
Generalized Comparison Trees for Point-Location
Problems
Daniel M. Kane1

Department of Computer Science and Engineering/Department of Mathematics, University of
California, San Diego
dakane@ucsd.edu

https://orcid.org/0000-0002-5884-3487

Shachar Lovett2

Department of Computer Science and Engineering, University of California, San Diego
slovett@cs.ucsd.edu

https://orcid.org/0000-0003-4552-1443

Shay Moran3

Institute for Advanced Study, Princeton
shaymoran@ias.edu

https://orcid.org/0000-0002-8662-2737

Abstract
Let H be an arbitrary family of hyper-planes in d-dimensions. We show that the point-location
problem for H can be solved by a linear decision tree that only uses a special type of queries called
generalized comparison queries. These queries correspond to hyperplanes that can be written as a
linear combination of two hyperplanes from H; in particular, if all hyperplanes in H are k-sparse
then generalized comparisons are 2k-sparse. The depth of the obtained linear decision tree is
polynomial in d and logarithmic in |H|, which is comparable to previous results in the literature
that use general linear queries.

This extends the study of comparison trees from a previous work by the authors [Kane et al.,
FOCS 2017]. The main benefit is that using generalized comparison queries allows to overcome
limitations that apply for the more restricted type of comparison queries.

Our analysis combines a seminal result of Forster regarding sets in isotropic position [Forster,
JCSS 2002], the margin-based inference dimension analysis for comparison queries from [Kane et
al., FOCS 2017], and compactness arguments.

2012 ACM Subject Classification Theory of computation

Keywords and phrases linear decision trees, comparison queries, point location problems

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.82

Related Version A full version of the paper is available at [8], https://eccc.weizmann.ac.il/
report/2017/082.

1 Supported by NSF CAREER Award ID 1553288 and a Sloan fellowship
2 Research supported by NSF CAREER award 1350481, CCF award 1614023 and a Sloan fellowship
3 Research supported by the National Science Foundation under agreement No. CCF-1412958 and by the

Simons Foundations

EA
T

C
S

© Daniel M. Kane, Shachar Lovett, and Shay Moran;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 82; pp. 82:1–82:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dakane@ucsd.edu
https://orcid.org/0000-0002-5884-3487
mailto:slovett@cs.ucsd.edu
https://orcid.org/0000-0003-4552-1443
mailto:shaymoran@ias.edu
https://orcid.org/0000-0002-8662-2737
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.82
https://eccc.weizmann.ac.il/report/2017/082
https://eccc.weizmann.ac.il/report/2017/082
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

82:2 Generalized Comparison Trees for Point-Location Problems

1 Introduction

Let H ⊂ Rd be a family of |H| = n hyper-planes. H partitions Rd into O(nd) cells. The
point-location problem is to decide, given an input point x ∈ Rd, to which cell it belongs.
That is, to compute the function

AH(x) := (sign(〈x, h〉) : h ∈ H) ∈ {−1, 0, 1}n.

A well-studied computation model for this problem is a linear decision tree (LDT): this is
a ternary decision tree whose input is x ∈ Rd and its internal nodes v make linear/threshold
queries of the form sign(〈x, q〉) for some q = q(v) ∈ Rd. The three children of v correspond
to the three possible outputs of the query : “−”,“0”,“+”. The leaves of the tree are labeled
with {−1, 0, 1}n with correspondence to the cell in the arrangement that contains x. The
complexity of a linear decision tree is its depth, which corresponds to the maximal number
of linear queries made on any input.

Comparison queries

A comparison decision tree is a special type of an LDT, in which all queries are of one of two
types:

Label query: “sign (〈x, h〉) = ?" for h ∈ H.
Comparison query: “sign (〈x, h′ − h′′〉) = ?" for h′, h′′ ∈ H.

In [6] it is shown that when H is “nice" then there exist comparison decision trees that
computed AH(·) and has nearly optimal depth (up to logarithmic factors). For example, for
any H ⊂ {−1, 0, 1}d there is a comparison decision tree with depth O(d log d log|H|). This
is off by a log d factor from the basic information theoretical lower bound of Ω(d log|H|).
Moreover, it is shown there that certain niceness conditions are necessary. Concretely, they
give an example of H ⊂ R3 such that any comparison decision tree that computes AH(·)
requires depth Ω(|H|). This raises the following natural problem: can comparison decision
trees be generalized in a way that allows to handle arbitrary point-location problems?

Generalized comparisons

This paper addresses the above question by considering generalized comparison queries. A
generalized comparison query allows to re-weight its terms: namely, it is query of the form

“sign (〈x, αh′ − βh′′〉) =?"

for h′, h′′ ∈ H and some α, β ∈ R. Note that it may be assumed without loss of generality that
|α|+ |β| = 1. A generalized comparison decision tree, naturally, is a linear decision tree whose
internal linear queries are restricted to be generalized comparisons. Note that generalized
comparison queries include as special cases both label queries (setting α = 1, β = 0) and
comparison queries (setting α = β = 1/2).

