
A Centralized Local Algorithm for the Sparse
Spanning Graph Problem
Christoph Lenzen
Max Planck Institute for Informatics, Saarbrücken, Germany
clenzen@mpi-inf.mpg.de

Reut Levi1

Weizmann Institute of Science, Rehovot, Israel
reut.levi@weizmann.ac.il

https://orcid.org/0000-0003-3167-1766

Abstract
Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper,
we study this problem in the Centralized Local model, where the goal is to decide whether an
edge is part of the spanning subgraph by examining only a small part of the input; yet, answers
must be globally consistent and independent of prior queries.

Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be con-
structed efficiently in this model. Therefore, we settle for a spanning subgraph containing at
most (1 + ε)n edges (where n is the number of vertices and ε is a given approximation/sparsity
parameter). We achieve a query complexity of Õ(poly(∆/ε)n2/3),2 where ∆ is the maximum
degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree
graphs. Moreover, we achieve the additional property that our algorithm outputs a spanning
subgraph of bounded stretch i.e., distances are approximately preserved. With high probability,
for each deleted edge there is a path of O(logn · (∆ + logn)/ε) hops in the output that connects
its endpoints.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases local, spanning graph, sparse

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.87

Related Version https://arxiv.org/abs/1703.05418

Acknowledgements We thank the anonymous reviewers for their suggestions and comments.

1 Introduction

When operating on very large graphs, it is often impractical or infeasible to (i) hold the
entire graph in the local memory of a processing unit, (ii) run linear-time (or even slower)
algorithms, or even (iii) have only a single processing unit perform computations sequentially.
These constraints inspired the Centralized Local model [17], which essentially views the
input as being stored in a (likely distributed) database that provides query access to external
processing units. To minimize the coordination overhead of such a system, it is furthermore
required that there is no shared memory or communication between the querying processes,
except for shared randomness provided alongside the access to the input. The idea is now to

1 Supported by ERC-CoG grant 772839.
2 Õ-notation hides polylogarithmic factors in n.

EA
T

C
S

© Christoph Lenzen and Reut Levi;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 87; pp. 87:1–87:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clenzen@mpi-inf.mpg.de
mailto:reut.levi@weizmann.ac.il
https://orcid.org/0000-0003-3167-1766
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.87
https://arxiv.org/abs/1703.05418
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

87:2 A Local Algorithm for the Sparse Spanning Graph Problem

run sublinear-time algorithms that extract useful global properties of the graph and/or to
examine the input graph locally upon demand by applications.

Studying graphs in this model, lead to the emergence of algorithms that provide query
access to a variety of graph-theoretical structures like, e.g., independent or dominating sets.
In such a case, it is crucial that locally evaluating whether a node participates in such a
set is consistent with the same evaluation for other nodes. This is a non-trivial task, as
local decisions can only be coordinated implicitly via the structure of the input (which is to
be examined as little as possible) and the shared randomness. Nonetheless, this budding
field brought forth a number of elegant algorithms solving, e.g., maximal independent set,
hypergraph coloring, k-CNF, approximate maximum matching and approximate minimum
vertex cover for bipartite graphs [1, 4, 5, 11, 12, 13, 17].

In this work, we consider another very basic graph structure: sparse spanning subgraphs.
Here, the task is to select a subset of the edges of the (connected) input graph so that the
output is still connected, but has only few edges. By “few” we mean that, for some input
parameter ε > 0, the number of selected edges is at most (1 + ε)n, where n denotes the
number of nodes. One may see this as a relaxed version of the problem of outputting a
spanning tree of the graph, which is a too rigid requirement when looking for fast algorithms:
on a cycle, a single edge has to be deleted, but this necessitates to first verify that the input
graph is not, in fact, a line.

I Definition 1 ([9]). An algorithm A is a Local Sparse Spanning Graph (LSSG) algorithm
if, given n,∆ ≥ 1, a parameter ε ≥ 0, and query access to the incidence list representation of
a connected graph G = (V,E) over n vertices and of degree at most ∆, it provides oracle
access to a subgraph G′ = (V,E′) of G such that:
1. G′ is connected.
2. |E′| ≤ (1 + ε) · n with high probability (w.h.p.),3 where E′ is determined by G and the

internal randomness of A.
By “providing oracle access to G′” we mean that on input {u, v} ∈ E, A returns whether
{u, v} ∈ E′, and for any sequence of edges, A answers consistently with respect to the
same G′.

We are interested in LSSG algorithms that, for each given edge, perform as few queries
as possible to G. Observe that Item 2 implies that the answers of an LLSG algorithm to
queries cannot depend on previously asked queries.

We note that relaxing from requiring a tree as output makes it possible to ask for
additional guarantees that, in general, cannot be met by a spanning tree. Instead of merely
preserving connectivity, it becomes possible to maintain distances up to small factors (for
unweighted graphs). Such subgraphs are known as (sparse, multiplicative) spanners [14, 15].
In fact, choosing ε ∈ o(1) then yields ultra-sparse spanners that are o(n) edges away from
being trees.

