
Improved Algorithms for Adaptive Compressed
Sensing

Vasileios Nakos
Harvard University, Cambridge, USA
vasileiosnakos@g.harvard.edu

Xiaofei Shi
Carnegie Mellon University, Pittsburgh, USA
xiaofeis@andrew.cmu.edu

David P. Woodruff
Carnegie Mellon University, Pittsburgh, USA
dwoodruf@cs.cmu.edu

Hongyang Zhang
Carnegie Mellon University, Pittsburgh, USA
hongyanz@cs.cmu.edu

Abstract
In the problem of adaptive compressed sensing, one wants to estimate an approximately k-sparse
vector x ∈ Rn from m linear measurements A1x,A2x, . . . , Amx, where Ai can be chosen based
on the outcomes A1x, . . . , Ai−1x of previous measurements. The goal is to output a vector x̂ for
which

‖x− x̂‖p ≤ C · min
k-sparse x′

‖x− x′‖q,

with probability at least 2/3, where C > 0 is an approximation factor. Indyk, Price and Woodruff
(FOCS’11) gave an algorithm for p = q = 2 for C = 1+ε with O((k/ε)loglog(n/k)) measurements
and O(log∗(k)loglog(n)) rounds of adaptivity. We first improve their bounds, obtaining a scheme
with O(k · loglog(n/k) + (k/ε) · loglog(1/ε)) measurements and O(log∗(k)loglog(n)) rounds, as
well as a scheme with O((k/ε) · loglog(n log(n/k))) measurements and an optimal O(loglog(n))
rounds. We then provide novel adaptive compressed sensing schemes with improved bounds for
(p, p) for every 0 < p < 2. We show that the improvement from O(k log(n/k)) measurements to
O(k log log(n/k)) measurements in the adaptive setting can persist with a better ε-dependence
for other values of p and q. For example, when (p, q) = (1, 1), we obtain O(k√

ε
· log logn log3(1

ε))
measurements. We obtain nearly matching lower bounds, showing our algorithms are close to
optimal. Along the way, we also obtain the first nearly-optimal bounds for (p, p) schemes for
every 0 < p < 2 even in the non-adaptive setting.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Compressed Sensing, Adaptivity, High-Dimensional Vectors

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.90

Related Version A full version of the paper is available at https://arxiv.org/pdf/1804.09673.
pdf.

Funding This work was partially supported by NSF grant IIS-144741.

EA
T

C
S

© Vasileios Nakos, Xiaofei Shi, David P. Woodruff, and Hongyang Zhang;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 90; pp. 90:1–90:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vasileiosnakos@g.harvard.edu
mailto:xiaofeis@andrew.cmu.edu
mailto:dwoodruf@cs.cmu.edu
mailto:hongyanz@cs.cmu.edu
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.90
https://arxiv.org/pdf/1804.09673.pdf
https://arxiv.org/pdf/1804.09673.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

90:2 Improved Algorithms for Adaptive Compressed Sensing

1 Introduction

Compressed sensing, also known as sparse recovery, is a central object of study in data
stream algorithms, with applications to monitoring network traffic [7], analysis of genetic
data [19, 12], and many other domains [16]. The problem can be stated as recovering an
underlying signal x ∈ Rn from measurements A1 · x, ..., Am · x with the C-approximate `p/`q
recovery guarantee being

‖x− x̂‖p ≤ C min
k-sparse x′

‖x− x′‖q, (1)

where the Ai are drawn from a distribution and m� n. The focus of this work is on adaptive
compressed sensing, in which the measurements are chosen in rounds, and the choice of
measurement in each round depends on the outcome of the measurements in previous rounds.

Adaptive compressed sensing has been studied in a number of different works [11, 4, 8, 9,
14, 1, 10, 18] in theoretical computer science, machine learning, image processing, and many
other domains [10, 18, 2]. In theoretical computer science and machine learning, adaptive
compressed sensing serves as an important tool to obtain sublinear algorithms for active
learning in both time and space [10, 5, 18, 2]. In image processing, the study of adaptive
compressed sensing has led to compressed acquisition of sequential images with various
applications in celestial navigation and attitude determination [6].