Geometrically, generalized comparisons are 1-dimensional in the following sense: let
q = αh′ − βh′′, with α, β ≥ 0 then q lies on the interval connecting h′ and −h′′. If α and β
have different signs, q lies on an interval between some other ±h′ and ±h′′. So comparison
queries are linear queries that lies on the projective lines intervals spanned by {±h : h ∈ H}.
In particular, if each h ∈ H has sparsity at most k (namely, at most k nonzero coordinates)
then each generalized comparison has sparsity at most 2k.

Our main result is:

D.M. Kane, S. Lovett, and S. Moran 82:3

I Theorem 1 (Main theorem). Let H ⊂ Rd. Then there exists a generalized comparison
decision tree of depth O(d4 log d log |H|) that computes AH(x) for every input x ∈ Rd.

Why consider generalized comparisons?

We consider generalized comparisons for a number of reasons:
The lower bound against comparison queries in [6] was achieved by essentially scaling
different elements of H ⊂ R3 with exponentially different scales. Allowing for re-scaling
(which is what generalized comparisons allow to do) solves this problem.
Generalized comparisons may be natural from a machine learning perspective, in particular
in the context of active learning. A common type of queries used in practice it to give
a score to an example (say 1-10), and not just label it as positive (+) or negative (-).
Comparing the scores for different examples can be viewed as a “coarse" type of generalized
comparisons.
If the set of original hyperplanes H is “nice", then generalized comparisons maintain some
aspects of niceness in the queries performed. As an example that was already mentioned,
if all hyperplanes in H are k-sparse then generalized comparisons are 2k-sparse. This
is part of a more general line of research, studying what types of “simple queries" are
sufficient to obtain efficient active learning algorithms, or equivalently efficient linear
decision trees for point-location problems.

1.1 Proof outline
Our proof consists of two parts. First, we focus on the case when H ⊂ Rd is in general position,
namely, every d vectors in it are linearly independent. Then, we extend the construction to
arbitrary H. The second part is derived via standard compactness arguments; it is omitted
from here and appears in the full version [8]. The technical crux lies in the first part: let
H ⊆ Rd be in general position; we first construct a randomized generalized comparison
decision tree for H, and then derandomize it. The randomized tree is simple to describe: it
proceeds by steps, where in each step about d2 elements from H are drawn, labelled, and
sorted using generalized comparisons. Then, it is shown that the labels of some 1/d-fraction
of the remaining elements in H are inferred, on average. The inferred vectors are then
removed from H and this step is repeated until all labels in H are inferred.

A central technical challenge lies in the analysis of a single step. It hinges on a result
by Forster [4] that transforms a general-positioned H to an isotropic-positioned H ′ (see
formal definition below) in a way that comparison queries on H ′ correspond to generalized
comparison queries on H. Then, since H ′ is in isotropic position, it follows that a significant
fraction of H ′ has a large margin with respect to the input x. This allows us to employ a
variant of the margin-based inference analysis by [6] on H ′ to derive the desired inference of
some Ω(1

d)-fraction of the remaining labels in each step.

1.2 Related work
The point-location problem has been studied since the 1980s, starting from the pioneering
work of Meyer auf der Heide [10], Meiser [9], Cardinal et al. [2] and most recently Ezra and
Sharir [3]. This last work, although not formally stated as such, solves the point-location
problem for an arbitrary H ⊂ Rd by a linear decision tree whose depth is O(d2 log d log |H|).
However, in order to do so, the linear queries used by the linear decision tree could be
arbitrary, even when the original family H is very simple (say 3-sparse). This is true for all
previous works, as they are all based on various geometric partitioning ideas, which may

ICALP 2018

82:4 Generalized Comparison Trees for Point-Location Problems

require the use of quite generic hyperplanes. This should be compared with our results
(Theorem 1). We obtain a linear decision tree of a bigger depth (by a factor of d2), however
the type of linear queries we use remain relatively simple; e.g., as discussed earlier, they are
1-dimensional and preserve sparseness.

1.3 Open problems
Our work addresses a problem raised in [7], of whether “simple queries" can be sufficient to
solve the point-location problem for general hyperplanes H, without making any “niceness"
assumptions on H. The solution explored here is to allow for generalized comparisons, which
are a 1-dimensional set of allowed queries. An intriguing question is whether this is necessary,
or whether there are some 0-dimensional gadgets that would be sufficient.