1.1 Our Contribution
We give the first non-trivial LSSG algorithm in the Centralized Local model that runs on
arbitrary graphs. We achieve a query complexity of Õ(poly(∆/ε)n2/3) per edge, w.h.p.
Moreover, we guarantee that for each edge that is not selected into the spanner, w.h.p. there

3 That is, with probability at least 1− 1/nc for an arbitrary constant c > 0 that is chosen upfront.

C. Lenzen and R. Levi 87:3

is a path of O(logn · (∆+logn)/ε) hops consisting of edges that are selected into the spanner;
this is referred to as a stretch of O(logn · (∆ + logn)/ε).

For simplicity, assume for the moment that ∆ and ε are constants. Our algorithm
combines the following key ideas.

We classify edges as expanding if there are sufficiently many (roughly n1/3) nodes within
O(logn) hops of their endpoints. For non-expanding edges, we can efficiently simulate a
standard distributed spanner algorithm at small query complexity, as solutions of running
time O(logn) are known (e.g. [3]).
On the node set induced by expanding edges, we can construct a partition into Voronoi
cells with respect to roughly n2/3 randomly sampled centers. The Voronoi cells are
spanned by trees of depth O(logn), as expanding nodes have their closest center within
O(logn) hops w.h.p. Finding the closest center has query complexity Õ(n1/3).
We refine the partition into Voronoi cells further into clusters of Õ(n1/3) nodes. We
simply let a node be a singleton cluster if its subtree in the spanning tree of its cell
contains more than Õ(n1/3) nodes. This construction has query complexity Õ(n2/3) for
constructing a complete cluster, yet ensures that there are Õ(n2/3) clusters in total due to
the low depth of the trees that span the Voronoi cells; moreover, each cluster is completely
contained in some Voronoi cell.
It remains to select few edges to interconnect the Voronoi cells. This is the main challenge,
for which the above properties of the partition are crucial. To keep the number of selected
edges small in expectation, we mark a subset of expected size Θ̃(n1/3) of the clusters by
marking each Voronoi cell (and thereby its constituent clusters) with probability n−1/3.
We then try to ensure that (i) clusters select an edge to each adjacent marked Voronoi
cell and (ii) for each marked Voronoi cell adjacent to an adjacent cluster, they select one
edge connecting to some cluster adjacent to this cell.
The main issue with the previous step is that we cannot afford to construct each adjacent
cluster, preventing us from guaranteeing (ii). We circumvent this obstacle by identifying
for adjacent clusters in which cell they are and keeping an edge for the purpose of (ii)
if it satisfies a certain minimality requirement with respect to the rank of the cell used
for symmetry breaking purposes. This way, we avoid construction of adjacent clusters,
instead needing to determine the rank of their Voronoi cells only. This way, we maintain
query complexity Õ(n2/3).
However, this now entails an inductive argument for ensuring connectivity, which also
affects stretch. By choosing Voronoi cell ranks uniformly at random, we ensure that
the length of such an inductive chain is bounded by O(logn) w.h.p. Together with the
depth of the Voronoi cell trees of O(logn) and the stretch of the spanner algorithm for
non-expanding edges (also O(logn)), this yields the total bound of O(log2 n) on the
stretch of our scheme.

Finally, we note that we can place the above routine in a wrapper verifying that, w.h.p.,
the number of globally selected edges does not significantly exceed the expectation. If this
is not the case, the wrapper starts the process all over. Since in each attempt the success
probability is constant (and the verifier succeeds w.h.p.), we get within O(logn) attempts
that the bound on the number of selected edges is satisfied w.h.p. and the routine terminates.

Relation to Property Testing. As observed in [10], testing cycle-freeness with one sided-
error in the bounded-degree model can be reduced to the LSSG problem. From this reduction
it follows that we obtain a tester for cycle-freeness that works in Õ(n2/3) time. Czumaj
et al. [2] studied the problem of Ck-minor freeness with one sided-error. For cycle-freeness

ICALP 2018

87:4 A Local Algorithm for the Sparse Spanning Graph Problem

(C3-minor freeness) their complexity is Õ(
√
n), therefore their complexity is better than ours.

However, we would like to point out that an LSSG algorithm gives a stronger guarantee than
a one-sided error tester for cycle-freeness. An LSSG algorithm can be used to find for all but
at most (1 + ε)|V | edges e, a cycle that e belongs to, i.e., a witness for the violation by e can
be provided. In contrast, a one-sided error tester merely guarantees to find a single cycle in
instances that are ε-far from being cycle-free.

Perhaps more importantly, our approach proves useful when testing for other minors.
Recently, Fichtenberger et al. [6] built on our work to construct one-sided error tester for
outerplanarity and other properties that are characterized by a set of forbidden minors.

1.2 Related work

The problem of finding a sparse spanning subgraph in the Centralized Local model was first
studied in [9], where the authors show a lower bound of Ω(

√
n) queries for constant ε and

∆ (see also survey by Rubinfeld [18]). They also present an upper bound with nearly tight
query complexity for graphs that have very good expansion properties. However, for general
(bounded degree) graphs their algorithm might query the entire graph for completing a single
call to the oracle. They also provide an efficient algorithm for minor-free graphs that was
later improved in [8]. The algorithm presented in [8] achieves a query complexity that is
polynomial in ∆ and 1/ε and is independent of n. The stretch factor of this algorithm is
also independent of n and depends only on ∆, 1/ε, and the size of the excluded minor.

