
Restricted Max-Min Fair Allocation
Siu-Wing Cheng
Department of Computer Science and Engineering, HKUST, Hong Kong
scheng@cse.ust.hk

https://orcid.org/0000-0002-3557-9935

Yuchen Mao
Department of Computer Science and Engineering, HKUST, Hong Kong
ymaoad@cse.ust.hk

https://orcid.org/0000-0002-1075-344X

Abstract
The restricted max-min fair allocation problem seeks an allocation of resources to players that
maximizes the minimum total value obtained by any player. It is NP-hard to approximate the
problem to a ratio less than 2. Comparing the current best algorithm for estimating the optimal
value with the current best for constructing an allocation, there is quite a gap between the ratios
that can be achieved in polynomial time: 4 + δ for estimation and 6 + 2

√
10 + δ ≈ 12.325 + δ for

construction, where δ is an arbitrarily small constant greater than 0. We propose an algorithm
that constructs an allocation with value within a factor 6 + δ from the optimum for any constant
δ > 0. The running time is polynomial in the input size for any constant δ chosen.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Fair allocation, approximation, local search

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.37

Related Version A full version of the paper can be found at https://arxiv.org/abs/1804.
10902.

Funding Supported by the Research Grants Council, Hong Kong, China (project no. 16201116).

1 Introduction

Background. Let P be a set ofm players. Let R be a set of n indivisible resources. Resource
r ∈ R is worth a non-negative integer value vpr for player p ∈ P . An allocation is a partition
of R into disjoint subsets {Cp : p ∈ P} so that player p is assigned the resources in Cp. The
max-min fair allocation problem is to distribute resources to players so that the minimum
total value of resources received by any player is maximized. The value of an allocation is
minp∈P

∑
r∈Cp

vpr. So we want to find an allocation with maximum value.
No algorithm can achieve an approximation ratio less than 2 unless P = NP [5]. Bansal

and Sviridenko [4] proposed the configuration LP and showed that it can be solve to any
desired accuracy in polynomial time. The configuration LP turns out to be a useful tool
for this problem. Using it, approximation ratios of O(

√
m logm) and O(nδ logn) for any

δ > 9 log logn
logn have been attained [3, 4, 6, 12]. In this paper, we focus on the restricted case

in which each resource r is desired by some subset of players, and has the same value vr
for those who desire it and value 0 for the rest. Even in this case, no approximation ratio
better than 2 can be obtained unless P = NP [5]. Bansal and Sviridenko [4] designed a
O
(log logm

log log logm
)
-approximation algorithm which is based on rounding the configuration LP.

Feige [8] proved that the integrality gap of the configuration LP is bounded by a constant

EA
T

C
S

© Siu-Wing Cheng and Yuchen Mao;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:scheng@cse.ust.hk
https://orcid.org/0000-0002-3557-9935
mailto:ymaoad@cse.ust.hk
https://orcid.org/0000-0002-1075-344X
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.37
https://arxiv.org/abs/1804.10902
https://arxiv.org/abs/1804.10902
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Restricted Max-Min Fair Allocation

(large and unspecified). His proof was made constructive by Haeupler et al. [10], and hence,
results in a constant-approximation algorithm. Asadpour et al. [2] proved that the integrality
gap of the configuration LP is at most 4. As a consequence, by solving the configuration LP
approximately, one can estimate the optimal solution value within a factor of 4 + δ for any
constant δ > 0. However, it is not known how to construct a (4 + δ)-approximate allocation
in polynomial time. Annamalai et al. [1] developed a (6+2

√
10+δ)-approximation algorithm.

Their algorithm is purely combinatorial, but the analysis still relies on the configuration LP.
There is quite a gap between the current best estimation ratio 4 + δ and the current best
approximation ratio 6 + 2

√
10 + δ ≈ 12.325 + δ.

If one constrains the restricted case further by requiring vr ∈ {1, ε} for some fixed
constant ε ∈ (0, 1), then it becomes the (1, ε)-restricted case. Golovin proposed an O(

√
n)-

approximation algorithm [9]. Chan et al. [7] showed that it is still NP-hard to obtain an
approximation ratio less than 2 and that the algorithm in [1] achieves an approximation ratio
of 9 in this case. The analysis in [7] does not rely on the configuration LP.

Our contributions. We propose an algorithm for the restricted max-min fair allocation
problem that achieves an approximation ratio of 6 + δ for any constant δ > 0. It runs in
polynomial time for any constant δ chosen. Our algorithm uses the same framework as [1]:
we maintain a stack of layers to record the relation between players and resources, and use
lazy update and a greedy strategy to achieve a polynomial running time.

Our first contribution is a greedy strategy that is much more aggressive than that in [1].
Let τ∗ be the optimal solution value. Let λ > 2 be the target approximation ratio. To obtain
a λ-approximate solution, the value of resources a player need is τ∗/λ. The greedy strategy
in [1] considers a player greedy if that player claims at least τ∗/2 worth of resources, which
is more than needed. In contrast, we consider a player greedy if it claims (nearly) the largest
total value among all the candidates. When building the stack, both [1] and we add greedy
players and the resources claimed by them to the stack. Intuitively, our more aggressive
definition of greedy leads to faster growth of the stack, and hence a significantly smaller
approximation ratio can be achieved.

Our aggressive strategy brings challenge to the analysis that approaches in [1, 7] cannot
cope with. Our second contribution is a new analysis tool: an injection that maps a lot of
players in the stack to their competing players who can access resources of large total value.
Since players added to the stack must be greedy, they claim more than their competing
players. Therefore, such an injection allows us to conclude that players in the stack claim
large worth of resources. By incorporating competing players into the analysis framework
in [7], we improve the approximation ratio to 6 + δ. Our analysis does not rely on the
configuration LP, and is purely combinatorial.

2 Preliminaries

Let τ∗ be the optimal solution value. Let λ denote our target approximation ratio. Given
any value τ 6 τ∗, our algorithm returns an allocation of value τ/λ in polynomial time. We
will show how to combine this algorithm with binary search to obtain an allocation of value
at least τ∗/λ in the end. We assume that τ is no more than τ∗ in the rest of this section.