In order to formally define the problem, we need the notion of gadgets. A t-ary gadget in
Rd is a function g : (Rd)t → Rd. Let G = {g1, . . . , gr} be a finite collection of gadgets in Rd.
Given a set of hyperplanes H ⊂ Rd, a G-LDT that solves AH(·) is a LDT where any linear
query is of the form sign(〈q, ·〉) for q = g(h1, . . . , ht) for some g ∈ G and h1, . . . , ht ∈ H. For
example, a comparison decision tree corresponds to the gadgets g1(h) = h (label queries) and
g2(h1, h2) = h1−h2 (comparison queries). A generalized comparison decision tree corresponds
to the 1-dimensional (infinite) family of gadgets {gα(h1, h2) = αh1 − (1− α)h2 : α ∈ [0, 1]}.
It was shown in [6] that comparison decision trees are sufficient to efficiently solve the
point-location problem in 2 dimensions, but not in 3 dimensions. So, the problem is already
open in R3.

I Open problem 1. Fix d ≥ 3. Is there a finite set of gadgets G in Rd, such that for every
H ⊂ Rd there exists a G-LDT which computes AH(·), whose depth is logarithmic in |H|?
Can one hope to get to the information theoretic lower bound, namely to O(d log |H|)?

Another open problem is whether randomized LDT can always be derandomized, without
losing too much in the depth. To recall, a randomized (zero-error) LDT is a distribution
over (deterministic) LDTs which each computes AH(·). The measure of complexity for a
randomized LDT is the expected number of queries performed, for the worst-case input
x. The derandomization technique we apply in this work (see Lemma 16 and its proof for
details) loses a factor of d, but it is not clear whether this loss is necessary.

I Open problem 2. Let H ⊂ Rd. Assume that there exists a randomized LDT which
computes AH(·), whose expected query complexity is at most D for any input. Does there
always exist a (deterministic) LDT which computes AH(·), whose depth is O(D)?

2 Preliminaries and some basic technical lemmas

2.1 Inferring from comparisons
Let x, h ∈ Rd and let S ⊆ Rd.

I Definition 2 (Inference). We say that S infers h at x if sign(〈h, x〉) is determined by the
linear queries sign(〈h′, x〉) for h′ ∈ S. That is, if for any point y in the set{

y ∈ Rd : sign(〈h′, y〉) = sign(〈h′, x〉) ∀h′ ∈ S
}

it holds that sign(〈h, y〉) = sign(〈h, x〉). Define

infer(S;x) := {h ∈ Rd : h is inferred from S at x}.

D.M. Kane, S. Lovett, and S. Moran 82:5

The notion of inference has a natural geometric perspective. Consider the partition of Rd
induced by S. Then, S infers h at x if the cell in this partition that contains x is either
disjoint from h or otherwise is contained in h (so in either case, the value of sign(〈h, ·〉) is
constant on the cell).

Our algorithms and analysis are based on inferences from comparisons. Let S − S denote
the set {h′ − h′′ : h′, h′′ ∈ S}.

I Definition 3 (Inference by comparisons). We say that comparisons on S infer h at x if
S ∪ (S − S) infers h at x. Define

InferComp(S;x) := infer
(
S ∪ (S − S);x

)
.

Thus, InferComp(S;x) is determined by querying sign(〈h′, x〉) and sign(〈h′ − h′′, x〉) for all
h′, h′′ ∈ S. Naively, this requires some O(|S|2) linear queries. However, using efficient sorting
algorithm (e.g. merge-sort) achieves it with just O(|S| log |S|) comparison queries. A further
improvement, when |S| > d, is obtained by Fredman’s sorting algorithm that uses just
O(|S|+ d log |S|) comparison queries [5].

2.2 Vectors in isotropic position
Vectors h1, . . . , hm ∈ Rd are said to be in general position if any d of them are linearly
independent. They are said to be in isotropic position if for any unit vectors v ∈ Sd,

1
m

m∑
i=1
〈hi, v〉2 = 1

d
.

Equivalently, if 1
m

∑
hih

T
i is 1

d times the d× d identity matrix. An important theorem of
Forster [4] (see also Barthe [1] for a more general statement) states that any set of vectors in
general position can be scaled to be in isotropic position.

I Theorem 4 ([4]). Let H ⊂ Rd be a finite set in general position. Then there exists an
invertible linear transformation T such that the set

H ′ :=
{

Th

‖Th‖2
: h ∈ H

}
is in isotropic position. We refer to such a T as a Forster transformation for H.

We will also need a relaxed notion of isotropic position. Given vectors h1, . . . , hm ∈ Rd
and some 0 < c < 1, we say that the vectors are in c-approximate isotropic position, if for all
unit vectors v ∈ Sd it holds that

1
m

m∑
i=1
〈hi, v〉2 ≥

c

d
.

We note that this condition is easy to test algorithmically, as it is equivalent to the statement
that the smallest eigenvalue of the positive semi-definite d × d matrix 1

m

∑m
i=1 hih

T
i is at

least c
d .

We summarize it in the following lemma, which follows from basic real linear algebra.

I Claim 5. Let h1, . . . , hm ∈ Rd be unit vectors. Then the following are equivalent.
h1, . . . , hm are in c-approximate isotropic position.
λ1
(1
m

∑m
i=1 hih

T
i

)
≥ c/d,

where λ1(M) denotes the minimal eigenvalue of a positive semidefinite matrix M .

