-cycle of Cmin the matching uses correspondingly
at most three “internal” half-edges; here, a half-edge of edge e is internal for a cycle C if
is derived from an edge of G whose both endpoints belong to C. In such a matching the
problem described above cannot occur. In Sect. 3.2 we show that M

1
2

min can be computed in
time O(n2.5), and that its weight is at most opt(G, c)/2.

Next, from two copies of Cmin and one copy of M
1
2

min we will build a multigraph Ĝ whose
cost is at most 5

2 opt(G, c) and that, after some modifications, is path-3-colorable, which
yields the desired 7/6-approximation algorithm for (1,2)-TSP.

Modifying the multigraph Ĝ. Before the multigraph Ĝ can be path-3-colored, it needs to
be modified in certain ways. First, Ĝ should not contain any half-edges; so we replace all
half-edges by an appropriate number of “whole” edges. Second, while coloring Ĝ we can
restrict ourselves to coloring of edges of cost 1. Third, we remove some 1-edges if some
optimal solution contains 2-edges; the exact relationship between the required number of
1-edges in Ĝ and the number of 2-edges in opt(G, c) is given in Sect. 3.1.

Fourth, before Ĝ can be path-3-colored, we need to “flip” certain edges and half-edges.
For example, a subgraph of Ĝ obtained from a triangle C ∈ Cmin and one internal edge of C
contained in M

1
2

min cannot be path-3-colored, and we need to flip this edge to the edge of Ĝ
outside of C. The algorithm for path-3-coloring essentially comes from Dudycz et al. [9].

ICALP 2018
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1.2 Related Work
Despite extensive research, the best approximation algorithm for metric TSP is still Chris-
tofides’ algorithm [8] from 1976, which has a performance guarantee of 3/2. Generally the
bound 3/2 is not believed to be tight. However, the currently largest known lower bound
on the performance guarantee obtainable in polynomial time is as low as 123/122 [17]. A
promising approach to improving upon the factor of 3/2 for metric TSP is to round a linear
programming relaxation known as the Held-Karp relaxation [15], that is widely conjectured
to have an integrality gap upper bounded by 4/3. However, even for the graphic TSP, the
best known approximation upper bound of 7/5 due to Sebő and Vygen [26] does not match
this conjectured upper bound of 4/3.

Another LP relaxation for TSP is the subtour elimination LP, which has constraints
prescribing any vertex to be incident to exactly two edges of the TSP tour and constraints
ruling out incomplete subtours (hence the name) by forcing edges to leave any non-empty
proper subset of nodes. The best known integrality gap lower bound of the subtour elimination
LP for (1, 2)-TSP is 10/9, due to Williamson [29]. Qian et al. [25] showed an integrality
gap upper bound of 19/15 for (1, 2)-TSP (in a revised version, they improve the integrality
gap upper bound to 5/4 and to 26/21 for fractionally Hamiltonian instances), and of 7/6
if the integrality gap is attained by a basic solution of the fractional 2-matching polytope.
With the additional assumption that a certain type of modification maintains the 2-vertex
connectedness of the support graph, they were able to show a tight integrality gap of 10/9.
For fractionally Hamiltonian instances (i.e., where the optimal value of the LP relaxation of
the subtour elimination formulation equals the order of the instance), Mnich and Mömke [21]
prove integrality upper bounds of 5/4 in the general case and of 10/9 in the case of subcubic
support graphs.

For (1, 2)-ATSP, it is NP-hard to obtain a performance ratio better than 207/206 [18]. The
first non-trivial approximation algorithm for (1, 2)-ATSP was given by Vishwanathan [28],
with an approximation factor of 17/12. This was improved to 4/3 by Bläser and Manthey [7].
The currently best approximation factor is 5/4, and is due to Bläser [6] and Paluch [22]. For
fractionally Hamiltonian instances of (1, 2)-ATSP, Mnich and Mömke [21] prove an integrality
upper bound of 7/6.

The approach of using half-edges for solving variants of TSP was first used by Paluch et
al. [23], who used it to give a 2/3-approximation for Max-ATSP. Later, Paluch [22] used
half-edges to improve the approximation guarantee to 3/4 for the special case of Max-ATSP
where all edge costs are either zero or one. Recently, Dudycz et al. [9] used half-edges to give
a 4/5-approximation for Max-TSP.