Bipartite graph and thin edges. A resource r is fat if vr > τ/λ; otherwise, r is thin. Let
G be the bipartite graph formed by representing the players in P and the fat resources in R
as vertices, and connecting a player p and a fat resource r by an edge if p desires r. Similarly,

S.-W. Cheng and Y. Mao 37:3

players and thin resources form a hypergraph, namely, there are vertices representing players
in P and thin resources in R, and a player p and a subset B of thin resources form an edge
(p,B) if p desires all resources in B. (Note that (p, ∅) is included.) We call the edges of
this hypergraph thin edges. For a subset B of thin resources, we define the value of B as
value(B) =

∑
r∈B vr. For a thin edge e = (p,B), its value value(e) is defined to be the total

value of thin resources covered by it, i.e., value(e) = value(B). We use uppercase calligraphic
letters to denote subsets of thin edges. Given a set S of thin edges, define value(S) to be the
total value of the thin resources covered by S.

Partial allocation. Since our target approximation ratio is λ, it suffices to assign each player
p either a single fat resource r such that {p, r} is an edge of G, or a subset B of thin resources
such that (p,B) is a thin edge and value(B) > τ/λ. Hence, it suffices to consider allocations
that consist of two parts, one being a maximum matching M of G and the other being a
subset E of thin edges such that every player is covered by either M or E , no two edges in E
share any resource, and every edge in E has value at least τ/λ.

Our algorithm will start with an arbitrary maximum matching of G alone, grow and
update the set E of thin edges, and whenever necessary, update the maximum matching as
well. We call the intermediate solutions partial allocations. A partial allocation consists of
a maximum matching M of G and a set E of thin edges such that: (i) no player is covered
by both M and E ; (ii) no two edges in E share any resource; (iii) every edge (p,B) ∈ E is
minimal in the sense that value(B) > τ/λ and every proper subset B′ ⊂ B has value less
than τ/λ. We say a player p is satisfied by a partial allocation if p is covered by M or E . A
partial allocation is an allocation if it satisfies every player.

Node-disjoint paths. We define a family of networks which are heavily used in both our
algorithm and its analysis. With respect to any arbitrary maximum matching M of G, define
GM to be a directed bipartite graph such that GM has the same vertex set as G (i.e., players
and fat resources), there is a directed edge from player p to resource r if {p, r} is an edge of
G that is not used in M , and there is a directed edge from resource r to player p if {p, r} is
an edge of G that is used in M .

We use PM and PM to denote the subsets of players matched and unmatched in M ,
respectively. Given S ⊆PM and T ⊆ P , we use GM (S, T) to denote the problem of finding
the maximum number of node-disjoint paths from S to T in GM . This problem will arise in
this paper for different choices of S and T . A feasible solution of GM (S, T) is just any set of
node-disjoint paths from S to T in GM . An optimal solution maximizes the number of paths.
Let fM (S, T) denote the size of an optimal solution of GM (S, T). In case that S ∩ T 6= ∅, a
feasible solution may allow a path from a player p ∈ S ∩ T to itself, i.e., a path with no edge.
We call such a path a trivial path. Other paths are non-trivial.

Let Π be any feasible solution of GM (S, T). The paths in Π originate from a subset of
S, which we call the sources, and terminate at a subset of T , which we call the sinks. We
denote the sets of sources and sinks by source(Π) and sink(Π), respectively. A trivial path
has only one node which is both its source and sink. We use Π0 and Π+ to denote the sets
of the trivial paths and the non-trivial paths in Π, respectively.

An optimal solution of GM (S, T) can be found by solving a maximum s-t flow problem
as follows. Add a super source s and directed edges from s to all vertices in S. Add a super
sink t and directed edges from all vertices in T to t. Set the capacities of all edges to 1. Find
an integral maximum flow in the resulting network. The paths in GM used by this maximum
flow is an optimal solution of GM (S, T). Node-disjointness is ensured because, in the s-t flow
network, each player has in-degree at most one and each resource has out-degree at most one.

ICALP 2018

37:4 Restricted Max-Min Fair Allocation

Let π be a non-trivial path from PM to P in GM . If we ignore the directions of edges
in π, then π is called an alternating path in the matching literature [11]. We use M ⊕ π to
denote the result of flipping π, i.e., removing the edges in π ∩M from the matching and
adding the edges in π \M to the matching. M ⊕ π is also a maximum matching of G. We
can extend the above operation and form M ⊕Π+ for any feasible solution Π of GM (S, T)
for any S ⊆ PM and any T ⊆ P . M ⊕ Π+ is a maximum matching of G. The following
results follow from basic theories of matching and network flow.

I Claim 2.1. For any maximum matchings M and M ′ of G, (i) fM (PM ,PM ′) = |PM |, and
(ii) for every subset T of players, fM (PM , T) = fM ′(PM ′ , T).

If one treats Π like a flow in the network GM , then GM⊕Π+ behaves like the residual graph
with respect to Π. Claims 2.2 and 2.3 below concerns with augmentation using GM⊕Π+ .

I Claim 2.2. Let Π be a feasible solution of GM (S, T). Then, M ⊕ Π+ is a maximum
matching of G, so the directed bipartite graph GM⊕Π+ is well defined. Also, Π is an optimal
solution of GM (S, T) if and only if GM⊕Π+ contains no path from S\source(Π) to T \sink(Π).

I Claim 2.3. Let Π be a feasible solution of GM (S, T). Suppose that GM⊕Π+ contains a
path π from S \ source(Π) to T \ sink(Π). We can use π to augment Π to a feasible solution
Π′ of GM (S, T) such that |Π′| = |Π|+ 1, the vertex set of Π′ is a subset of the vertices in
Π ∪ {π}, source(Π′) = source(Π) ∪ {source(π)}, and sink(Π′) = sink(Π) ∪ {sink(π)}.

We can also push flow along a path in GM⊕Π+ from sink(Π) to T . This reroutes the flow
in GM without changing its flow value. Claim 2.4 below gives a precise statement.

I Claim 2.4. Let Π be a feasible solution of GM (S, T). Suppose that there is a non-trivial
path π in GM⊕Π+ from sink(Π) to T . Clearly, sink(π) 6∈ sink(Π) because every node in
sink(Π) has zero in-degree in GM⊕Π+ . We can use π to convert Π to a feasible solution Π′
of GM (S, T) such that |Π′| = |Π|, the vertex set of Π′ is a subset of the vertices in Π ∪ {π},
source(Π′) = source(Π), and sink(Π′) = (sink(Π) \ {source(π)}) ∪ {sink(π)}.