ICALP 2018

82:6 Generalized Comparison Trees for Point-Location Problems

We will need the following basic claims. The first claim shows that a set of unit vectors
in an approximate isotropic position has many vectors with non-negligible inner product
with any unit vector.

I Claim 6. Let h1, . . . , hm ∈ Rd be unit vectors in a c-approximate isotropic position, and
let x ∈ Rd be a unit vector. Then, at least a c

2d -fraction of the hi’s satisfy |〈hi, x〉| >
√

c
2d .

Proof. Assume otherwise. It follows that

1
m

m∑
i=1
|〈h, xi〉|2 ≤

c

2d · 1 +
(

1− c

2d

) c

2d <
c

2d + c

2d = c

d
.

This contradicts the assumption that the hi’s are in c-approximate isotropic position. J

The second claim shows that a random subset of a set of unit vectors in an approximate
isotropic position is also in approximate isotropic position, with good probability.

I Claim 7. Let h1, . . . , hm be unit vectors in c-approximate isotropic position. Let i1, . . . , ik ∈
[m] be independently and uniformly sampled. Then for any δ > 0, the vectors hi1 , . . . , hik
are in ((1− δ)c)-approximate isotropic position with probability at least

1− d ·
[

e−δ

(1− δ)1−δ

]ck/d
.

Proof. This is an immediate corollary of Matrix Chernoff bounds [11]. By Claim 5
the above event is equivalent to that λ1

(
1
k

∑k
i=1 hih

T
i

)
≥ (1 − δ) cd . By assumption,

λ1
(1
m

∑m
i=1 hih

T
i

)
≥ c

d . Now, by the Matrix Chernoff bound, for any δ ∈ [0, 1] it holds that

Pr
[
λ1

(
1
k

k∑
i=1

hih
T
i

)
≤ (1− δ) · c

d

]
≤ d ·

[
e−δ

(1− δ)1−δ

]ck/d
. J

We will use two instantiations of Claim 7: (i) c ≥ 3/4, and (1− δ)c = 1/2, and (ii) c = 1 and
(1− δ)c = 3/4. In both cases the bound simplifies to

1− d ·
(

99
100

)k/d
. (1)

3 Proof of main theorem

Let H ⊂ Rd. Theorem 1 is proved in three steps.
1. First, we assume that H is in general position. In this case, we construct a random-

ized generalized comparison LDT which computes AH(·), whose expected depth is
O(d3 log d log |H|) for any input. This is achieved in Section 3.1, see Lemma 8.

2. Next, we derandomize the construction. This gives for any H in general position a
(deterministic) generalized comparison LDT which computes AH(·), whose depth is
O(d4 log d log |H|). This is achieved in Section 3.2, see Lemma 16.

3. Finally, we handle an arbitrary H (not necessarily in general position), and construct
by a compactness argument a generalized comparisons LDT of depth O(d4 log d log |H|)
which computes AH(·). This step is omitted from this exposition and appears in the full
version [8].

D.M. Kane, S. Lovett, and S. Moran 82:7

3.1 A randomized LDT for H in general position

In this section we construct a randomized generalized comparison LDT for H in general
position. Here, by a randomized LDT we mean a distribution over (deterministic) LDT
which compute AH(·). The corresponding complexity measure is the expected number of
queries it makes, for the worst-case input x.

I Lemma 8. Let H ⊆ Rd be a finite set in general position. Then there exists a randomized
LDT that computes AH(·), which makes O

(
d3 log d log|H|

)
generalized comparison queries

on expectation, for any input.

The proof of Lemma 8 is based on a variant of the margin-based analysis of the inference
dimension with respect to comparison queries as in [6] (The analysis in [6] assumed that
all vectors have large margin, where here we need to work under the weaker assumption
that only a noticeable fraction of the vectors have large margin). The crux of the proof
relies on scaling every h ∈ H by a carefully chosen scalar αh such that drawing a sufficiently
large random subset of H, and sorting the values 〈αhh, x〉 using comparison queries (which
correspond to generalized comparisons on the h’s) allows to infer, on average, at least Ω(1/d)
of the labels of H. The scalars αh are derived via Forster’s theorem (Theorem 4). More
specifically, αh = 1

‖Th‖2
, where T is a Forster transformation for H.

Randomized generalized-comparisons tree for H in general position

Let H ⊆ Rd in general position.

Input: x ∈ Rd, given by oracle access for sign(〈·, x〉)
Output: AH(x) = (sign(〈h, x〉))h∈H
(1) Initialize: H0 = H, i = 0, v(h) =? for all h ∈ H. Set k = Θ(d2 log(d)).
(2) Repeat while |Hi| ≥ k:

(2.1) Let Ti be the Forster transformation for Hi. Define H ′i =
{

h
‖Tih‖2

: h ∈ Hi

}
.