A characterization of the query complexity of the problem was presented in [7]. Specifically,
[7] provide an upper bound (which builds on an algorithm in [9]) that has a query complexity
that is independent of n (however, super-exponential in 1/ε) for families of graphs which are,
roughly speaking, sufficiently non-expanding everywhere. On the other hand, they show that,
for a family of graphs with expansion properties that are slightly better, any local algorithm
must have a query complexity that depends on n.

In the (distributed) Local model, Ram and Vicari [16] study the same problem and
provide an algorithm that runs in min{D,O(logn)} rounds, where D is diameter of the input
graph. Their algorithm achieves the sparsity property by breaking all short cycles.

2 Preliminaries

The graphs we consider are undirected and have a known degree bound ∆, and we assume
we have query access to their incidence list representation. Namely, for any vertex v and
index 1 ≤ i ≤ ∆, it is possible to obtain the ith neighbor of v by performing a query to the
graph (if v has less than i neighbors, then a special symbol is returned). Without loss of
generality, we assume that graphs are simple, i.e., contain neither loops nor parallel edges.4
The number of vertices in the graph is n and we assume that each vertex v has a unique id,
which for simplicity we also denote by v. There is a total order on the ids, i.e., given any
two distinct ids u and v, we can decide whether u < v or v < u.

Let G = (V,E) be a graph, where V = [n]. We denote the distance between two vertices
u and v in G by dG(u, v). For vertex v ∈ V and an integer r, let Γr(v,G) denote the set of
vertices at distance at most r from v. When the graph G is clear from the context, we shall
use the shorthands d(u, v) and Γr(v) for dG(u, v) and Γr(v,G), respectively.

4 The answer on a self-loop can always be negative, and we can default to rejecting all but the first edge
between two nodes.

C. Lenzen and R. Levi 87:5

Figure 1 Partition of a graph into cells and clusters, where k = 6. Black lines are the borders of
Voronoi cells, whose centers have black fillings. Red edges belong to the BFS trees spanning the
clusters, while dashed gray lines are non-tree edges. Red circles indicate singleton clusters (if the
node has a red child) or the roots of subtrees that form a cluster (if the children are black).

The total order on the vertices induces a total order r on the edges of the graph in
the following straightforward manner: r({u, v}) < r({u′, v′}) if and only if min{u, v} <
min{u′, v′} or min{u, v} = min{u′, v′} and max{u, v} < max{u′, v′}. The total order over
the vertices also induces an order over those vertices visited by a Breadth First Search
(BFS) starting from any given vertex v, and whenever we refer to a BFS, we mean that it is
performed according to this order.

Whenever referring to one of the above orders, we may refer to the rank of an element
in the respective order. This is simply the index of the respective element when listing all
elements ascendingly with respect to the order.

For a graph G = (V,E) and a pair of disjoint subsets of vertices A ⊂ V and B ⊂ V let
EG(A,B) def= {(u, v) ∈ E |u ∈ A ∧ v ∈ B}. When it is clear from the context, we omit the
subscript. We say that a pair of subsets of vertices A and B are adjacent if EG(A,B) 6= ∅.

3 An Algorithm that Works under a Promise

We begin by describing an LSSG algorithm which works under the following promise on the
input graph G = (V,E). Sample ` uniformly at random from [b logn/ log(1+ε), b logn/ log(1+
ε) + ∆/ε}], and let k def= cn1/3 lnn · `∆/ε, where c and b are sufficiently large constants. For
every v ∈ V , let iv

def= minr{|Γr(v)| ≥ k}. We are promised that maxv∈V {iv} ≤ `. In words,
we assume that the `-hop neighborhood of every vertex in G contains at least k vertices.
First, we fix a simple partition of V .

3.1 The Underlying Partition

Centers. Pick a set S ⊂ |V | of r def= Θ(εn2/3/ lnn) vertices at random. We shall refer to
the vertices in S as centers. For each vertex v ∈ V , its center, denoted by c(v), is the center
which is closest to v amongst all centers (break ties between centers according to the id of
the center).

ICALP 2018

87:6 A Local Algorithm for the Sparse Spanning Graph Problem

Voronoi cells. The Voronoi cell of a vertex v, denoted by Vor(v), is the set of all vertices u
for which c(u) = c(v). Additionally, we assign to each cell a random rank, so that there is a
uniformly random total order on the cells; note carefully that the rank of a cell thus differs
from the rank of its center (which is given by its identifier, which is not assigned randomly).
We remark that we can determine the rank of the cell from the shared randomness and the
cell’s identifier, for which we simply use the identifier of its center.

Clusters. For each Voronoi cell, consider the BFS tree spanning it, which is rooted at the
respective center. For every v ∈ V , let p(v) denote the parent of v in this BFS tree. If v
is a center then p(v) = v. For every v ∈ V \ S, let T (v) denote the subtree of v in the
above-mentioned BFS tree when we remove the edge {v, p(v)}; for v ∈ S, T (v) is simply the
entire tree. Now consider a Voronoi cell. If the cell contains at most k vertices, then the
cluster of all the vertices in the Voronoi cell is the cell itself. Otherwise, there are two cases.
If T (v) contains at least k vertices, then the cluster of v is the singleton {v}. Otherwise,
v has a unique ancestor u (including v) for which T (u) contains less than k vertices and
T (p(u)) contains at least k vertices. The cluster of v is the set of vertices in T (u). For a
cluster C, let c(C) denote the center of the vertices in C (all the vertices in the same cluster
have the same center as they all belong to the same Voronoi cell). Let Vor(C) denote the
Voronoi cell of the vertices in C.