2 Preliminaries

An instance of the (1, 2)-TSP problem consists of pair (G, c), where G is a complete undirected
graph and c : E(G)→ {1, 2} is an edge cost function, where each edge e ∈ E(G) has a cost
of c(e) ∈ {1, 2}. A tour for the instance (G, c) is a subset T ⊆ E(G) of edges of G that forms
a Hamiltonian cycle of G, that is, the edges of T form a cycle that visits each vertex of G
exactly once; the cost of T is defined as c(T ) =

∑
e∈T c(e). The goal is to find an optimal

tour opt for (G, c), which is a tour of minimum cost. For a real number r, a tour T for an
instance (G, c) is r-approximate if c(T )/c(opt) ≤ r.

For a graph G, a cycle is a sequence C = (v0, . . . , v`−1) for some ` ≥ 3 of pairwise distinct
vertices vi ∈ V such that {vi, vi+1 (mod `)} ∈ E for i ∈ {0, . . . , ` − 1}. We refer to ` as the
length of C, and denote it by `(C). For an integer `, an `-cycle is a cycle of length exactly `,



A. Adamaszek, M. Mnich, and K. Paluch 9:5

and an (≤ `)-cycle is a cycle of length at most `. For the sake of convenience, we also refer
to 3-, 4-, 5- and 6-cycles as triangles, squares, pentagons and hexagons, respectively.

Let C be an `-cycle of G. We say that C is short if ` ≤ 6. Further, an `′-cycle C ′ of G
with `′ < ` is a subcycle of C if V (C ′) ⊂ V (C). Note that C and C ′ can visit the vertices of
V (C ′) in different order. An edge e = {u, u′} is a native edge of C if u, u′ are two consecutive
vertices of C, and a diagonal of C if u, u′ are two non-consecutive vertices of C. When e is
a native edge or a diagonal of C, we say that e is an internal edge of C. Finally, we call a
cycle C a 1-cycle if c(e) = 1 for all e ∈ E(C); notice that there is no confusion of this notion
with `-cycles as we consider simple undirected graphs without loops.

Cycle covers. Our algorithm utilizes the concept of cycle covers. A cycle cover of G is
a collection of cycles of G such that each vertex of G belongs to exactly one cycle of the
collection. Thus, a Hamiltonian cycle of G is a cycle cover of G that consists of a single
cycle. Cycle covers of undirected graphs are also known as 2-factors, because every vertex is
incident to exactly two edges.

A cycle cover of G is triangle-free if each of its cycles has a length of at least 4. An essential
ingredient of our 8/7-approximation algorithm is the following result by Hartvigsen [14]; the
algorithm can be implemented to run in time O(n3) for an n-vertex graph [13].

I Proposition 2 ([14]). There is an algorithm that, given a complete graph G with edge costs
c : E(G)→ {1, 2}, in strongly polynomial time computes a triangle-free cycle cover of G with
minimum cost under c.

b-matchings. We will use the classical notion of b-matchings in graphs, which are a gen-
eralization of matchings. Let H be a graph. For a vector b = (bv)v∈V (H) ∈ N|V (H)| where
each coordinate corresponds to a vertex of H, a b-matching in H is a collection of edges
E(b) ⊆ E(H) that contains at most bv edges incident to any vertex v ∈ V (H). Notice that a
b-matching with bv = 1 for all v ∈ V (H) is a classical matching in H.

A b-matching in H is said to be maximum if among all b-matchings in H it contains
a maximum number of edges. Maximum matchings as well as maximum cost b-matchings
can be computed in polynomial time. We refer to Lovász and Plummer [20] for further
background on b-matchings.

We are interested in computing a b-matching in a graph H where each vertex v ∈ V (H)
has a lower bound `v and an upper bound bv - we say that a vertex v has capacity interval
[`v, bv]; the b-matching E(`, b) ⊆ E(G) then contains at least `v edges and at most bv edges
incident to any vertex v ∈ V (H). Such b-matchings can also be computed efficiently:

I Proposition 3 ([11]). There is an algorithm that, given a graph H and capacity intervals
[`v, bv], in time O(

√∑
v∈V (H) bv|E(H)|), computes a largest subgraph H ′ of H for which

`v ≤ dH′(v) ≤ bv for every v ∈ V (H ′).