(2.2) Sample uniformly Si ⊂ H ′i of size |Si| = k.
(2.3) Query sign(〈h, x〉) for h ∈ Si (using label queries).
(2.4) Sort 〈h, x〉 and 〈−h, x〉 for h ∈ Si (using generalized comparison queries).
(2.5) For all h ∈ Hi, check if h ∈ InferComp(±Si;x), and in case it is, set

v(h) ∈ {−, 0,+} to be the inferred value of h.
(2.6) Remove all h ∈ Hi for which sign (〈h, x〉) was inferred, set Hi+1 to be the

resulting set and go to step (2).
(3) Query sign(〈h, x〉) for all h ∈ Hi, and set v(h) accordingly.
(4) Return v as the value of AH(x).

In order to understand the intuition behind the main iteration (2) of the algorithm,
define x′ = (T−1

i)Tx and for each h ∈ Hi let h′ = Tih
‖Tih‖ . Then sign(〈h, x〉) = sign(〈h′, x′〉),

and so it suffices to infer the sign for many h′ ∈ Hi with respect to x′. The main benefit
is that we may assume in the analysis that the set of vectors H ′i is in isotropic position;
and reduce the analysis to that of using (standard) comparisons on H ′i and x′. These then
translate to performing generalized comparison queries on Hi and the original input x. The
following lemma captures the analysis of the main iteration of the algorithm. Below, we
denote by ±S := S ∪ (−S).

ICALP 2018

82:8 Generalized Comparison Trees for Point-Location Problems

I Lemma 9. Let x ∈ Rd, let H ⊆ Rd be a finite set of unit vectors in c-approximate isotropic
position with c ≥ 3/4, and let S ⊂ H be a uniformly chosen subset of size k = Ω

(
d2 log d

)
.

Then

ES [|InferComp(±S;x) ∩H|] ≥ |H|40d .

Let us first argue how Lemma 8 follows from Lemma 9, and then proceed to prove
Lemma 9.

Proof of Lemma 8 given Lemma 9. By Lemma 9, in each iteration (2) of the algorithm, we
infer on expectation at least Ω(1/d) fraction of the h ∈ H ′i with respect to x′ = T−1

i x. By the
discussion above, this is the same as inferring an Ω(1/d) fraction of the hi ∈ Hi with respect
to x. So, the total expected number of iterations needed is O(d log |H|). Next, we calculate
the number of linear queries performed at each iteration. The number of label queries is O(k)
and the number of comparison queries on H ′i (which translate to generalized comparison
queries on Hi) is O(k log k) if we use merge-sort, and can be improved to O(k + d log k) by
using Fredman’s sorting algorithm [5]. So, in each iteration we perform O(d2 log d) queries,
and the expected number of iterations is O(d log |H|). So the expected total number of
queries by the algorithm is O(d3 log d log |H|). J

From now on, we focus on proving Lemma 9. To this end, we assume from now that
H ⊂ Rd is in c-isotropic position for c ≥ 3/4. Note that h is inferred from comparisons on
±S if and only if −h is, and that replacing an element of S with its negation does not affect
±S. Therefore, negating elements of H does not change the expected number of elements
inferred from comparisons on ±S. Therefore, we may assume in the analysis that 〈h, x〉 ≥ 0
for all h ∈ H. Under this assumption, we will show that

ES [|InferComp(S;x) ∩H|] ≥ |H|40d .

It is convenient to analyze the following procedure for sampling S:
Sample h1, . . . hk+1 random points in H, and r ∈ [k + 1] uniformly at random.
Set S = {hj : j ∈ [k + 1] \ {r}}.

We will analyze the probability that comparisons on S infer hr at x. Our proof relies on the
following observation.

I Observation 10. The probability, according to the above process, that hr ∈ InferComp(S;x)
is equal to the expected fraction of h ∈ H whose label is inferred. That is,

Pr [hr ∈ InferComp(S;x)] = E
[
|InferComp(S;x) ∩H|

|H|

]
.

Thus, it suffices to show that Pr [hr ∈ InferComp(S;x)] ≥ 1/40d. This is achieved by the next
two propositions as follows. Proposition 11 shows that S is in a (1/2)-approximate isotropic
position with probability at least 1/2, and Proposition 12 shows that whenever S is in (1/2)-
approximate isotropic position then hr ∈ InferComp(S;x) with probability at least 1/20d.
Combining these two propositions together yields that Pr [hr ∈ InferComp(S;x)] ≥ 1/40d
and finishes the proof of Lemma 9.

I Proposition 11. Let H ⊂ Rd be a set of unit vectors in c-approximate isotropic position
for c ≥ 3/4. Let S ⊂ H be a uniformly sampled subset of size |S| ≥ Ω(d log d). Then S is in
(1/2)-approximate isotropic position with probability at least 1/2.