This describes a partition of V into Voronoi cells, and a refinement of this partition into
clusters. See Figure 1 for an illustration.

3.2 The Edge Set
Our spanner, H = (V,E′), initially contains, for each Voronoi cell Vor the edges of the BFS
tree that spans Vor, i.e., the BFS tree rooted at the center of Vor spanning the subgraph
induced by Vor (see Section 2 for more details). Clearly, these edges also span the clusters.
Next, we describe which edges we add to E′ in order to connect the clusters.

Marked Clusters and Clusters-of-Clusters
Each center in S is marked independently with probability p def= 1/n1/3. If a center is marked,
then we say that its Voronoi cell is marked and all the clusters in this cell are marked as well.

Cluster-of-clusters. For every marked cluster, C, define the cluster-of-clusters of C, denoted
by C(C), to be the set of clusters which consists of C and all the clusters which are adjacent
to C. A cluster B is participating in C(C) if B ∈ C(C) and the edge of minimum rank
in E(B,Vor(C)) also belongs to E(B,C). Thus, if B is adjacent to Vor(C) and Vor(C) is
marked, then there is a unique cluster D ⊆ Vor(C) such that B participates in C(D). See
Figure 2 for a visualization.

The Edges between Clusters
By saying that we connect two adjacent subsets of vertices A and B, we mean that we add
the minimum ranked edge in E(A,B) to E′. For a cluster A, define its adjacent centers
Vor(∂A) def= {Vor(v) | ∃u ∈ A such that {u, v} ∈ E} \ {Vor(A)}, i.e., the set of Voronoi cells
that are adjacent to A. This definition explicitly excludes Vor(A), as there is no need to
connect A to its own Voronoi cell.

C. Lenzen and R. Levi 87:7

C(C)
C

F

E

D

Figure 2 Illustration of marked clusters and clusters of clusters. Thick red and black ovals
are marked and unmarked cells, respectively. Thin circles are clusters, where cluster C comprises
its entire cell. Thick edges are the ones of minimum rank between their incident clusters, while
the dotted edges do not meet this criterion. The arrows of red edges indicate participation in the
respective adjacent marked cluster; note that D does not participate in C(F), as for each adjacent
marked cell Vor it exclusively participates in the cluster-of-clusters connected to it by the edge of
minimum rank in E(D, Vor). C(C) is marked in blue; all its constituent clusters also participate in
C(C), as Vor(C) = C.

We next describe how we connect the clusters. The high-level idea is to make sure that
every marked cluster and the clusters that participate in the respective cluster-of-clusters
remains connected. This implies that the cluster-of-clusters remain connected as well, as
every Voronoi cell is connected. For clusters which are not adjacent to any marked cluster
we make sure to keep them connected to all adjacent Voronoi cells. Formally:
1. We connect every cluster to every adjacent marked cluster.
2. Each cluster A that is not participating in any cluster-of-clusters (i.e., no cell adjacent to

A is marked) we connect to each adjacent cell.
3. Suppose cluster A is adjacent to cluster B, where B is adjacent to a marked cell Vor.

Denote by C the (unique) cluster in cell Vor for which B participates in C(C). We connect
A with B if the following conditions hold:

Vor(B) has minimum rank amongst Vor(∂A) ∩Vor(∂C)
the minimum ranked edge in E(A,Vor(B)) is also in E(A,B)

Figure 3 showcases the third rule. Roughly speaking, the idea is that we want to connect
cluster A with C(C) to preserve connectivity, however, at the same time, we want to make
sure that we do not add too many edges to our spanning subgraph. Therefore, we connect
A and B only if we do not see an evidence that A and C(C) remain connected through a
different path.

3.3 Sparsity
I Lemma 1. The number of clusters, denoted by s, is at most |S|+ n`(∆ + 1)/k.

Proof. We first observe that, due to the promise on G, it follows that for every v ∈ V ,
d(v, c(v)) ≤ ` w.h.p. Recall the terminology from Subsection 3.1. Consider v for which
|T (v)| ≥ k and therefore its cluster is the singleton {v}. We say that a vertex u is special
if |T (u)| ≥ k and for every child of u in T (u), t, it holds that |T (t)| < k. By an inductive
argument, it follows that v is an ancestor of a special vertex. Since for every pair of special
vertices u and w, T (u) and T (w) are vertex disjoint, we obtain that there are at most n/k

ICALP 2018

87:8 A Local Algorithm for the Sparse Spanning Graph Problem

D

C

B

A

Figure 3 Illustration of the third edge selection rule. In this example, the thick black edge has
minimum rank in E(A, Vor(B)) and B has minimum rank in ∂A∩ ∂C. However, the rank of Vor(D)
is smaller than that of Vor(B), and hence the dashed edge is not selected. Here, A will select the
direct edge connecting it to D, due to the first rule.

special vertices. Since for every special vertex, there are at most ` ancestors, the total number
of vertices v with |T (v)| ≥ k is bounded by n`/k.