Despite a large amount of works on adaptive compressed sensing, the power of adaptivity
remains a long-standing open problem. Indyk, Price, and Woodruff [10] were the first to show
that without any assumptions on the signal x, one can obtain a number m of measurements
which is a log(n)/ log log(n) factor smaller than what can be achieved in the non-adaptive
setting. Specifically, for p = q = 2 and C = 1 + ε, they show that m = O(kε log log(n))
measurements suffice to achieve guarantee (1), whereas it is known that any non-adaptive
scheme requires k = Ω(kε log(nk)) measurements, provided ε >

√
k logn
n (Theorem 4.4 of [17],

see also [3]). Improving the sample complexity as much as possible is desired, as it might
correspond to, e.g., the amount of radiation a hospital patient is exposed to, or the amont of
time a patient must be present for diagnosis.

The `1/`1 problem was studied in [17], for which perhaps surprisingly, a better dependence
on ε was obtained than is possible for `2/`2 schemes. Still, the power of adaptivity for
the `1/`1 recovery problem over its non-adaptive counterpart has remained unclear. An
O(k√

ε
logn log3(1

ε)) non-adaptive bound was shown in [17], while an adaptive lower bound of
Ω(k√

ε
/ log k√

ε
) was shown in [18]. Recently several works [20, 15] have looked at other values

of p and q, even those for which 0 < p, q < 1, which do not correspond to normed spaces.
The power of adaptivity for such error measures is also unknown.

1.1 Our Results
Our work studies the problem of adaptive compressed sensing by providing affirmative
answers to the above-mentioned open questions. We improve over the best known results for
p = q = 2, and then provide novel adaptive compressed sensing guarantees for 0 < p = q < 2
for every p and q. See Table 1 for a comparison of results.

For `1/`1, we design an adaptive algorithm which requires only O(k√
ε
loglog(n) log

5
2 (1
ε))

measurements for the `1/`1 problem. More generally, we study the `p/`p problem for
0 < p < 2. One of our main theorems is the following.

I Theorem 1 (`p/`p Recovery Upper Bound). Let x ∈ Rn and 0 < p < 2. There exists a ran-
domized algorithm that performs O(k

εp/2 loglog(n) poly(log(1
ε))) adaptive linear measurements

V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang 90:3

Table 1 The sample complexity of adaptive compressed sensing. Results without any citation
given correspond to our new results.

C, Guaran-
tees

Upper Bounds Rounds Lower Bounds

1 + ε, `1/`1 O(k√
ε
loglog(n) log 5

2 (1
ε
)) O(loglog(n)) Ω(k√

ε log(k/
√
ε))) [18]

1 + ε, `p/`p O(k

εp/2 loglog(n) poly(log(1
ε
))) O(loglog(n)) Ω(k

εp/2
1

log2(k/ε))√
1
k

, `∞/`2 O(kloglog(n) + k log(k)) O(loglog(n)) -

1 + ε, `2/`2

O(k
ε
loglog(nε

k
)) [10] O(log∗(k)loglog(nε

k
)) [10]

Ω(k
ε

+ loglog(n)) [18]O(kloglog(n
k

) + k
ε
loglog(1

ε
)) O(log∗(k)loglog(n

k
))

O(k
ε
loglog(n log(nε)

k
)) O(loglog(n log(nε

k
))

on x in O(loglog(n)) rounds, and with probability 2/3, returns a vector x̂ ∈ Rn such that
‖x− x̂‖p ≤ (1 + ε)‖x−k‖p.

Theorem 1 improves the previous sample complexity upper bound for the case of C = 1+ε
and p = q = 1 from O(k√

ε
log(n) log3(1

ε)) to O(k√
ε
loglog(n) log

5
2 (1

ε)). Compared with the
non-adaptive (1 + ε)-approximate `1/`1 upper bound of O(k√

ε
log(n) log3(1

ε)), we show that
adaptivity exponentially improves the sample complexity w.r.t. the dependence on n over
non-adaptive algorithms while retaining the improved dependence on ε of non-adaptive
algorithms. Furthermore, Theorem 1 extends the working range of adaptive compressed
sensing from p = 1 to general values of p ∈ (0, 2).

We also state a complementary lower bound to formalize the hardness of the above
problem.

I Theorem 2 (`p/`p Recovery Lower Bound). Fix 0 < p < 2, any (1 + ε)-approximate `p/`p
recovery scheme with sufficiently small constant failure probability must make Ω(k

εp/2 / log2(kε))
measurements.

Theorem 2 shows that our upper bound in Theorem 1 is tight up to the log(k/ε) factor.
We also study the case when p 6= q. In particular, we focus on the case when p =∞, q = 2

and C =
√

1
k , as in the following theorem.