D.M. Kane, S. Lovett, and S. Moran 82:9

Proof. The proof follows from Claim 7 by plugging k = Ω(d log d) in Equation 1 and
calculating that the bound on the right hand side becomes at least 1/2. J

I Proposition 12. Let x ∈ Rd, S ⊂ Rd be in (1/2)-approximate isotropic position, where
|S| ≥ Ω

(
d2 log d

)
. Let h ∈ S be sampled uniformly. Then

Pr
h∈S

[h ∈ InferComp (S \ {h};x)] ≥ 1
20d .

Proof. We may assume that x is a unit vector, namely ‖x‖2 = 1. Let s = |S| and assume
that S = {h1, . . . , hs} with

〈h1, x〉 ≥ 〈h2, x〉 ≥ . . . ≥ 〈hs, x〉 ≥ 0.

Set ε = 1
2
√
d
. As S is in (1/2)-approximate isotropic position, Claim 6 gives that 〈hi, x〉 ≥ ε

for at least |S|/4d many hi ∈ S. Set t = |S|/8d and define

T = {h1, . . . , ht},

where by out assumption 〈ht, x〉 ≥ ε. Note that in this case, we can compute T from
comparison queries on S. We will show that

Pr
h∈T

[h ∈ InferComp (S \ {h};x)] ≥ 1
2 ,

from which the proposition follows. This in turn follows by the following two claims, whose
proof we present shortly.

I Claim 13. Let ha ∈ T . Assume that there exists a non-negative linear combination v of
{hi − hi+1 : i = 1, . . . , a− 2} such that

‖ha − (h1 + v)‖2 ≤ ε/4.

Then ha ∈ InferComp (S \ {ha};x).

I Claim 14. The assumption in Claim 13 holds for at least half the vectors in T .

Clearly, Claim 13 and Claim 14 together imply that for at least half of ha ∈ T , it holds
that ha ∈ InferComp (S \ {ha};x). This concludes the proof of the proposition. J

Next we prove Claim 13 and Claim 14.

Proof of Claim 13. Let S′ = S \ {ha} and T ′ = T \ {ha}. As S is in (1/2)-approximate
isotropic position then S′ is in c-approximate isotropic position for c = 1/2 − d/|S|. In
particular, as |S| ≥ 4d we have c ≥ 1/4. By applying comparison queries to S′ we can sort
{〈hi, x〉 : hi ∈ S′}. Then T ′ can be computed as the set of the t − 1 elements with the
largest inner product. Claim 6 applied to S′ then implies that 〈hi, x〉 ≥ ε/2 for all hi ∈ T ′.
Crucially, we can deduce this just from the comparison queries on S′, together with our
initial assumption that S is in (1/2)-approximate isotropic position. Thus we deduced from
our queries that:
〈h1, x〉 ≥ ε/2.
〈v, x〉 ≥ 0.

In addition, from our assumption it follows that |〈ha − (h1 + v), x〉| ≤ ε/4. These together
infer that 〈ha, x〉 > 0. J

ICALP 2018

82:10 Generalized Comparison Trees for Point-Location Problems

The proof of Claim 14 follows from the applying the following claim iteratively. We note
that this claim appears in [6] implicitly, but we repeat it here for clarity.

I Claim 15. Let h1, . . . , ht ∈ Rd be unit vectors. For any ε > 0, if t ≥ 16d ln(2d/ε) then
there exist a ∈ [t] and α1, . . . , αa−2 ∈ {0, 1, 2} such that

ha = h1 +
i−2∑
j=1

αj(hj+1 − hj) + e,

where ‖e‖2 ≤ ε.

In order to derive Claim 14 from Claim 15, we assume that |T | ≥ 32d ln((2d)/(ε/4)) =
Ω(d log d). Then we can apply Claim 15 iteratively |T |/2 times with parameter ε/4, at each
step identify the required ha, remove it from T and continue. Next we prove Claim 15.

Proof of Claim 15. Let B := {h ∈ Rd : ‖h‖2 ≤ 1} denote the Euclidean ball of radius 1, and
let C denote the convex hull of {h2 − h1, . . . , ht − ht−1}. Observe that C ⊂ 2B, as each hi is
a unit vector. For β ∈ {0, 1}t−1 define

hβ =
∑

βj(hj+1 − hj).

We claim that having t ≥ 16d ln(2d/ε) guarantees that there exist distinct β′, β′′ for which

hβ′ − hβ′′ ∈ ε

4(C − C).

This follows by a packing argument: if not, then the sets hβ + ε
4C for β ∈ {0, 1}t−1 are

mutually disjoint. Each has volume (ε/4)dvol(C), and they are all contained in tC which
has volume tdvol(C). As the number of distinct β is 2t−1 we obtain that 2t−1(ε/4)d ≤ td,
which contradicts our assumption on t.