It is possible to reduce the problem of computing a b-matching with capacity intervals to
the computation of a matching in which each vertex has capacity interval [0, 1] or [1, 1], i.e.,
a matching in which every vertex with capacity interval [1, 1] is required to be matched; we
defer the details to the full version of the paper.

Half-edges. Intuitively, half-edges correspond to halves of the edges of a graph and incident
to only one vertex of the graph. Formally, from an instance (G, c) of (1, 2)-TSP we construct
an extended instance (G′, c′) from (G, c), as follows. We start by setting V (G′) = V (G) and

ICALP 2018



9:6 New Approximation Algorithms for (1,2)-TSP

E(G′) = E1(G), where E1(G) denotes the subset of E(G) containing all 1-edges. Next, for
each edge e = {u, u′} ∈ E1(G) we add to V (G′) a new vertex ve, and to E(G′) the edges
{u, ve}, {ve, u

′}. We refer to the vertices ve as extended vertices, and to the remaining vertices
of G′ as basic vertices. We denote the new edges of E′ as half-edges and the other edges as basic
edges. Put concisely, G′ is the extended graph of G with V (G′) = V (G) ∪ {ve | e ∈ E1(G)},
E(G′) = E1(G) ∪ {{u, ve}, {ve, u

′} | e = {u, u′} ∈ E1(G)}.
A matching with half-edges M 1

2 in G′ is a collection of edges in G′, in which each
vertex has degree 0 or 1 Intuitively, a matching with half-edges in G′ corresponds to a
relaxation of a matching in G, where we can take halves of the edges, incident to only one
vertex, to the matching. We define the cost of a matching with half-edges M 1

2 in G′ as
c′(M 1

2 ) = 1
2 |{v ∈ V (G) : v is matched in M 1

2 }| + |{v ∈ V (G) : v is unmatched in M 1
2 }|.

In other words, a basic vertex that is unmatched in M 1
2 contributes twice as much cost to

c′(M 1
2 ) as a matched basic vertex. (We might say that we treat an unmatched basic vertex

as if it was matched to a half-edge of a basic 2-edge in a perfect matching with half-edges in a
graph G′′ in which we also add basic 2-edges and their half-edges.) Therefore, any maximum
matching with half-edges in G′ has minimum cost.

3 A Fast and Simple 7/6-Approximation Algorithm for (1,2)-TSP

3.1 Outline of the Algorithm
We give an outline of our 7/6-approximation algorithm for (1, 2)-TSP, which is listed as
Algorithm 1. For an instance (G, c) of the problem and a fixed tour T of G, let αT and βT
denote the number of 1-edges and 2-edges, respectively, in T .

I Observation 4. It holds that c(T ) = αT + 2βT = αT + 2(|V (G)| − αT ) = 2|V (G)| − αT .

Let G1 denote the subgraph of G containing all 1-edges. In step 1 of the algorithm
we compute a path-cycle cover Cmin of minimum cost in (G, c), using the algorithm from
Proposition 3. A path-cycle cover of G is any b-matching of G1 such that each vertex v has
capacity interval [0, 2]. The cost of a path-cycle cover C of G is defined as 2n− |C|. Let Cmin
denote a minimum cost path-cycle cover of G. Then, clearly, its cost is a lower bound on
c(opt).

In step 2 we use Cmin to construct a minimum cost matching with half-edges (and some
additional properties) M 1

2 ; this construction is described in Sect. 3.2. In Sect. 3.3 we
describe step 3, i.e., the construction of the graph G1 from Cmin and M

1
2 . In step 4 we

path-3-color G1, for which we use a modification of a path-3-coloring proposed by Dudycz et
al. [9] for Max-TSP.

In summary, the algorithm works as follows:

Algorithm 1 Computing a 7/6-approximate solution for an instance (G,w) of (1,2)-TSP.
Input: An instance (G, c) of (1,2)-TSP.
Output: A tour T of G with cost c(T ) ≤ 7

6c(opt).
1: Find a minimum-cost path-cycle cover Cmin of (G, c).
2: Find a minimum cost matching with half-edges (and some additional properties) M 1

2 .
3: Based on Cmin and M 1

2 , construct a multigraph G1 on vertex set V (G) with at least
5
2αopt − βopt edges of cost 1 from G.