Observe that any cluster either (i) is a singleton {v} with |T (v)| ≥ k, (ii) contains a node
v such that |T (p(v))| ≥ k, or (iii) is an entire Voronoi cell. We just bounded the number of
clusters of type (i) by n`/k, and immediately get a bound on the number of type (ii) clusters
of n`∆/k. The number of type (iii) clusters is bounded by the number of Voronoi cells |S|,
showing the desired bound on s. J

I Lemma 2. Exp(|E′|) ≤ (1 +O(ε))|V |.

Proof. The number of edges which are taken due to Condition 1 is at most s times the
number of marked clusters. In expectation, there are s · p marked clusters, yielding at
most s2p edges in expectation. Since s = O(εn2/3/ lnn) and p = 1/n1/3 we obtain that
s2p = O(εn/ lnn).

Let A be a cluster. The number of edges which are adjacent to A and are taken due
to Condition 3 is bounded by the total number of clusters-of-clusters. The number of
clusters-of-clusters is exactly the number of marked clusters. Thus, the total number of edges
which are taken due to Condition 3 is bounded by s2p.

Observe that the probability that cluster A is not adjacent to a marked cell is (1 −
p)|Vor(∂A)| ≤ e−p|Vor(∂A)|. Hence, if |Vor(∂A)| ≥ 3p−1 lnn, A is adjacent to a marked cell
w.h.p. Using a union bound over all clusters, it follows that w.h.p. each cluster A without an
adjacent marked cell satisfies that |Vor(∂A)| ≤ 3p−1 lnn with probability at least 1− 1/n2;
the probability at most 1/n2 event that this bound is violated cannot contribute more than
|E|/n2 < 1 to the expectation. Therefore, the total number of edges which are taken due to
Condition 2 is bounded by (3s lnn)/p+ 1 = O(εn).

Since the number of edges we add due to the BFS trees of the Voronoi cells is at most
|V | − 1, we conclude that Exp(|E|′) ≤ (1 +O(ε))|V |, as desired. J

3.4 Connectivity and Stretch
I Lemma 3. H is connected.

C. Lenzen and R. Levi 87:9

Proof. Recall that H contains a spanning tree on every Voronoi cell, hence it suffices to
show that we can connect any pair of Voronoi cells by a path between some of their vertices.
Moreover, the facts that G is connected and the Voronoi cells are a partition of V imply that
it is sufficient to prove this for any pair of adjacent Voronoi cells. Accordingly, let Vor and
Vor1 be two cells such that E(Vor,Vor1) 6= ∅.

Consider clusters A ⊆ Vor and B ⊆ Vor1 such that the edge e of minimum rank in
E(Vor,Vor1) is in E(A,B). If B is not adjacent to a marked cell, then Condition 2 implies
that e is selected into H. Thus, we may assume that B is adjacent to a marked cell Vor′.
Accordingly, there exists a marked cluster C ⊆ Vor′ such that B is participating in C(C).

If the rank of Vor1 is minimum in Vor(∂C) ∩ Vor(∂A), then e is selected into H by
Condition 3 and we are done. Otherwise, observe that Vor1 is connected to Vor′, as the
edge of minimum rank in E(B,C) is selected into H by Condition 1. Therefore, it suffices
to show that Vor gets connected to Vor′. Let Vor2 be the cell of minimum rank among
Vor(∂C) ∩ Vor(∂A). Let D ⊆ Vor2 be the cluster satisfying that the edge e′ of minimum
rank in E(A,Vor2) is in E(A,D). Note that Vor2 is connected to Vor′ (which we saw to be
connected to Vor1), as there is some cluster D′ ⊆ Vor(D) that is adjacent to C and selects
the edge of minimum rank in E(D′, C) by Condition 1.

Overall, we see that it is sufficient to show that Vor gets connected to Vor2, where Vor2
has smaller rank than Vor1. We now repeat the above reasoning inductively. In step i, we
either succeed in establishing connectivity between Vor and Vori, or we determine a cell
Vori+1 that has smaller rank than Vori and is connected to Vori. As any sequence of Voronoi
cells of descending ranks must be finite, the induction halts after finitely many steps. Because
the induction invariant is that Vori+1 is connected to Vori, this establishes connectivity
between Vor and Vor1, completing the proof. J

I Lemma 4. Denote by GVor the graph obtained from G by contracting Voronoi cells and
by HVor its subgraph obtained when doing the same in H. If the cells’ ranks are uniformly
random, w.h.p. HVor is a spanner of GVor of stretch O(logn).

Proof. Recall the proof of Lemma 3. We established connectivity by an inductive argument,
where each step increased the number of traversed Voronoi cells by two. Hence, it suffices to
show that the induction halts after O(logn) steps w.h.p.