Let i ∈ [t] be maximal such that β′i−1 6= β′′i−1. We may assume without loss of generality
that β′i−1 = 0, β′′i−1 = 1, as otherwise we can swap the roles of β′ and β′′. Thus we have

i−1∑
j=1

(β′j − β′′j)(hj+1 − hj) ∈
ε

4(C − C) ⊂ εB.

Adding hi − h1 =
∑i−1
j=1(hj+1 − hj) to both sides gives

i−1∑
j=1

(β′j − β′′j + 1)(hj+1 − hj) ∈ hi − h1 + εB,

which is equivalent to

hi − h1 ∈
i−1∑
j=1

(β′j − β′′j + 1)(hj+1 − hj) + εB.

The claim follows by setting αj = β′j − β′′j + 1 and noting that by our construction αi−1 = 0,
and hence the sum terminates at i− 2. J

D.M. Kane, S. Lovett, and S. Moran 82:11

3.2 A deterministic LDT for H in general position
In this section, we derandomize the algorithm from the previous section.

I Lemma 16. Let H ⊆ Rd be a finite set in general position. Then there exists an LDT that
computes AH(·) with O

(
d4 log d log|H|

)
generalized comparison queries.

Note that the this bound is worse by a factor of d than the one in Lemma 8. In Open
Question 2 we ask whether this loss is necessary, or whether it can be avoided by a different
derandomization technique.

Lemma 16 follows by derandomizing the algorithm from Lemma 8. Recall that Lemma 8
boils down to showing that h ∈ InferComp(Si;x) for an Ω(1/d) fraction of h ∈ Hi on average.
In other words, for every input vector x, most of the subsets Si ⊆ H ′i of size Ω(d2 log d)
allow to infer from comparisons the labels of some Ω(1/d)-fraction of the points in Hi. We
derandomize this step by showing that there exists a universal set Si ⊆ H ′i of size O(d3 log d)
that allows to infer the labels of some Ω(1/d)-fraction of the points in Hi, with respect to
any x. This is achieved by the next lemma.

I Lemma 17. Let H ⊆ Rd be a set of unit vectors in isotropic position. Then there
exists S ⊆ H of size O(d3 log d) such that

(
∀x ∈ Rd

)
: |InferComp(S;x) ∩H| ≥ |H|100d .

Proof. We use a variant of the double-sampling argument due to [12] to show that a random
S ⊆ H of size s = O(d3 log d) satisfies the requirements. Let S = {h1, . . . , hs} be a random
(multi-)subset of size s, and let E = E(S) denote the event

E(S) :=
[
∃x ∈ Rd : |InferComp(S;x) ∩H| < |H|/100d

]
.

Our goal is showing that Pr[E] < 1. To this end we introduce an auxiliary event F . Let
t = Θ(d2 log d), and let T = {h1, . . . , ht} ⊆ S be a subsample of S, where each hi is drawn
uniformly from S and independently of the others. Define F = F (S, T) to be the event

F (S, T) :=
[
∃x ∈ Rd : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d
]
.

The following claims conclude the proof of Lemma 17.

I Claim 18. If Pr[E] ≥ 9/10 then Pr[F] ≥ 1/200d.

I Claim 19. Pr[F] ≤ 1/250d.

This concludes the proof, as it shows that Pr[E] < 9/10. We next move to prove Claim 18
and Claim 19.

Proof of Claim 18. Assume that Pr[E] ≥ 9/10. Define another auxiliary event G = G(S) as

G(S) := [S is in (3/4)-approximate isotropic position] .

Applying Claim 7 by plugging m ≥ 100d ln(10d) in Equation 1 gives that Pr[G] ≥ 9/10,
which implies that Pr[E ∧G] ≥ 8/10. Next, we analyze Pr[F |E ∧G].

To this end, fix S such that both E(S) and G(S) hold. That is: S is in (3/4)-approximate
isotropic position, and there exists x = x(S) ∈ Rd such that |InferComp(S;x)∩H| < |H|/100d.

ICALP 2018

82:12 Generalized Comparison Trees for Point-Location Problems

If we now sample T ⊂ S, in order for F (S, T) to hold, we need that (i) |InferComp(T ;x)∩H| <
|H|/100d , which holds with probability one, as |InferComp(S;x) ∩H| < |H|/100d; and (ii)
that |InferComp(T ;x) ∩ S| ≥ |S|/50d. So, we analyze this event next.

Applying Lemma 9 to the subsample T with respect to S gives that

ET [|InferComp(T ;x) ∩ S|] ≥ |S|/40d.

This then implies that

Pr [|InferComp(T ;x) ∩ S| ≥ |S|/100d] ≥ 1/100d.

To conclude: we proved under the assumptions of the lemma that PrS [E(S)∧G(S)] ≥ 8/10;
and that for every S which satisfies E(S) ∧ G(S) it holds that PrT [F (S, T)|S] ≥ 1/100d.
Together these give that Pr[F (S, T)] ≥ 1/200d. J

Proof of Claim 19. We can model the choice of (S, T) as first sampling T ⊂ H of size t,
and then sampling S \ T ⊂ H of size s− t. We will prove the following (stronger) statement:
for any choice of T ,

Pr [F (S, T)|T] < 1/250d.