4: Path-3-color the edges of G1.
5: Extend the set of edges of G1 from the largest color class arbitrarily to a tour T of G.
6: return T
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I Lemma 5. Algorithm 1 gives a 7/6-approximate solution for (1,2)-TSP.

Proof. Let alg be a solution output by Algorithm 1 on input (G, c), and let αalg and βalg be
the number of 1-edges resp. 2-edges in alg. Then

αalg ≥
5
2αopt − βopt

3 = 5
6αopt −

1
3βopt .

By multiplying by 6 and using that n = αopt + βopt, we obtain

6αalg ≥ 7αopt − 2n = 7αopt − 2(αopt + βopt) = 5αopt − 2βopt .

Subtracting 14n from both sides, and substituting 2(αopt + βopt) for 2n on the right hand
side yields 12n− 6αalg ≤ 14n− 7αopt, which is equivalent to the desired result of

c(alg)
c(opt) = 2n− αalg

2n− αopt
≤ 7

6 . J

3.2 Computing a Minimum Cost Matching with Half-Edges
In this section we describe the construction of a minimum-cost matching with half-edges
(and some additional properties) M 1

2 in the extended instance (G′, c′), as defined in Sect. 2.
Recall that a square is a 4-cycle. We refer to a diagonal of cost i as an i-diagonal, for i = 1, 2.

Intuitively, we want to ensure that M 1
2 matches at least one vertex of each 1-square

of Cmin with some vertex from outside the square or leaves at least one vertex of a 1-square
unmatched. As we want to find such a matching M 1

2 efficiently, and we want the cost of M 1
2

to be at most c(opt)/2, we allow M
1
2 to contain half-edges. However, we will only allow

half-edges in a controlled manner. The idea is to allow a half-edge {u, ve} within M
1
2 only

when the corresponding edge e is a native edge of a 1-square of Cmin. Also, we want to allow
at most one half-edge per each 1-square of Cmin. For technical reasons (due to parity issues),
we have to relax these simple conditions to a more complex set of conditions.

I Definition 6. A matching with half-edges M 1
2 in (G′, c′) is good for Cmin if it satisfies the

following properties.
(M 1

2 .1) For each half-edge {u, ve} ∈M
1
2 , except at most one special half-edge, the edge e

is a native edge of a 1-square of Cmin. Also, each 1-square of Cmin is incident to at
most one half-edge of M 1

2 .
(M 1

2 .2) For every 1-square C ∈ Cmin (i) there is a 1-edge eC ∈M
1
2 incident to C such that

the other endpoint of eC is incident to a cycle of Cmin different from C, or (ii) at
least one of the vertices of C is unmatched in M 1

2 .
(M 1

2 .3) M 1
2 may contain a special half-edge {u, ve} only if |V (G)| is odd and Cmin does not

contain a 2-edge. The following conditions are satisfied for the special half-edge
{u, ve}:
a. e is an edge of a fixed odd-length 1-cycle C0 ∈ Cmin called a special cycle.
b. If Cmin contains a cycle of length at least 7, then C0 has length at least 7.
c. If C0 is a triangle or pentagon and Cmin consists of at least two cycles, then at

least two vertices of C0 are incident to external edges of M 1
2 , or some vertex of

C0 is unmatched in M 1
2 .

I Lemma 7. Consider an instance (G, c) of (1, 2)-TSP with minimum-cost path-cycle cover
Cmin and extended instance (G′, c′). A matching M 1

2 of minimum cost among all matchings
with half-edgesM 1

2 which are good for Cmin can be computed in time O(n2.5) where n = |V (G)|.

ICALP 2018
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Figure 1 The gadget for modifying a 1-square {v1, v2, v3, v4} of Cmin which has (a) two 1-diagonals,
(b) one 1-diagonal {v2, v4}, and (c) no 1-diagonals.

Proof. First, from the instance (G, c) we create an unweighted graph G′′0 with a vertex
capacity interval for each vertex of G′′0 . We do that by locally and independently modifying
each 1-square in Cmin. The modification introduces new vertices and edges, as well as vertex
capacity intervals [`v, uv] for each vertex v ∈ V (G′′0).