To see this, observe first that GVor is independent of the ranks assigned to Voronoi
cells and pick any pair of adjacent cells Vor, Vor1, i.e., neighbors in GVor. We perform the
induction again, assigning ranks from high to low only as needed in each step, according to
the following process. In each step, we query the rank of some cells, and given an answer of
rank r, the ranks of all cells of rank at least r are revealed as well. In step i, we begin by
querying the rank of Vori. Consider the cluster Di ⊆ Vori adjacent to A satisfying that the
edge with minimum rank in E(Vori, A) is also in E(Di, A). We can assume without loss of
generality that Di is adjacent to a marked cluster Fi and that it is participating in C(Fi)
(as otherwise Di connects to A directly and we can terminate the process). If the ranks of
all the cells adjacent to both Fi and A were already revealed, then the process terminates.
Otherwise, we query the rank of all such cells whose rank is still unrevealed. We set the cell
of the queried cluster that has minimum rank to be Vori+1 and we continue to the next step.

We claim that, in each step i, either the process terminates, or the rank of Vori+1 is at
most half of the rank of Vori with probability at least 1/2. To verify this, observe that in
the beginning of step i, any cell center whose rank was not revealed so far has rank which

ICALP 2018

87:10 A Local Algorithm for the Sparse Spanning Graph Problem

is uniformly distributed in [ri − 1], where ri is the rank of Vori.5 With probability at least
1/2, such a rank is at most ri/2. If Vori has no adjacent cells whose ranks have not been
revealed yet, the process terminates. Hence, regardless of whether the process terminates or
not, the claim holds.

By Chernoff’s bound, we conclude that the process terminates within O(logn) steps
w.h.p., as r1 is bounded by the number of Voronoi cells, which itself is trivially bounded by
n. By the union bound over all pairs of cells Vor and Vor1, we get the desired guarantee. J

I Corollary 1. W.h.p., H is a spanner of G of stretch O(logn · (∆ + logn)/ε).

Proof. Due to the promise on G, w.h.p. the spanning trees on Voronoi cells have depth
` ∈ O((∆ + logn)/ε). Hence, for any edge within a Voronoi cell, the claim holds w.h.p.
Moreover, for an edge connecting different Voronoi cells, by Lemma 4, w.h.p. there is a
path of length O(logn) in HVor connecting the respective cells. Navigating with at most
2` ∈ O((∆ + logn)/ε) hops in each traversed cell, we obtain a suitable path of length
O(logn · (∆ + logn)/ε) in H. J

4 The Algorithm for General Graphs

We use a combination of the algorithm in Section 3 with the algorithm by Elkin and Neiman
for ultra-sparse spanners [3]. We call a vertex v remote, with respect to a set of centers, if
the `-hop neighborhood of v does not include a center. Fix S, let R denote the set of remote
vertices with respect to S, and abbreviate R̄ def= V \R.

First Step. Run the algorithm from Section 3 on the subgraph induced by R̄, i.e., {u, v} ∈ E
with u, v ∈ R̄ is added to E′ if and only if the algorithm outputs the edge.

Second Step. Run the algorithm of Elkin and Neiman [3] on the subgraph induced by R,
i.e., {u, v} ∈ E with u, v ∈ R is added to E′ if and only if the algorithm outputs the edge.6
Their algorithm proceeds as follows. Given an integer h, each vertex v draws rv according
to the exponential distribution with parameter β = ln(n/δ)/h, where δ is a parameter that
controls the success probability of the algorithm. Each vertex v receives ru from every
vertex u within distance h, and stores mu(v) = ru − d(u, v) and a neighbor on a shortest
path between v and u, denoted by nu(v). The edges that are added to the spanner are
C(v) = {{v, nu(v)} |mu(v) ≥ maxw∈V {mw(v)− 1}}, for every v ∈ R.

I Corollary 2. M[Claim 2.3 in [3]] With probability at least 1− δ, rv < h for all v ∈ V .

M We choose δ = 1/nb−1, where b ≥ 2 is a constant (see begining of Section 3), and h = `.
The following lemma implies that the total number of edges that we add to H in the second
step is at most |R| · (nb)1/` ≤ |R|(1 + ε) in expectation.

I Lemma 5 (Proof of Lemma 2.2 in [3]). For every v ∈ R, Exp[C(v)] ≤ (n/δ)1/h.

5 In step 1, we first query Vor1 and then observe that this statement holds.
6 The algorithm is described for connected graphs; we simply apply it to each connected component of R.

C. Lenzen and R. Levi 87:11

Third Step. Add to E′ all edges e ∈ E(R, R̄).

The following lemma implies that the expected number of edges which are added in the
third step is at most εn.

I Lemma 6. Exp[|E(R, R̄)|] ≤ εn.

Proof. Observe that for an edge {u, v} ∈ E, there is at most one integer r such that
Γr(u)∩ S = ∅ and Γr(v)∩ S 6= ∅ (or vice versa). If there is no such r or ` 6= r, then the edge
is not in E(R, R̄). Over the random choice of `, the probability of the event that the edge is
included is at most Pr[` = r] ≤ ε/∆. The lemma follows by linearity of expectation. J

4.1 Stretch Factor
Consider any edge e = {u, v} ∈ E \ E′ we removed. If u, v ∈ R̄, e was removed by the
Algorithm from Section 3, which was applied to the subgraph induced by R̄. Applying
Corollary 1 to the connected component of e, we get that w.h.p. there is a path of length
O(logn ·(∆+logn)/ε) from u to v in H. If u, v ∈ R, by Claim 2 and the choice of parameters,
w.h.p. there is a path of length O((∆ + logn)/ε) from u to v in H. As e /∈ E(R, R̄) by the
third step, we arrive at the following corollary.