3 The Algorithm

3.1 Overview
We give an overview of the common framework that our algorithm shares with that in [1].
Let M and E denote the maximum matching of G and the set of thin edges in the current
partial allocation, respectively. Let p0 be an arbitrary player who is not yet satisfied.

To satisfy p0, the simplest case is that we can find a minimal thin edge (p0, B) such that
value(B) is at least τ/λ and B excludes the resources covered by edges in E , i.e., not blocked
by any thin edge in E . We can extend the partial allocation by adding (p0, B) to E .

More generally, we can use any thin edge (q,B) such that B meets the above requirements
even if q 6= p0, provided that there is a path from p0 to q in GM . If q 6= p0, such a path is an
alternating path in G with respect to M , and q is matched by M . We can flip this path to
match p0 with a fat resource and then include (q,B) in E to satisfy q.

We may have the situation that the thin edge (q,B) mentioned above is blocked by some
thin edges in E . Pick such a (q,B) arbitrarily, and call it (q0, B0). Let {(p1, B

′
1), . . . , (pk, B′k)}

be the thin edges in E that block (q0, B0), i.e., B0 ∩B′i 6= ∅ for i ∈ [1, k]. To make (q0, B0)
unblocked, we need to satisfy each player pi, i ∈ [1, k], with a fat resource or another thin
edge. Afterwards, we can satisfy p0 as before. To record the different states of the algorithm,
we initialize a stack to contain (p0, ∅) as the first layer and then create another layer on top

S.-W. Cheng and Y. Mao 37:5

that stores the sets X2 = {(q0, B0)} and Y2 = {(p1, B
′
1), . . . , (pk, B′k)} among other things

for bookkeeping. We change our focus to satisfy the set of players Y2 = {p1, . . . , pk}.
To satisfy a player in Y2 (by a new edge), we need to identify a minimal thin edge (q1, B1)

such that value(B1) is at least τ/λ and GM contains two node-disjoint paths from {p0} ∪ Y2
to {q0, q1}, and we also require B1 to exclude the resources already covered by thin edges in
the current stack (i.e., X2 and Y2) because the current plan to satisfy q0 in the future involves
some of these thin resources. If (q1, B1) is blocked by thin edges in E , we initialize a set
X3 = {(q1, B1)}; otherwise, we initialize a set I = {(q1, B1)}. Ideally, if (q1, B1) is unblocked,
we could immediately make some progress. Since there are two node-disjoint paths from
{p0} ∪ Y2 to {q0, q1}, q1 is either reachable from p0 or a player in Y2. In the former case, we
can satisfy p0; in the latter case, the path from Y2 to q1 must be node-disjoint from the path
from p0 to q0. We can remove a blocking edge from Y2 without affecting the alternating
path from p0 to q0. But we would not do so because, as argued in [1], in order to achieve a
polynomial running time, we should let I grow bigger so that a large progress can be made.

Since there are multiple players in Y2 to be satisfied, we continue to look for another
minimal thin edge (q2, B2) such that GM contains three node-disjoint paths from {p0} ∪ Y2
to {q0, q1, q2}, value(B2) > τ/λ, and B2 excludes the resources covered by thin edges in the
current stack (i.e.,X2 ∪ Y2 ∪ X3) and I. If (q2, B2) is blocked by thin edges in E , we add
(q2, B2) to X3; otherwise, we add it to I. After collecting all such thin edges in X3 and I, we
construct the set Y3 of thin edges in the current partial allocation that block X3. Then, we
add a new top layer to the stack that stores X3 and Y3 among other things for bookkeeping.
Then, we turn our attention to satisfying the players in Y3 with new edges and so on. These
repeated additions of layers to the stack constitute the build phase of the algorithm.

The build phase stops when we have enough thin edges in I to satisfy a predetermined
fraction of players in Yl for some l, and then we shrink this layer and delete all layers above
it. The above is repeated until I is not large enough to satisfy the predetermined fraction
of players in any Yl in the stack. These repeated removal of layers constitute the collapse
phase of the algorithm. At the end of the collapse phase, we switch back to the build phase.

The alternation of build and collapse phases continues until we succeed in satisfying
player p0, our original goal, that is stored in the bottommost layer in the stack.

A greedy strategy is also used for achieving a polynomial running time. In [1], when a
blocked thin edge (q,B) is picked and added to Xl for some l, B is required to be a minimal
set of value at least τ/2, which is more than τ/λ. Intuitively, if such an edge is blocked, it
must be blocked by many edges. Hence, the strategy leads to fast growth of stack. We use a
more aggressive strategy: we allow the value of B to be as large as τ + τ/λ, and among all
candidates, we pick the (q,B) with (nearly) the largest value. Our strategy leads to faster
growth of the stack, and hence, a polynomial running time can be achieved for smaller λ.

3.2 Notation and definitions
A state of the algorithm consists of several components, namely, M , E , a stack of layers, and
a global variable I that stores a set of thin edge. The layers in the stack are indexed starting
from 1 at the bottom. For i > 1, the i-th layer is a 4-tuple (Xi,Yi, di, zi), where Xi and Yi
are sets of thin edges, and di and zi are two numeric values that we will explain later. We
use I, Xi and Yi to denote the set of players covered by edges in I, Xi and Yi, respectively.
For any k > 1, let X6k denote

⋃k
i=1 Xi, and Y6k, X6k, and Y6k are similarly defined.

The sets Xi and Yi are defined inductively. At the beginning of the algorithm, X1 = ∅,
Y1 = {(p0, ∅)}, d1 = z1 = 0, and I = ∅. The first layer in the stack is thus (∅, {(p0, ∅)}, 0, 0).