We start by setting V (G′′0) = V (G), and assigning the capacity interval [0, 1] to each
vertex. For each edge e ∈ E(G) which is not an internal 1-edge of a 1-square of Cmin, we
add e to E(G′′0). Then, for each 1-square C = (v1, . . . , v4) ∈ Cmin we proceed as follows.
For each internal 1-edge e{i,j} = {vi, vj} ∈ E(G) of C (note that we consider both the
native 1-edges and the 1-diagonals of C here), we introduce two new vertices u(i,j), u(j,i)
with capacity intervals [1, 1], and two new edges {vi, u(i,j)}, {u(j,i), vj}. We call these added
vertices subdivision vertices.

The exact type of further modification depends on whether the number of 1-diagonals of
C in (G, c) is two, one, or zero.

If C has two 1-diagonals: (See Fig. 1a) Introduce a vertex vC of capacity interval
[9, 12]; then connect vC to all 12 subdivision vertices u(i,j), u(j,i).
If C has exactly one 1-diagonal {v2, v4}: (See Fig. 1b) Introduce two vertices
v1

C , v
2
C of capacity intervals [3, 4] and [5, 5], respectively, and one vertex vC of capacity

interval [0, 1]. Connect vC1 to each vertex u(i,j), u(j,i) that is a neighbour of v1 or v3, and
connect vC2 to each vertex u(i,j), u(j,i) that is a neighbour of v2 or v4. Further, add two
edges {vC , v

1
C}, {vC , v

2
C}.

If C is a square with no 1-diagonal: (See Fig. 1c) Introduce two vertices v1
C and v2

C

of capacity interval [3, 3] and one vertex vC of capacity interval [0, 1]. Connect vC1 to
each vertex u(i,j), u(j,i) that is a neighbour of v1 or v3, and connect vC2 to each vertex
u(i,j), u(j,i) that is a neighbour of v2 or v4. Further, add twoedges {vC , v

1
C}, {vC , v

2
C}.

This completes the construction of the graph G′′0 with vertex capacity intervals [`v, uv] for
each v ∈ V (G′′0).

The cost of a b-matching M ′′0 in G′′0 is defined as c′(M ′′0 ) = 1
2 |{v ∈ V (G) : v is matched

in M ′′0 }| + |{v ∈ V (G) : v is unmatched in M ′′0 }|. For the graph G′′0 and vertex capacity
intervals [`v, uv] for each v ∈ V (G′′0), we compute a minimum-cost b-matching M ′′0 that
respects the vertex capacity intervals or, equivalently a b-matching that respects the vertex
capacity intervals and minimizes the number of basic vertices unmatched in M ′′0 .
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I Claim 1. For the graph G′′0 and vertex capacity intervals [`v, uv] for each v ∈ V (G′′0), a
minimum-cost b-matching M ′′0 that respects the vertex capacity intervals can be computed in
O(n2.5) time.

We defer the proof of Claim 1 to the full version of this paper.

I Claim 2. The b-matchingM ′′0 in G′′0 can be transformed into a matching with half-edgesM 1
2

which is good for Cmin, has the same cost as M ′′0 , and contains no special half-edge.

Proof of Claim 2. We construct the matching M 1
2 as follows. For any edge e = {u, v} ∈

E(G′′0) such that both u, v are basic vertices of G′′0 (i.e., they correspond to the vertices
of G, and not to the vertices introduced during the gadget construction), we add the edge e
to M 1

2 . Then, consider each 1-square C = {v1, .., v4} ∈ Cmin and a gadget corresponding to
it. If there are some two vertices vi, vj ∈ C such that both vi and vj are matched by the
b-matching with subdivision vertices, and the edge e = {vi, vj} in G′ is a 1-edge, we add e
to M 1

2 . We construct such pairings greedily. For all vertices vi which are matched by the
b-matching with subdivision vertices, and which have not been paired, we add a half-edge
{vi, ve} to M

1
2 , where e = {vi, v(i mod 4)+1}.

The degree of each basic vertex v ∈ V (G′′0) in M 1
2 is the same as the degree of v in the

b-matching. The degree of each extended vertex v ∈ V (G′′0) in M 1
2 is either 0 or 1. Therefore,

M
1
2 is a matching with half-edges. Also, is it easy to see that the cost of M 1

2 is the same
as the cost of the b-matching. We now have to prove that M 1

2 is good for Cmin. As we did
not denote any half-edge of M 1

2 as special, we only need to check properties 1 and 2 of
Definition 6.