I Corollary 3. The above algorithm guarantees stretch O(logn · (∆ + logn)/ε) w.h.p. and
satisfies that Exp[|E′|] ∈ (1 +O(ε))n.

5 The Local Algorithm

In this section we prove our main theorem.

I Theorem 2. Algorithm 1 is an LSSG algorithm. For any graph G over n vertices of
maximum degree at most ∆ and ε > 0, its query complexity, space complexity (length of the
random seed), and running time are Õ(n2/3) · poly(1/ε,∆).

Proof. The correctness of the algorithm follows from the previous sections. We shall prove
that its complexity is as claimed. We analyze the complexity in terms of n. There are
additional factors that depend polynomially in ∆ and 1/ε. The following claims hold w.h.p.,
simultaneously, for all vertices.

Recall that a vertex u is remote if Γ`(u) does not contain a center. Due to the sampling
probability for centers, a center is found after exploring Õ(n1/3) vertices. Therefore, we
can decide for any vertex u whether it is in R with query and time complexity Õ(n1/3).
Moreover, if u ∈ R̄, without additional cost the respective subroutine can return c(u), the
center of u, and d(u, c(u)) (as we explore in a BFS fashion).

For Step 1, we need to determine Γ`(u) ∩R. To do this, it suffices to explore Γ`(u), and
for each vertex in it, to determine whether it is in R or not. Since |Γ`(u)| = Õ(n1/3) for
every vertex u ∈ R, we obtain that the query and time complexity of this step is Õ(n2/3), in
total. Accordingly, Step 2 has query and time complexity Õ(n1/3).

If u, v ∈ R̄, the algorithm proceeds as in Section 3. We show first that we can reconstruct
clusters efficiently. W.l.o.g., consider u. We determine c(u) and d(u, c(u)). For each neighbor
w of u, we determine whether it is in R̄ (if not, the node is discarded), its center c(w),
and the distance d(w, c(w)). As u ∈ R̄, and assuming that u 6= c(u), it must have at least
one neighbor w in distance d(u, c(u))− 1 of c(u); any such w satisfies that c(w) = c(u), as
otherwise d(u, c(w)) = d(w, c(w)) and c(w) < c(u), a contradiction to the tie-breaking rule
for centers. Among these candidates w, we know that the one with minimum rank is the

ICALP 2018

87:12 A Local Algorithm for the Sparse Spanning Graph Problem

Algorithm 1 LSSG for general graphs.
Input: {u, v} ∈ E
Output: whether {u, v} is in E′ or not.
1. If u, v ∈ R, compute the output of algorithm of Elkin and Neiman at u and v when

running it on the connected component of u and v in the subgraph induced by R. Return
true if {u, v} ∈ C(u) ∪ C(v) and false otherwise.

2. If {u, v} ∈ E(R, R̄), return true.
3. Otherwise, u, v ∈ R̄ and we proceed according to Section 3, where all nodes in R are

ignored:
a. If Vor(u) = Vor(v), return true if {u, v} is in the BFS tree of Vor(u) and false

otherwise.
b. Otherwise, let Q and W denote the clusters of u and v, respectively. Return true if

at least one of the following conditions hold for A = Q and B = W , or symmetrically,
for A = W and B = Q, and false otherwise.
i. A is a marked cluster and {u, v} has minimum rank amongst the edges in E(A,B).
ii. A is not participating in any cluster-of-clusters. Namely, all the clusters which are

adjacent to A are not marked. In this case, we take {u, v} if it has minimum rank
amongst the edges in E(A,Vor(B)).

iii. There exists a marked cluster C such that A is participating in C(C), and the
following holds:

Vor(A) has minimum rank amongst Vor(∂B) ∩Vor(∂C)
{u, v} has minimum rank amongst the edges in E(B,Vor(A)).

parent of u in the BFS tree of Vor(u) rooted at c(u), due to the tie-breaking rule for the BFS
construction. We can use this subroutine to partially explore the BFS of Vor(u): given any
node w ∈ R̄, we can determine its parent, p(w), and children in Vor(w) at query and time
complexity Õ(n1/3) as follows. The shortest path that has the smallest lexicographical order
from c(w) to w is the path connecting these vertices in the BFS tree. Therefore, the parent
of w in this tree can be found by performing a BFS from w until the first level in which
c(w) is reached. To determine the children we simply run this subroutine for each neighbor,
y, of w and find out whether w = p(y) or not. In order to determine whether T (w) < k

or T (w) ≥ k (by partially or completely exploring T (w)), we need to run this subroutine
O(k) times, therefore this can be obtained with query complexity Õ(n2/3). if T (w) < k, we
determine T (w) completely. We collect this information for u and its `− 1 ancestors, and
determine the cluster Q of u. Finally, we repeat the procedure to reconstruct the cluster W
of v, and determine for all nodes adjacent to either cluster whether they are in R̄ and, if so,
their centers. The query and time complexity of this operation is Õ(n2/3) in total.