ICALP 2018

37:6 Restricted Max-Min Fair Allocation

Consider the construction of the (k+1)-th layer in an execution of the build phase. When
it first starts, Xk+1 is initialized to be empty. We say that p is addable if fM (Y6k, X6k+1 ∪
I ∪ {p}) > fM (Y6k, X6k+1 ∪ I). Note that this definition depends on X6k+1 ∪ I, so adding
edges to Xk+1 and I may affect the addability of players. Given an addable player p, we say
that a thin edge (p,B) is addable if value(B) ∈ [τ/λ, τ + τ/λ] and B excludes resources
currently in X6k+1 ∪ Y6k ∪ I. An addable thin edge (p,B) is unblocked if there exists a
subset B′ ⊆ B such that value(B′) > τ/λ and B′ excludes resources used in E . Otherwise,
(p,B) is blocked. During the construction of the (k + 1)th layer, the algorithm adds some
blocked addable thin edges to Xk+1 and some unblocked addable thin edges to I. When the
growth of Xk+1 stops, the algorithm constructs Yk+1 as the set of the thin edges in E that
share resource(s) with some edge(s) in Xk+1. Edges in Yk+1 are called blocking edges.

After constructing Xk+1 and Yk+1 and growing I, we define dk+1 := fM (Y6k, X6k+1 ∪ I)
and zk+1 := |Xk+1|. The values dk+1 and zk+1 do not change once computed unless the
layer Lk+1 is destructed in the collapse phase, although fM (Y6k, X6k+1 ∪ I) and |Xk+1| may
change subsequently. The values dk+1 and zk+1 are introduced only for the analysis.

Whenever we complete the construction of a new layer in the stack, we check whether
any existing layer is collapsible. If so, we leave the build phase and enter the collapse phase,
during which the stack is shrunk and the current partial allocation is updated. We stay in
the collapse phase until no layer is collapsible. If the stack has become empty, we are done as
the player p0 has been satisfied. Otherwise, we reenter the build phase. We give the detailed
specification of the build and collapse phases in the following.

3.3 Build phase
Assume that the stack currently contains layers L1, . . . , Lk with Lk at the top. Let M and E
denote the maximum matching in G and the set of thin edges in the current partial allocation,
respectively. The following routine Build constructs the next layer Lk+1.

Build(M, E , I, (L1, · · · , Lk))
1. Initialize Xk+1 to be the empty set.
2. If there is an addable player p and an unblocked addable edge (p,B), then:

a. take a minimal subset B′ ⊆ B such that value(B′) > τ/λ and B′ excludes the
resources used in E (we call (p,B′) a minimal unblocked addable edge),

b. add (p,B′) to I,
c. go back to step 2.

3. When we come to step 3, no unblocked addable edge is left. If there are no (blocked)
addable edges, go to step 4. For each addable player p who is incident to at least one
addable edge, identify one maximal blocked addable edge (p,B) such that B 6⊂ B′
for any blocked addable edge (p,B′). Pick the edge with the largest value among
those identified, add it to Xk+1, and repeat step 3.

4. At this point, the construction of Xk+1 is complete. Let Yk+1 be the set of the
thin edges in E that share resource(s) with some thin edge(s) in Xk+1.

5. Compute dk+1 := fM (Y6k, X6k+1 ∪ I) and zk+1 :=
∣∣Xk+1

∣∣.
6. Push the new layer Lk+1 = (Xk+1,Yk+1, dk+1, zk+1) onto the stack.

Build differs from its counterpart in [1] in several places, particularly in step 3. First,
we requires blocked addable edges to be maximal while [1] only considers minimal addable
edges of value at least τ/2. Second, when adding addable edges to Xk+1, we pick the one
with (nearly) the largest value. In contrast, [1] arbitrarily picks one addable edge.

S.-W. Cheng and Y. Mao 37:7

Table 1 Let ` denote the highest layer index in the current stack. Let M and E be the maximum
matching and the set of thin edges in the current partial allocation.

Invariant 1 Every edge in I has value in [τ/λ, 2τ/λ]. Every edge in X6` has value in
[τ/λ, τ + τ/λ]. No two edges from X6` and I (both edges from either set or
one edge from each set) cover the same player or share any resource.

Invariant 2 No edge in E shares any resource with any edge in I.
Invariant 3 For all i ∈ [1, `], every edge in Xi shares some resource(s) with some edge(s)

in Yi but not with any edge in E \ Yi.
Invariant 4 Y2, . . . ,Y` are disjoint subsets of E . (Y1 = {(p0, ∅)} is not.)
Invariant 5 For all i ∈ [1, `], no edge in Yi shares any resource with any edge in Xj for

any j 6= i.
Invariant 6 fM (Y6`−1, I) = |I|.
Invariant 7 For all i ∈ [1, `− 1], fM (Y6i, X6i+1 ∪ I) > di+1.

Is it possible that Xk+1 = ∅ and Yk+1 = ∅? We will establish Lemma 4.1 in Section 5.2,
which implies that if Yk+1 is empty, then some layer below Lk+1 is collapsible. As a result,
the algorithm will enter the collapse phase next and Lk+1 will be removed.

I Lemma 3.1. Build runs in poly(m,n) time.

I Lemma 3.2. Build maintains invariants 1–7 in Table 1.

3.4 Collapse phase
Let M be the maximum matching in the current partial allocation. Let (L1, L2, . . . , L`) be
the current stack. Deciding whether a layer can be collapsed requires a decomposition of I.

Collapsibility. Let I1 ∪ I2 ∪ · · · I` be some partition of I. Let Ii denote the set of players
covered by Ii. We use I6j and I6j to denote

⋃j
i=1 Ii and

⋃j
i=1 Ii, respectively. Note that

|Ii| = |Ii| by invariant 1. The partition I1 ∪ I2 ∪ · · · I` is a canonical decomposition of I
if for all i ∈ [1, `], fM (Y6i, I6i) = fM (Y6i, I) = |I6i| = |I6i|. [1]

I Lemma 3.3 ([1]). In poly(`,m, n) time, one can compute a canonical decomposition
I1 ∪ I2 ∪ . . . I` of I and a canonical solution of GM (Y6`, I) which can be partitioned into a
disjoint union Γ1 ∪ Γ2 ∪ · · ·Γ` such that for every i ∈ [1, `], Γi is a set of |Ii| paths from Yi
to Ii.

The canonical decomposition and solution can be obtained by starting with an optimal
solution of GM (Y1, I) and successively augment it (using Claim 2.3) to optimal solutions of
GM (Y62, I), . . . , GM (Y6`, I). The resulting optimal solution of GM (Y6`, I) is an canonical
solution, and also induces a canonical decomposition of I.