I Theorem 3 (`∞/`2 Recovery Upper Bound). Let x ∈ Rn. There exists a randomized
algorithm that performs O(k log(k) + kloglog(n)) linear measurements on x in O(loglog(n))
rounds, and with probability 1− 1/poly(k) returns a vector x̂ such that ‖x− x̂‖2∞ ≤ 1

k‖x−k‖
2
2,

where x−k ∈ Rn is the vector with the largest n − k coordinates (in the sense of absolute
value) being zeroed out.

We also provide an improved result for (1 + ε)-approximate `2/`2 problems.

I Theorem 4 (`2/`2 Sparse Recovery Upper Bounds). Let x ∈ Rn. There exists a randomized
algorithm that

uses O(kε loglog(1
ε) + kloglog(nk)) linear measurements on x in O(loglog(nk) · log∗(k))

rounds;
uses O(kε loglog(n log(nε)

k)) linear measurements on x in O(loglog(εn log(nk))) rounds;
and with constant probability returns a vector x̂ such that ‖x− x̂‖2 ≤ (1 + ε)‖x−k‖2.

Previously the best known tradeoff was O(kε loglog(nεk)) samples and O(log∗(k)loglog(nεk))
rounds for (1 + ε)-approximation for the `2/`2 problem [10]. Our result improves both the
sample complexity (the first result) and the number of rounds (the second result). We
summarize our results in Table 1.

ICALP 2018

90:4 Improved Algorithms for Adaptive Compressed Sensing

1.2 Our Techniques
`∞/`2 Sparse Recovery. Our `∞/`2 sparse recovery scheme hashes every i ∈ [n] to
poly(k) buckets, and then proceeds by finding all the buckets that have `2 mass at least
Ω(1√

k
‖x−Ω(k)‖2). We then find a set of buckets that contain all heavy coordinates, which are

isolated from each other due to hashing. Then, we run a 1-sparse recovery in each bucket in
parallel in order to find all the heavy coordinate. However, since we have O(k) buckets, we
cannot afford to take a union bound over all one-sparse recovery routines called. Instead, we
show that most buckets succeed and hence we can substract from x the elements returned,
and then run a standard CountSketch algorithm to recover everything else. This algorithm
obtains an optimal O(loglog(n)) number of rounds and O(k log(k) + kloglog(n)) number of
measurements, while succeeding with probability at least 1− 1/poly(k).

We proceed by showing an algorithm for `2/`2 sparse recovery with O(kε loglog(n))
measurements and O(loglog(n)) rounds. This will be important for our more general `p/`p
scheme, saving a log∗(k) factor from the number of rounds, achieving optimality with respect
to this quantity. For this scheme, we utilize the `∞/`2 scheme we just developed, observing
that for small k < O(log(n)), the measurement complexity is O(kloglog(n)). The algorithm
hashes to k/(ε log(n)) buckets, and in each bucket runs `∞/`2 with sparsity k/ε. The `∞/`2
algorithm in each bucket succeeds with probability 1 − 1/polylog(n)); this fact allows us
to argue that all but a 1/polylog(n) fraction of the buckets will succeed, and hence we can
recover all but a k/polylog(n)) fraction of the heavy coordinates. The next step is to subtract
these coordinates from our initial vector, and then run a standard `2/`2 algorithm with
decreased sparsity.

`p/`p Sparse Recovery. Our `p/`p scheme, 0 < p < 2, is based on carefully invoking several
`2/`2 schemes with different parameters. We focus our discussion on p = 1, then mention
extensions to general p. A main difficulty of adapting the `1/`1 scheme of [17] is that it
relies upon an `∞/`2 scheme, and all known schemes, including ours, have at least a k log k
dependence on the number of measurements, which is too large for our overall goal.

A key insight in [17] for `1/`1 is that since the output does not need to be exactly
k-sparse, one can compensate for mistakes on approximating the top k entries of x by
accurately outputting enough smaller entries. For example, if k = 1, consider two possible
signals x = (1, ε, . . . , ε) and x′ = (1 + ε, ε, . . . , ε), where ε occurs 1/ε times in both x and
x′. One can show, using known lower bound techniques, that distinguishing x from x′

requires Ω(1/ε) measurements. Moreover, x1 = (1, 0, . . . , 0) and x′1 = (1 + ε, 0, . . . , 0), and
any 1-sparse approximation to x or x′ must therefore distinguish x from x′, and so requires
Ω(1/ε) measurements. An important insight though, is that if one does not require the
output signal y to be 1-sparse, then one can output (1, ε, 0, . . . , 0) in both cases, without
actually distinguishing which case one is in!