Consider a 1-square C = {v1, . . . , v4} ∈ Cmin. From the gadgets construction we can see
that the vertex capacities for vC , v

1
C , v

2
C enforce that at most three of the vertices {v1, . . . , v4}

are matched with a subdivision vertex. Therefore, at least one of the vertices {v1, . . . , v4} is
matched by the b-matching via an edge not belonging to the gadget, i.e., an external 1-edge
or at least one vertex of C is unmatched in M ′′0 . Therefore, Property 2 holds.

From the construction of M 1
2 , each half-edge of M 1

2 corresponds to a native edge
e = {vi, v(i mod 4)+1} of a 1-square. To prove Property 1, we need to show that each 1-square
C ∈ Cmin is incident to at most one half-edge. We already know that at most three of the
vertices {v1, . . . , v4} of C are matched with a subdivision vertex. If there are three, some
two of them are incident to neighboring vertices of C, and will be transformed into one
native edge in M 1

2 , which will result in only one half-edge of M 1
2 incident to C. If exactly

two of the vertices {v1, . . . , v4} of C were matched with a subdivision vertex, they yield
two half-edges within M 1

2 only if they are incident with the opposite corners of C, and the
corresponding diagonal has cost 2. We show that the construction of the gadgets prevents
this from happening.

First, consider the case when C has no 1-diagonal, see Fig. 1c. Assume, without loss of
generality, that exactly the vertices v1, v3 are matched by the b-matching with the subdivision
vertices. Then, as the capacity interval of v1

C is [3, 3], and the capacity interval of vC is
[0, 1], vC must be matched with v1

C , and v1
C must be matched with 2 of the subdivision

vertices. Then, as the capacity interval of v2
C is [3, 3], v2

C must be matched with 3 subdivision
vertices. But that leaves one subdivision vertex unmatched, and it therefore cannot happen.

Now, consider the case when C has exactly one 1-diagonal {v2, v4}, see Fig. 1b. Assume
that exactly the vertices v1, v3 are matched by the b-matching with the subdivision vertices.
Then, by the capacity intervals of v1

C and vC , again vC must be matched with v1
C , and v1

C

must be matched with 2 of the subdivision vertices. Then, as the capacity interval of v2
C

is [5, 5], v2
C must be matched with 5 subdivision vertices. But that leaves one subdivision

vertex unmatched, and it therefore cannot happen.

ICALP 2018
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Each 1-square of Cmin is incident to at most one half-edge, and therefore Property 1 holds
and the matching M 1

2 is good. This completes the proof of Claim 2. J

I Claim 3. Any matching with half-edges M 1
2 which is good for Cmin and contains no special

half-edge can be transformed into a b-matching M ′′0 in G′′0 of the same cost.

Proof of Claim 3. Consider a matching with half-edges M 1
2 which is good for Cmin and

contains no special half-edge. We will construct a corresponding b-matching for M 1
2 . For any

edge e = {u, v} ∈M 1
2 which is not a half-edge or a 1-edge of a 1-square, e is also present in

the graph G′′0 , and we add e to the b-matching. Now, consider any half-edge {u, ve} ∈M
1
2 ,

where e = {u, u′}. From Property 1 of Definition 6, e is a native edge of a square C ∈ Cmin.
In the b-matching, we connect u with any subdivision edge neighbouring with it. Last, for
any edge {ui, uj} which is a 1-edge of a 1-square, we take the two edges {ui, u(i,j)} and
{u(j,i), uj} into the b-matching. From Property 2 of Definition 6, at most 3 subdivision edges
corresponding to any 1-square C ∈ Cmin have been matched by this procedure. Moreover,
if there were two or three, then some two of them must be incident to two endpoints of a
1-edge of C (either a native edge, or a diagonal).

We now show how to extend this matching to a b-matching. For any 1-square C ∈ Cmin
with two 1-diagonals, we match vC with the at least 9 unmatched subdivision vertices.

This completes the proof of Claim 3. J

If |V (G)| is odd and Cmin contains only 1-edges, we also build another unweighted
graph G′′1 from G′, in which we find a b-matching M ′′1 . The graph G′′1 is quite similar to G′′0 .
The details of constructing G′′1 and computing M ′′1 are given in the full version.