Consider Γi. The sources (which are also sinks) of the trivial paths in Γi can be satisfied
by a new thin edge from Ii. Recall that the non-trivial paths in Γi are alternating paths
of M . Their sources can be satisfied by fat resources if we flip these alternating paths and
satisfy the sinks with thin edges from Ii. If we do so, then edges in Yi that cover source(Γi)
can be safely removed from E as the players in source(Γi) are satisfied by new edges, and
from Yi since they no longer block edges in Xi. A layer is collapsible if a certain portion
of its blocking edges can be removed. More precisely, for any i ∈ [0, `], Li is collapsible if
there is a canonical decomposition I0 ∪ I1 ∪ . . . I` of I such that |Ii| > µ|Yi|, where µ is a
constant that will be determined later.

ICALP 2018

37:8 Restricted Max-Min Fair Allocation

Collapse layers. When we find that some layer is collapsible, we run the routine Collapse
below, which collapses layers in the stack until no layer is collapsible. Collapse works in
the same manner as its counterpart in [1], but there are small differences in the presentation.

Collapse(M, E , I, (L1, · · · , L`))
1. Compute a canonical decomposition I1 ∪ I2 ∪ · · · I` and a canonical solution

Γ1∪Γ2∪· · ·Γ` of GM (Y6`, I). If no layer is collapsible, go to build phase. Otherwise,
let Lt be the collapsible layer with the smallest index t.

2. Remove all layers above Lt from the stack. Set I := I6t−1.
3. Recall that source(Γt) ⊆ Yt by Lemma 3.3. Let V denote the set of the thin edges

in Yt that cover source(Γt). Recall that Yt ⊆ E .
a. Update the maximum matching M by flipping the non-trivial paths in Γt, i.e.,

set M := M ⊕ Γ+
t . This matches the sources of non-trivial paths in Γt while

leave their sinks unmatched.
b. Add to E edges in It, i.e., set E := E ∪ It. Now the sinks of non-trivial paths are

satisfied. Also the sources of trivial paths are satisfied by new thin edges.
c. Now each player in source(Γt) is satisfied either by a fat resource or a thin edge

from It. Edges in V can be safely removed from E . Set E := E \V . Consequently,
edges in V no longer block edges in Xt. Set Yt := Yt \ V.

4. If t > 2, we need to update Xt because the removal of V from E (and hence Yt)
may make some edges in Xt unblocked. For each edge (p,B) ∈ Xt that becomes
unblocked, perform the following:
a. Remove (p,B) from Xt.
b. If fM (Y6t−1, I ∪ {p}) > fM (Y6t−1, I), then add (p,B′) to I, where B′ is an

arbitrary minimal subset of B such that value(B′) > τ/λ and B′ excludes the
resources covered by E .

5. If t = 1, step 3 already satisfied the player p0 in the bottommost layer in the stack,
so the algorithm terminates. Otherwise, update ` := t and go back to step 1.

I Lemma 3.4. Collapse maintains invariants 1–7 in Table 1.

4 Polynomial running time and binary search

Each call of Build and Collapse runs in time polynomial in `, m and n. Lemma 4.1 below
is the key to obtaining a bound on ` and the total number of calls of Build and Collapse.
The proof of Lemma 4.1 is deferred to Section 5.

I Lemma 4.1. Assume that the values τ and λ used by the algorithm satisfy the relations
τ 6 τ∗ and λ = 6 + δ for an arbitrary constant δ ∈ (0, 1). There exists a constant
µ ∈ (0, 1) dependent on δ such that for any state (M, E , I, (L1, . . . , L`)) of the algorithm, if
|Yi+1| <

√
µ|Y6i| for some i ∈ [1, `− 1], then some layer below Li+1 must be collapsible.

Lemma 4.1, immediately implies a logarithmic bound on the maximum number ` of layers.
Using argument similar to that in [1, Lemmas 4.10 and 4.11], we can show that given a
partial allocation, our algorithm can extend it to satisfy one more player in polynomial time.
By repeating the algorithm at most n times, we can extend a maximum matching of G to an
allocation of value at least τ/λ.

The remaining task is to binary search for τ∗. If we use a value τ that is at most τ∗, the
algorithm terminates in polynomial time with an allocation. If we use a value τ > τ∗, there
are two possible outcomes. We may be lucky and always have some collapsible layer below

S.-W. Cheng and Y. Mao 37:9

Li+1 whenever |Yi+1| <
√
µ|Y6i| for some i ∈ [1, `− 1]. In this case, the algorithm returns

in polynomial time an allocation of value at least τ/λ > τ∗/λ. The second outcome is that
no layer is collapsible at some point, but |Yi+1| <

√
µ|Y6i| for some i ∈ [1, `− 1]. This can

be detected in O(1) time by maintaining |Yi+1| and |Y6i|, which allows us to detect that
τ > τ∗ and halt the algorithm. Since this is the first violation of this property, the running
time before halting is polynomial in m and n. The last allocation returned by the algorithm
during the binary search has value at least τ∗/λ = τ∗/(6 + δ). We will see in Section 5.2
that a smaller δ requires a smaller µ and hence a higher running time.

I Theorem 4.2. For any fixed constant δ ∈ (0, 1), there is an algorithm for the restricted
max-min fair allocation problem that returns a (6 + δ)-approximation in time polynomial in
the number of players and the number of resources.

5 Analysis

We will derive lower and upper bounds for the total value of the thin resources in the stack
and show that if Lemma 4.1 does not hold, the lower bound would exceed the upper bound.

5.1 Competing players
To analyze our aggressive greedy strategy for selecting blocked addable thin edges, we need
an injective map ϕ from the players covered by them to players who can access thin resources
of high total value. The next result shows that these target players exist.

I Lemma 5.1. Let OPT be an arbitrary optimal allocation. There exists a maximum
matching M∗ of G induced by OPT such that M∗ matches every player who is assigned at
least one fat resource in OPT. Hence, every player in PM∗ is assigned only thin resources in
OPT that are worth a total value of τ or more, assuming that τ 6 τ∗.