As another example, suppose that x = (1, ε, . . . , ε) and x′ = (1 + εc, ε, . . . , ε) for some
0 < c < 1. In this case, one can show that one needs Ω(1/εc) measurements to distinguish x
and x′, and as before, to output an exactly 1-sparse signal providing a (1 + ε)-approximation
requires Θ̃(1/εc) measurements. In this case if one outputs a signal y with y1 = 1, one cannot
simply find a single other coordinate ε to “make up” for the poor approximation on the first
coordinate. However, if one were to output 1/ε1−c coordinates each of value ε, then the
εc “mass" lost by poorly approximating the first coordinate would be compensated for by
outputting ε · 1/ε1−c = εc mass on these remaining coordinates. It is not clear how to find
such remaining coordinates though, since they are much smaller; however, if one randomly
subsamples an εc fraction of coordinates, then roughly 1/ε1−c of the coordinates of value ε

V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang 90:5

survive and these could all be found with a number of measurements proportional to 1/ε1−c.
Balancing the two measurement complexities of 1/εc and 1/ε1−c at c = 1/2 gives roughly
the optimal 1/ε1/2 dependence on ε in the number of measurements.

To extend this to the adaptive case, a recurring theme of the above examples is that the
top k, while they need to be found, they do not need to be approximated very accurately.
Indeed, they do need to be found, if, e.g., the top k entries of x were equal to an arbitrarily
large value and the remaining entries were much smaller. We accomplish this by running an
`2/`2 scheme with parameters k′ = Θ(k) and ε′ = Θ(

√
ε), as well as an `2/`2 scheme with

parameters k′ = Θ(k/
√
ε) and ε′ = Θ(1) (up to logarithmic factors in 1/ε). Another theme is

that the mass in the smaller coordinates we find to compensate for our poor approximation
in the larger coordinates also does not need to be approximated very well, and we find this
mass by subsampling many times and running an `2/`2 scheme with parameters k′ = Θ(1)
and ε′ = Θ(1). This technique is surprisingly general, and does not require the underlying
error measure we are approximating to be a norm. It just uses scale-invariance and how its
rate of growth compares to that of the `2-norm.

`2/`2 Sparse Recovery. Our last algorithm, which concerns `2/`2 sparse recovery, achieves
O(kloglog(n) + k

ε loglog(1/ε)) measurements, showing that ε does not need to multiply
loglog(n). The key insight lies in first solving the 1-sparse recovery task with O(loglog(n) +
1
ε loglog(1/ε)) measurements, and then extending this to the general case. To achieve this, we
hash to polylog(1/ε) buckets, then solve `2/`2 with constant sparsity on a new vector, where
coordinate j equals the `2 norm of the jth bucket; this steps requires only O(1

ε loglog(1/ε))
measurements. Now, we can run standard 1-sparse recovery in each of these buckets
returned. Extending this idea to the general case follows by plugging this sub-routine in the
iterative algorithm of [10], while ensuring that sub-sampling does not increase the number of
measurements. For that we also need to sub-sample at a slower rate, slower roughly by a
factor of ε.

Notation: For a vector x ∈ Rn, we define Hk(x) to be the set of its largest k coordinates
in absolute value. For a set S, denote by xS the vector with every coordinate i /∈ S being
zeroed out. We also define x−k = x[n]\Hk(x) and Hk,ε(x) = {i ∈ [n] : |xi| ≥ ε

k‖x−k‖
2
2}, where

[n] represents the set {1, 2, ..., n}. For a set S, let |S| be the cardinality of S.
Due to space constraints, we defer the proof of Theorem 2 to the full version1.

2 Adaptive `p/`p Recovery

This section is devoted to proving Theorem 1. Our algorithm for `p/`p recovery is in
Algorithm 1.

Let f = εp/2, r = 2/(p log(1/f)) and q = max{p− 1
2 , 0} = (p− 1

2)+. We will invoke the
following `2/`2 oracle frequently throughout the paper.