From M ′′1 we obtain a matching M
1
2

1 with half-edges good for Cmin. If |V (G)| is odd
and Cmin does not contain any 2-edge, we set as M 1

2 that one of the matching M 1
2 and M

1
2

1
that has smaller cost. This completes the proof. J

I Lemma 8. Any minimum-cost matching M 1
2 of (G′, c′) that is good for Cmin satisfies

c′(M 1
2 ) ≤ c(opt)/2.

Proof. Let (G′′, c′′) denote the extension of the graph G, in which we add two half-edges of
each edge of G, also those of cost 2. Each edge e of G has cost c′′(e) = c(e) in G′′. Each
half-edge of a 1-edge e ∈ G has cost 1

2 and each half-edge of a 2-edge e ∈ G has cost 2. The
cost of a matching M in G′′ is defined in the usual way as c′′(M) =

∑
e∈M c′′(e). We notice

that for any matching M in G′′ it holds c′′(M) = c′(M ′), where M ′ = M ∩ E(G′).
To prove the lemma, we partition the edges of a fixed but arbitrary tour opt of minimum

cost in (G, c) into two perfect matchings M1 ∪M2 in (G′′, c′′) with half-edges, each of which
constitutes in (G′, c′) a matching with half-edges, which is good for Cmin.

To this end, let S2 denote the set of squares in Cmin such that opt uses two of its internal
1-edges. Similarly, let S3 denote the set of squares in Cmin such that opt uses three of its
internal 1-edges. Let us note that if S2 ∪ S3 6= ∅, then partitioning opt into two perfect
matchings might yield a matching or matchings that are not good for Cmin. Therefore, for
each square C ∈ S2 ∪S3, we take one of its internal 1-edges eC belonging to opt, and split es

into two half-edges. For each such edge eC , we place one of its half-edges into M1 and place
its other half-edge into M2.

If the parities of |S2 ∪ S3| and |V (G)| are the same, then this way we have already
decomposed opt into two perfect matchings with half-edges M1 and M2. Assume, without
loss of generality, that c′(M1) ≤ c′(M2). From M1 we construct a matching M ′ in G′. We
first initialize M ′ = M1. This way, the condition c′(M ′) ≤ c′(opt)/2 is clearly satisfied.



A. Adamaszek, M. Mnich, and K. Paluch 9:11

However, M ′ potentially is not a perfect matching with half-edges, as it might contain a
half-edge of a diagonal of a square C ∈ S2. We can, however, replace such a half-edge with a
half-edge of an edge of C, without increasing the cost of M ′.

If the parities of |S2 ∪ S3| and |V (G)| differ and opt uses a 2-edge, then we choose any
such 2-edge e ∈ opt and split it into two half-edges. Otherwise, if S2 ∪ S3 is empty, |V (G)| is
odd. Then any path-cycle cover of G must contain at least one odd cycle C. We split any
edges of opt which is incident to a vertex of C into two half-edges. We decompose opt into
two perfect matchings M1 and M2. Since c′(M1) = c′(M2), we may choose that one which
contains a half-edge incident to a vertex of C.

The remaining case is when the parities of |S2 ∪ S3| and |V (G)| differ, each edge of opt
has cost 1 and S2 ∪ S3 is non-empty. Then we choose one square C ∈ S2 ∪ S3 and do not
split any of its edges. At least one of the perfect matchings M1,M2 from the decomposition
of opt is such that it does not use two internal edges of C. Since again c′(M1) = c′(M2), we
may choose that one, which does not use two internal edges of C. J

3.3 Constructing the Multigraph
We will now construct a multigraph G1 from the path-cycle cover Cmin, and the minimum-cost
matching M 1

2 that is good for Cmin. We set V (G1) = V (G). The idea is to take into G1

two copies of each 1-edge of Cmin, and one copy of each 1-edge and of each 1/2-half-edge
of M 1

2 . However, to ensure that we will be able to color the graph at a later stage, and as
we do not have the extended vertices ve in V (G1) to accommodate half-edges, we first need
to modify the matching M 1

2 into a collection of edges M . The set M does not have to be
a matching—it may contain multiple edges incident to the same vertex, and even multiple
copies of the same edge of G. Also, we need to ensure that the multigraph G1 has at least
5
2αopt − βopt edges of cost 1 in (G, c), i.e., that the set M has at least 1

2αopt − βopt edges of
cost 1 in (G, c).