The domain of the injection ϕ is a subset of X6` and its image is a subset of PM∗ . We
call the image of ϕ the competing players. For any player q ∈ X6`, ϕ(q) has access to thin
resources that are worth a total value of τ or more. Our goal is to prove that ϕ(q) is also
an addable player when q is added to X6`. Since the algorithm prefers q to ϕ(q), either no
addable edge is incident to ϕ(q) or the maximal addable edge identified for ϕ(q) has less
value than the edge eq ∈ X6` that covers q. In both cases, more than τ − value(eq) worth of
thin resources assigned to ϕ(q) in OPT are already in the stack. This will allow us to prove
a good lower bound for the total value of the thin resources in the stack.

Lemma 5.2 below states the properties of competing players. We already discussed the
usage of Lemma 5.2(i) and (ii). It would be ideal if the domain of ϕ could cover the entire
X6`. However, for technical reasons, when Collapse removes a player from X6`, we may
have to remove two players from the domain of ϕ in order to maintain the properties of ϕ.
Lemma 5.2(iii) puts a lower bound on the size of the domain of ϕ. When deriving lower
bound for the total value of the thin resources in the stack, the players in PM∗ that are not
competing players and outside X6` ∪ I also play a role. Lemma 5.2(iv) will allow us to prove
that a large subset of such players are still addable after we finish adding edges to X` during
the construction of layer L`. Each of these addable players contributes a large worth of thin
resources to the stack.

I Lemma 5.2. Let M∗ be a maximum matching of G induced by some optimal allocation.
For any state (M, E , I, (L1, . . . , L`)) of the algorithm, there exists an injection ϕ such that

ICALP 2018

37:10 Restricted Max-Min Fair Allocation

(i) The domain Dϕ and image Imϕ of ϕ are subsets of X6` and PM∗ , respectively.
(ii) For every player p ∈ Dϕ, when p was added to Xk for some k ∈ [2, `], ϕ(p) was also an

addable player at that time.
(iii) |Dϕ| > 2|X6`| −

∑`
i=1 zi.

(iv) fM (PM , (PM∗ \ Imϕ) ∪X6`) = |PM |.

Proof. Our proof is by induction on the chronological order of the build and collapse phases.
In the base case, ` = 1, X1 = ∅, and z1 = 0. The existence of ϕ is trivial as its domain
Dϕ ⊆ X1 = ∅. So Imϕ = ∅. Then, (i), (ii) and (iii) are satisfied trivially, and (iv) follows
from Claim 2.1(i). We discuss how to update ϕ during the build and collapse phases.

Build phase. Suppose that Build begins to construct a new layer L`. X` is initialized to
be empty. The value z` is computed only at the completion of L`. However, in this proof,
we initialize z` = 0, increment z` whenever we add an edge to X`, and show the validity of
(i)–(iv) inductively.

Since X` = ∅ and z` = 0 initially, properties (i)–(iv) are satisfied by the current ϕ by
inductive assumption.

Step 2 of Build does not change X`, and so ϕ needs no update.
Consider step 3 of Build. Suppose that a thin edge incident to player q1 is added to

X`. So q1 is addable. For clarity, we use X ′`, z′`, ϕ′, Dϕ′ , and Imϕ′ to denote the updated
X`, z`, ϕ, Dϕ, and Imϕ, respectively. Clearly, X ′` = X` ∪ {q1} and z′` = z` + 1. We set
Dϕ′ := Dϕ ∪ {q1}. For every p ∈ Dϕ′ \ {q1}, we set ϕ′(p) := ϕ(p). We set ϕ′(q1) as follows.

Let Π1 be an optimal solution of GM (Y6`−1, X6`∪I∪{q1}). We have q1 ∈ sink(Π1) since
otherwise we would have fM (Y6`−1, X6`∪ I ∪{q1}) = fM (Y6`−1, X6`∪ I), contradicting the
addability of q1. Similarly, q1 6∈ X6`. As q1 ∈ sink(Π1), q1 must be unmatched in M ⊕Π+

1 ,
i.e., q1 ∈ PM⊕Π+

1
. Let Π2 be an optimal solution of GM⊕Π+

1
(PM⊕Π+

1
, (PM∗ \ Imϕ) ∪X6`).

We have |Π2| = fM⊕Π+
1

(PM⊕Π+
1
, (PM∗ \ Imϕ) ∪ X6`) = fM (PM , (PM∗ \ Imϕ) ∪ X6`) by

Claim 2.1(ii). Then, inductive assumption gives |Π2| = |PM | = |PM⊕Π+
1
| (both M and

M ⊕Π1 are maximum matchings). So PM⊕Π+
1

= source(Π2), implying that there is a path
π ∈ Π2 originating from q1. Let q2 = sink(π).

We claim that q2 6∈ X6`. If π is a trivial path, the claim is true because q2 = q1 /∈ X6`.
Suppose that π is non-trivial. Suppose, for the sake of contradiction, that q2 ∈ X6`. This
allows us to apply Claim 2.4 and use π to convert Π1 to an equal-sized set of node-disjoint paths
from Y6`−1 to X6`∪ I. But then fM (Y6`−1, X6`∪ I) > |Π1| = fM (Y6`−1, X6`∪ I ∪{q1}) >
fM (Y6`−1, X6`∪I). That is, fM (Y6`−1, X6`∪I∪{q1}) = fM (Y6`−1, X6`∪I), contradicting
the addability of q1. This proves our claim that q2 6∈ X6`.

Observe that q2 ∈PM∗ \ Imϕ because q2 ∈ sink(Π2) ⊆ (PM∗ \ Imϕ) ∪X6` and q2 6∈ X6`.
This allows us to set ϕ′(q1) := q2 and keep ϕ′ injective.

Properties (i) and (iii) are straightforwardly satisfied by ϕ′, z′`, Dϕ′ , and X ′`.
By induction assumption, (ii) holds for players in Dϕ′ \ {q1} = Dϕ. It remains to check

the validity of (ii) for ϕ′(q1) = q2. If π is a trivial path, then (ii) holds because q2 = q1
and q1 is addable. Assume that π is non-trivial. By Claim 2.4, we can use π to convert
Π1 to an equal-sized set of node-disjoint paths in GM from Y6`−1 to X6` ∪ I ∪ {q2}. Thus,
fM (Y6`−1, X6` ∪ I ∪ {q2}) > |Π1| = fM (Y6`−1, X6` ∪ I ∪ {q1}) = fM (Y6`−1, X6` ∪ I) + 1
as q1 is addable. Therefore, q2 is also an addable player at the time when X` gains a thin
edge incident to q1.