So from now on, fix T and consider the random choice of T ′ = S \ T . We want to show that:

Pr
T ′

[
(∃x ∈ Rd) : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1/250d.

We would like to prove this statement by applying a union bound over all x ∈ Rd. However,
Rd is an infinite set and therefore a naive union seems problematic. To this end we introduce
a suitable equivalence relation that is based on the following observation.

I Observation 20. InferComp(T ;x) is determined by sign(〈h, x〉) for h ∈ T ∪ (T − T).

We thus define an equivalence relation on Rd where x ∼ y if and only if sign(〈h, x〉) =
sign(〈h, y〉) for all h ∈ T ∪ (T − T). Let C be a set of representatives for this relation. Thus,
it suffices to show that

Pr
T ′

[
(∃x ∈ C) : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1/250d.

Since C is finite, a union bound is now applicable. Sepcifically, it is enough to show that

(∀x ∈ C) : Pr
T ′

[
|InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1

250d|C| .

Now, (a variant of) Sauer’s Lemma (see e.g. Lemma 2.1 in [7]) implies that

|C| ≤ (2e · |T ∪ (T − T)|)d ≤
(
2e · t2

)d ≤ (20t)2d. (2)

D.M. Kane, S. Lovett, and S. Moran 82:13

Fix x ∈ C. If |InferComp(T ;x) ∩H| ≥ |H|
100d then we are done (note that InferComp(T ;x)

is fixed since it depends only on T and x and not on T ′). So, we may assume that
|InferComp(T ;x) ∩H| < |H|

100d . Then we need to bound

Pr
[
|InferComp(T ;x) ∩ S| ≥ |S|50d

]
≤ Pr

[
|InferComp(T ;x) ∩ T ′| ≥ |T

′|
75d

]
,

where the inequality follows if t ≤ s
150d , which can be satisfied since t = Θ(d2 log d) and s =

Θ(d3 log d). To bound this probability we use the Chernoff bound: let p = |InferComp(T ;x)∩H|
|H| ;

note that |InferComp(T ;x) ∩ T ′| is distributed like Bin(s − t, p). By assumption, p ≤ 1
100d ,

and therefore:

Pr
[
|InferComp(T ;x) ∩ T ′| ≥ |T

′|
75d

]
≤ exp

(
− (1/3)2 · (t/100d)

3

)
≤ 1

250d · (20t)2d ≤
1

250d · |C| ,

where the second inequality follows because t = Θ(d2 ln(d)) with a large enough constant,
and the last inequality follows by Equation 3.2. J

J

References
1 Franck Barthe. On a reverse form of the Brascamp-Lieb inequality. Inventiones mathem-

aticae, 134(2):335–361, 1998.
2 Jean Cardinal, John Iacono, and Aurélien Ooms. Solving k-sum using few linear queries.

arXiv preprint arXiv:1512.06678, 2015.
3 Esther Ezra and Micha Sharir. A nearly quadratic bound for the decision tree complexity

of k-sum. In 33rd International Symposium on Computational Geometry, SoCG 2017, July
4-7, 2017, Brisbane, Australia, pages 41:1–41:15, 2017.

4 Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. J. Comput. Syst. Sci., 65(4):612–625, 2002. doi:10.1016/S0022-0000(02)
00019-3.

5 Michael L Fredman. How good is the information theory bound in sorting? Theoretical
Computer Science, 1(4):355–361, 1976.

6 Daniel Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active classification with
comparison queries. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on. IEEE, 2017.

7 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for
k-sum and related problems. CoRR, abs/1705.01720, 2017. arXiv:1705.01720.

8 Daniel M. Kane, Shachar Lovett, and Shay Moran. Generalized comparison trees for point-
location problems. Electronic Colloquium on Computational Complexity (ECCC), 2018.

9 Stefan Meiser. Point location in arrangements of hyperplanes. Information and Computa-
tion, 106(2):286–303, 1993.

10 Friedhelm Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional
knapsack problem. Journal of the ACM (JACM), 31(3):668–676, 1984.

11 Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012. doi:10.1007/s10208-011-9099-z.

12 VN Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280, 1971.

ICALP 2018

http://dx.doi.org/10.1016/S0022-0000(02)00019-3
http://dx.doi.org/10.1016/S0022-0000(02)00019-3
http://arxiv.org/abs/1705.01720
http://dx.doi.org/10.1007/s10208-011-9099-z

	Introduction
	Proof outline
	Related work
	Open problems

	Preliminaries and some basic technical lemmas
	Inferring from comparisons
	Vectors in isotropic position

	Proof of main theorem
	A randomized LDT for H in general position
	A deterministic LDT for H in general position