We start by setting M to be the collection of edges and half-edges of M 1
2 . Then we

modify M by executing the following sequence of steps:
(O1) For every 1-triangle (u, v, w) of Cmin for which {u, v} ∈M and {w, t} ∈M for some t,

we remove the edge {u, v} from M , and instead we add a second copy of {w, t} into
M . Notice that if we perform a similar operation with the cycle of Cmin containing the
vertex t, it will result in the third copy of {w, t} being added to the graph.

(O2) For every 1-triangle (u, v, w) of Cmin for which {u, v} ∈M and w is unmatched in M ,
we remove the edge {u, v} from M .

(O3) For every 1-square (u, v, w, z) of Cmin for which {u, v}, {w, ve} ∈ M and {z, t} ∈ M
for some t, we remove {w, ve} from M , and instead we add a second copy of {z, t}
into M . Notice that in this case we really need half of the additional edge {z, t}, so if
we perform such operation twice for {z, t} (i.e., the component containing t is also a
1-square), we have to add only one, and not two copies of {z, t}. We also perform the
same operation if {u, v} is a diagonal, and not a native edge of the square.

(O4) For every 1-square (u, v, w, z) of Cmin for which {u, v}, {w, ve} ∈M and z is unmatched
in M , we remove the half-edge {w, ve} from M . As before, we perform the same
operation if {u, v} is a diagonal, and not a native edge of the square.

(O5) For every 1-square (u, v, w, z) of Cmin for which {u, ve} ∈ M and no other edge or
diagonal of the square (or its half) is in M , we remove {u, ve} from M and instead we
add {u, v} into M where e = {u, v}.

(O6) If the matching M contains a special half-edge {u, ve}, then we add e to M .

ICALP 2018
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After these operations, there are no half-edges left in M . We now construct the multi-
graph G1 by setting V (G1) = V (G), and by adding to G1 two copies of each 1-edge of Cmin
and all edges of M . We can show a lower bound on the number of edges of G1.

I Lemma 9. The multigraph G1 has at least 5
2αopt − βopt edges which are 1-edges of (G, c).

Proof. The minimum-cost path-cycle cover Cmin contains at least αopt edges of cost 1 in
(G, c). Therefore, two copies of C1

min contain at least 2αopt edges. The matching M 1
2 has

cost at most c(opt)/2. Therefore, the number of 1-edges in M
1
2 is at least αopt/2, where

half-edges count as half of an edge each. We further have that βopt ≥ βM , where βM denotes
the number of basic verices unmatched in M 1

2 .
The only modifications that decrease the number of edges in G1 are operations 2 and 4.

However, for each triangle or square for which we remove one 1-edge or 1/2-half-edge, we can
uniquely charge it to an unmatched basic vertex. Thus, the number of such deletions is at
most βM and can be charged against βopt. Consequently, we always have at least 5

2αopt−βopt
edges in the resulting multigraph G1. J

The multigraph G1 can be essentially path-3-colored using the path-3-coloring procedure
by Dudycz et al. [9]. The multigraph colored by Dudycz et al. [9] is built from two copies of
a maximum-cost cycle cover and a maximum cost perfect matching. Several not very serious
modifications are needed in order to deal with double and triple edges of M ; note that the
existence of such edges means that some vertices in G1 have degree greater than 5. Again,
details are deferred to the full version of the paper.

4 A New 8/7-Approximation Algorithm for (1,2)-TSP

The 8/7-approximation algorithm is quite similar to the algorithm with an approximation
factor of 7/6. Instead of a minimum-cost path-cycle cover Cmin of (G, c) we use a minimum-cost
triangle-free cycle cover Ct

min. We also compute a minimum-cost matchingM 1
2 with half-edges

with additional properties. To obtain an 8/7-approximation, M 1
2 has to additionally satisfy

the condition that for every 1-hexagon C from Ct
min at least one of the vertices of C must be

incident to an external edge of M 1
2 or be unmatched in M 1

2 . Next, we build a multigraph
G1 that consists of three copies of Ct

min and one copy of M 1
2 . We do some flipping of edges

and half-edges and path-4-color the multigraph G1. Path-4-coloring is based on the same
ideas as path-3-coloring but is a little more complicated. We defer the details to the full
version of this paper.
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