Consider (iv). If π is a trivial path, i.e., q1 = q2, then (iv) holds because (PM∗ \
Imϕ) ∪X6` ⊆ (PM∗ \ (Imϕ ∪ {q2})) ∪X6` ∪ {q1} = (PM∗ \ Imϕ′) ∪X ′6`. Suppose that π is
non-trivial. Recall that Π2 is an optimal solution of GM⊕Π+

1
(PM⊕Π+

1
,PM∗ \ Imϕ) ∪X6`),

S.-W. Cheng and Y. Mao 37:11

and |Π2| = |PM⊕Π+
1
|. Take the maximum matching M ⊕ Π+

1 of G and flip the paths in
Π+

2 \ {π} in G. This produces another maximum matching M ′ = (M ⊕Π+
1)⊕ (Π+

2 \ {π}).
All |PM⊕Π+

1
| sinks of Π2, except for q2, are unmatched in M ′. Player q1 is also unmatched

in M ′. There are equally many unmatched players in M ′ and M ⊕ Π+
1 . This implies

that (sink(Π2) \ {q2}) ∪ {q1} is exactly PM ′ . Since sink(Π2) ⊆ (PM∗ \ Imϕ) ∪ X6`, we
get PM ′ ⊆

((
(PM∗ \ Imϕ) ∪X6`

)
\ {q2}

)
∪ {q1} ⊆ (PM∗ \ (Imϕ ∪ {q2})) ∪ X6` ∪ {q1} =

(PM∗ \ Imϕ′) ∪ X ′6`. Then, we can apply Claim 2.1(i) to obtain |PM | > fM (PM , (PM∗ \
Imϕ′) ∪X ′6`) > fM (PM ,PM ′) = |PM |. Hence, (iv) holds.

Clearly, steps 4–6 of Build do not affect ϕ.

Collapse phase. Suppose that we are going to collapse the layer Lt. Since we will set ` := t

at the end of collapsing Lt, we only need to prove (i)—(iv) with ` substituted by t.
Clearly, step 1 of Collapse has no effect on ϕ.
Consider step 2 of Collapse. Go back to the last time when Lt was either created by

Build as the topmost layer or made by Collapse as the topmost layer. By the inductive
assumption, there was an injection ϕ′′ at that time that satisfies (i)–(iv). We set ϕ := ϕ′′,
Dϕ := Dϕ′′ , and Imϕ := Imϕ′′ .

In step 3 of Collapse, the maximum matching M may change, so only (iv) is affected.
Nonetheless, by Claim 2.1(ii), the value of fM (PM , (PM∗ \ Imϕ)∪X`) remains the same after
updating M . So (iv) is satisfied afterwards.

In step 4 of Collapse, we may remove some edges from Xt and add some of these
removed edges to I. Adding edges to I does not affect ϕ. We need to update ϕ when an
edge is removed from Xt. Suppose that we are going to remove from Xt an edge that covers
a player q1. Recall that zt was defined in the last construction of the layer Lt, and it has
remained fixed despite possible changes to Xt since then. Let X ′6t, ϕ′, Dϕ′ , and Imϕ′ denote
the updated X6t, ϕ, Dϕ, and Imϕ, respectively. Note that X ′6t = X6t \ {q1}. We show how
to define ϕ′, Dϕ′ , and Imϕ′ appropriately.

Consider property (iv). If (iv) is not affected by the deletion of q1, that is, fM (PM , (PM∗ \
Imϕ) ∪ X ′6t) = |PM |, then we simply set Dϕ′ := Dϕ \ {q1} and ϕ′(p) := ϕ(p) for all
p ∈ Dϕ′ . It is easy to verify that ϕ′ satisfies (iv). Suppose that property (iv) is affected, and
therefore, fM (PM , (PM∗ \ Imϕ)∪X ′6t) = |PM |−1. Since fM (PM ,PM∗) = |PM |, we have that
fM (PM ,PM∗ ∪X ′6t) = |PM |. Comparing the two equations above, we conclude that there
must a player q2 ∈ Dϕ such that fM (PM , (PM∗ \ (Imϕ \ {ϕ(q2)}) ∪X ′6t) = |PM |. So we set
Dϕ′ := Dϕ \ {q1, q2}, and ϕ′(p) := ϕ(p) for all p ∈ Dϕ′ . Property (iv) is satisfied afterwards.

Irrespective of which definition of ϕ′ above is chosen, properties (i) and (ii) trivially hold.
Property (iii) holds because the left hand side decreases by at most 2 and the right hand
side decreases by exactly 2. J

5.2 Proof of Lemma 4.1
Suppose, for the sake of contradiction, that there exists an index k ∈ [1, ` − 1] such that
|Yk+1| <

√
µ |Y6k| but no layer below Lk+1 is collapsible. Let k be the smallest such index.

So |Yi+1| >
√
µ |Y6i| for every i ∈ [1, k − 1].

Consider the moment immediately after the last construction of the (k + 1)-th layer.
Let (M ′, E ′, I ′, (L′1, . . . , L′k+1)) be the state of the algorithm at that moment. No layer
below L′k+1 is collapsible immediately after the construction of L′k+1 since this is the last
construction of the (k + 1)-th layer. We will derive a few inequalities that hold given the
existence of k. Then we will obtain a contradiction by showing that the system made up of
these inequalities is infeasible.

ICALP 2018

37:12 Restricted Max-Min Fair Allocation

We first define some notations. Let X ′i and Y ′i denote the set of blocked addable (thin)
edges and the set of blocking (thin) edges associated with L′i. Then, X ′i, Y ′i , X ′6i, Y ′6i,
X ′6i, and Y ′6i are correspondingly defined. Let M∗ be a maximum matching induced by an
optimal allocation OPT. Let ϕ′ and Dϕ′ be the injection and its domain associated with
X ′6t+1 as defined in Lemma 5.2 with respect to M∗. For all p ∈ Dϕ′ , define wp := value(B),
where (p,B) is the thin edge for p in X ′6k+1. By invariant 1 in Table 1, wp is well defined
(as Dϕ′ ⊆ X ′6k+1 by Lemma 5.2(i) and no player is covered by two edges in X ′6k+1) and
wp ∈ [τ/λ, τ + τ/λ].