For the cases A = Q, B = W and A = W , B = Q, respectively, with the above
information we can determine

whether Vor(u) = Vor(v),
if Vor(u) = Vor(v), whether p(u) = v or p(v) = u,
if Vor(u) 6= Vor(v),

whether A is marked (i.e., c(A) has been marked) and whether {u, v} has minimum
rank in E(A,B),
whether A is not adjacent to any marked cluster (i.e., none of the adjacent nodes’
centers has been marked) and whether {u, v} has minimum rank in E(A,Vor(B)), and
whether there is a marked cluster C adjacent to A so that A participates in C(C),

C. Lenzen and R. Levi 87:13

Vor(A) has minimum rank in Vor(∂B) ∩ Vor(∂C), and {u, v} has minimum rank in
E(B,Vor(A)). We note that since we have degree bounded by ∆, the number of
vertices in A is Õ(n1/3), and the probability that a cell is marked is n−1/3, the number
of cluster-of-clusters that A participates in is Õ(∆) w.h.p.

In other words, we can perform all necessary checks to decide whether {u, v} ∈ E′ or not.
The algorithm in Section 3 requires Õ(n2/3) random bits for the selection of centers

and marked clusters. For the emulation of the algorithm of Elkin and Neiman it suffices
that the random variables {ru} be Õ(n1/3)-wise independent, because the outcome of the
algorithm for a vertex v ∈ R depends only on the random variables of at most Õ(n1/3)
vertices (the vertices in Γ`(v)). Thus, overall Õ(n2/3) random bits (up to poly(∆/ε) factors)
are sufficient. J

References

1 N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-efficient local computation algorithms.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1132–1139, 2012.

2 Artur Czumaj, Oded Goldreich, Dana Ron, C. Seshadhri, Asaf Shapira, and Christian
Sohler. Finding cycles and trees in sublinear time. Random Structures and Algorithms,
45(2):139–184, 2014.

3 Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse span-
ners and emulators. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 652–669, 2017.

4 G. Even, M. Medina, and D. Ron. Deterministic stateless centralized local algorithms for
bounded degree graphs. In Algorithms - ESA 2014 - 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, pages 394–405, 2014. doi:10.1007/
978-3-662-44777-2_33.

5 U. Feige, Y Mansour, and R. E. Schapire. Learning and inference in the presence of
corrupted inputs. In Proceedings of The 28th Conference on Learning Theory, COLT 2015,
Paris, France, July 3-6, 2015, pages 637–657, 2015.

6 Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, and Maximilian Wötzel. On testing
minor-freeness in bounded degree graphs with one-sided error. Unpublished manuscript,
2017.

7 R. Levi, G. Moshkovitz, D. Ron, R. Rubinfeld, and A. Shapira. Constructing near spanning
trees with few local inspections. Random Structures & Algorithms, 50:n/a–n/a, 2016. doi:
10.1002/rsa.20652.

8 R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an excluded
minor. ACM Trans. Algorithms, 11(3):24:1–24:13, 2015.

9 R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs. In
Proceedings of the Eighteenth International Workshop on Randomization and Computation
(RANDOM), pages 826–842, 2014.

10 R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs. CoRR,
abs/1402.3609, 2014. URL: http://arxiv.org/abs/1402.3609.

11 R. Levi, R. Rubinfeld, and A. Yodpinyanee. Local computation algorithms for graphs of
non-constant degrees. Algorithmica, pages 1–24, 2016.

12 Y. Mansour, A. Rubinstein, S. Vardi, and N. Xie. Converting online algorithms to local
computation algorithms. In Automata, Languages and Programming: Thirty-Ninth Inter-
national Colloquium (ICALP), pages 653–664, 2012.

ICALP 2018

http://dx.doi.org/10.1007/978-3-662-44777-2_33
http://dx.doi.org/10.1007/978-3-662-44777-2_33
http://dx.doi.org/10.1002/rsa.20652
http://dx.doi.org/10.1002/rsa.20652
http://arxiv.org/abs/1402.3609

87:14 A Local Algorithm for the Sparse Spanning Graph Problem

13 Y. Mansour and S. Vardi. A local computation approximation scheme to maximum match-
ing. In Proceedings of the Sixteenth International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), pages 260–273, 2013.

14 D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13:99–116, 1989.
15 D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal on

Computing, 18:229–243, 1989.
16 L. S. Ram and E. Vicari. Distributed small connected spanning subgraph: Breaking the

diameter bound. Technical report, ETH Zürich, 2011.
17 R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local computation algorithms. In

Proceedings of The Second Symposium on Innovations in Computer Science (ICS), pages
223–238, 2011.

18 Ronitt Rubinfeld. Can we locally compute sparse connected subgraphs? In Computer
Science - Theory and Applications - 12th International Computer Science Symposium in
Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings, pages 38–47, 2017. doi:
10.1007/978-3-319-58747-9_6.

http://dx.doi.org/10.1007/978-3-319-58747-9_6
http://dx.doi.org/10.1007/978-3-319-58747-9_6

	Introduction
	Our Contribution
	Related work

	Preliminaries
	An Algorithm that Works under a Promise
	The Underlying Partition
	The Edge Set
	Sparsity
	Connectivity and Stretch

	The Algorithm for General Graphs
	Stretch Factor

	The Local Algorithm