By the definition above, we already have two easy inequalities. Recall that given a set S
of thin edges, value(S) is the total value of the thin resources covered by S.

value(X ′6k+1 ∪ Y ′6k) > value(X ′6k+1) >
∑
p∈Dϕ′

wp,
τ

λ
|Dϕ′ | 6

∑
p∈Dϕ′

wp 6 (τ + τ

λ
)|Dϕ′ |.

I Claim 5.3. |Dϕ′ | 6 |Y ′6k|.

I Claim 5.4. value(X ′6k+1∪Y ′6k) 6 τ
λ |Dϕ′ |+ 2τ

λ |Y
′
6k|+

δ1τ
λ |Y

′
6k|, where δ1 = λµ+2µ+2√µ.

I Claim 5.5. value(X ′6k+1 ∪ Y ′6k) > (τ − τ
λ)(|Y ′6k| − |Dϕ′ |) +

∑
p∈Dϕ′

(τ − wp)− δ2τ
λ |Y

′
6k|,

where δ2 = 2λµ+ 2λ√µ+ 6√µ.

The proofs of above claims use Lemma 5.2. In particular, Lemma 5.2 plays a key role in
the proof of Claim 5.5. Here we give a rough idea. Consider the moment we just finish adding
edges to X ′k+1. Lemma 5.2(iv) ensures that roughly (|Y ′6k| − |Dϕ′ |) players in PM∗ \ Imϕ′ are
still addable. Since there are no more addable edges (otherwise they will be added to X ′k+1),
each of these addable players can access less than τ/λ worth of thin resources that are not in
the stack, and hence each of them contribute at least τ − τ/λ worth of thin resources to the
stack. This gives the first term (τ − τ

λ)(|Y ′6k| − |Dϕ′ |). For each player ϕ′(p) ∈ Imϕ′ , as we
explained in section 5.1, it contributed at least τ −wp worth of thin resources to the stack at
the time player p was picked. This gives the second term

∑
p∈Dϕ′

(τ − wp). The third term
is just slack in the analysis.

Putting all the inequalities together gives the following system.
value(X6k+1 ∪ Y6k) >

∑
p∈Dϕ′

wp,
τ
λ |Dϕ′ | 6

∑
p∈Dϕ′

wp 6 (τ + τ/λ)|Dϕ′ |,
|Dϕ′ | 6 |Y ′6k|,
value(X ′6k+1 ∪ Y ′6k) 6 τ

λ |Dϕ′ |+ 2τ
λ |Y

′
6k|+

δ1τ
λ |Y

′
6k|,

value(X ′6k+1 ∪ Y ′6k) > (τ − τ/λ)(|Y ′6k| − |Dϕ′ |) +
∑
p∈Dϕ′

(τ − wp)− δ2τ
λ |Y

′
6k|.

Divide the above system by τ
λ |Dϕ′ |. To simplify the notation, define the variables

B1 := value(X6k+1 ∪ Y6k)/(τλ |Dϕ′ |), B2 := |Y ′6k|/|Dϕ′ |, and B3 :=
∑
p∈Dϕ′

wp/(τλ |Dϕ′ |).
Then we can write the above system equivalently as follows.

B1 > B3, 1 6 B3 6 λ+ 1, 1 6 B2, B1 6 1 + 2B2 + δ1B2,

B1 > (λ− 1)(B2 − 1) + λ−B3 − δ2B2.

The first, fourth, and fifth inequalities give 2(1 + 2B2 + δ1B2) > B1 +B3 > (λ− 1)(B2− 1) +
λ− δ2B2 ⇒ 2 + (4 + 2δ1)B2 > (λ− 1− δ2)B2 + 1⇒ (λ− 5− 2δ1 − δ2)B2 6 1. On the other
hand, λ− 5− 2δ1 − δ2 > 1 for a sufficiently small µ because when µ tends to zero, both δ1
and δ2 tend to 0. Hence, (λ− 5− 2δ1 − δ2)B2 > 1 as B2 > 1 by the third inequality. But it
is impossible that (λ− 5− 2δ1 − δ2)B2 6 1 and (λ− 5− 2δ1 − δ2)B2 > 1 simultaneously.

S.-W. Cheng and Y. Mao 37:13

References
1 Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Combinatorial algorithm

for restricted max-min fair allocation. ACM Trans. Algorithms, 13(3):37:1–37:28, 2017.
2 Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings.

ACM Trans. Algorithms, 8(3):24:1–24:9, 2012.
3 Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair allocation

of indivisible goods. In Proc. 39th ACM Symposium on Theory of Computing, pages 114–
121, 2007.

4 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proc. 38th ACM
Symposium on Theory of Computing, pages 31–40, 2006.

5 Ivona Bezáková and Varsha Dani. Allocating indivisible goods. SIGecom Exchanges,
5(3):11–18, 2005.

6 Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to
maximize fairness. In Proc. 50th IEEE Symposium on Foundations of Computer Science,
pages 107–116, 2009.

7 T.-H. Hubert Chan, Zhihao Gavin Tang, and Xiaowei Wu. On (1, epsilon)-restricted max-
min fair allocation problem. In Proc. 27th International Symposium on Algorithms and
Computation, volume 64, pages 23:1–23:13, 2016.

8 Uriel Feige. On allocations that maximize fairness. In Proc. 19th ACM-SIAM Symposium
on Discrete Algorithms, pages 287–293, 2008.

9 Daniel Golovin. Max-min fair allocation of indivisible good. Technical report, Carnegie
Mellon University, 2005.

10 Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
lovász local lemma. Journal of the ACM, 58(6):28:1–28:28, 2011.

11 László Lovász and Michael D. Plummer. Matching Theory. American mathematical society,
2009.

12 Barna Saha and Aravind Srinivasan. A new approximation technique for resource-allocation
problems. In Proc. 1st Symposium on Innovations in Computer Science, pages 342–357,
2010.

ICALP 2018

	Introduction
	Preliminaries
	The Algorithm
	Overview
	Notation and definitions
	Build phase
	Collapse phase

	Polynomial running time and binary search
	Analysis
	Competing players
	Proof of Lemma 4.1