I Oracle 1 (AdaptiveSparseRecovery`p/`q(x, k, ε)). The oracle is fed with (x, k, ε) as
input parameters, and outputs a set of coordinates i ∈ [n] of size O(k) which corresponds to the
support of vector x̂, where x̂ can be any vector for which ‖x−x̂‖p ≤ (1+ε) minO(k)-sparse x′ ‖x−
x′‖q.

1 see https://arxiv.org/pdf/1804.09673.pdf

ICALP 2018

90:6 Improved Algorithms for Adaptive Compressed Sensing

Algorithm 1 Adaptive `p/`p Recovery.
1. A← AdaptiveSparseRecovery`2/`2(x, 2k/f, 1/10).
2. B ← AdaptiveSparseRecovery`2/`2(x, 4k, f/r2).
3. S ← A ∪B.
4. For j = 1 : r
5. Uniformly sample the entries of x with probability 2−jf/k for k/(2f(r + 1)q) times.
6. Run the adaptive AdaptiveSparseRecovery`2/`2(x, 2, 1/(4(r + 1))

2
p) algorithm

on each of the k/(2f(r + 1)q) subsamples to obtain sets Aj,1, Aj,2, . . . , Aj,k/(2f(r+1)q).
7. Let Sj ← ∪k/(2f(r+1)q)

t=1 Aj,t \ ∪j−1
t=0St.

8. End For
9. Request the entries of x with coordinates S0, ..., Sr.
Output: x̂ = xS0∪···∪Sr .

Existing algorithms can be applied to construct Oracle 1 for the `2/`2 case, such as [10].
Without loss of generality, we assume that the coordinates of x are ranked in decreasing
value, i.e., x1 ≥ x2 ≥ · · · ≥ xn.

I Lemma 5. Suppose we subsample x with probability p and let y be the subsampled vector
formed from x. Then with failure probability e−Ω(k), ‖y−2k‖2 ≤

√
2p
∥∥x−k/p∥∥2 .

Proof. Let T be the set of coordinates in the subsample. Then E
[∣∣∣T ∩ [3k

2p

]∣∣∣] = 3k
2 . So

by the Chernoff bound, Pr
[∣∣∣T ∩ [3k

2p

]∣∣∣ > 2k
]
≤ e−Ω(k). Thus

∣∣∣T ∩ [3k
2p

]∣∣∣ ≤ 2k holds with

high probability. Let Yi = x2
i if i ∈ T Yi = 0 if i ∈ [n] \ T . Then E

[∑
i> 3k

2p
Yi

]
=

p
∥∥∥x− 3k

2p

∥∥∥2

2
≤ p

∥∥x−k/p∥∥2
2 . Notice that there are at least k

2p elements in x−k/p with absolute

value larger than
∣∣∣x 3k

2p

∣∣∣. Thus for i > 3k
2p , Yi ≤

∣∣∣x 3k
2p

∣∣∣2 ≤ 2p
k

∥∥x−k/p∥∥2
2 . Again by a Chernoff

bound, Pr
[∑

i> 3k
2p
Yi ≥ 4p

3
∥∥x−k/p∥∥2

2

]
≤ e−Ω(k). Conditioned on the latter event not happen-

ing, ‖y−2k‖22 ≤
∑
i> 3k

2p
Yi ≤ 4p

3
∥∥x−k/p∥∥2

2 ≤ 2p
∥∥x−k/p∥∥2

2 . By a union bound, with failure
probability e−Ω(k), we have ‖y−2k‖2 ≤

√
2p
∥∥x−k/p∥∥2 . J

I Lemma 6. Let x̂ be the output of the `2/`2 scheme on x with parameters (k, ε/2). Then
with small constant failure probability,

∥∥x[k]
∥∥p
p
− ‖x̂‖pp ≤ k1− p2 ε

p
2 ‖x−k‖p2 .

Proof. Notice that with small constant failure probability, the `2/`2 guarantee holds and we
have∥∥x[k]

∥∥2
2 − ‖x̂‖

2
2 = ‖x− x̂‖22 − ‖x−k‖

2
2 ≤ (1 + ε) ‖x−k‖22 − ‖x−k‖

2
2 = ε ‖x−k‖22 .

Let S ⊂ [n] be such that xS = x̂, and define y = x[k]\S , z = xS\[k]. Then if ‖y‖pp ≤
k1− p2 ε

p
2 ‖x−k‖p2 we are done. Otherwise, let 1 ≤ k′ ≤ k denote the size of [k] \ S, and define

c = ‖y‖2 /
√
k′.

∥∥x[k]
∥∥p
p
− ‖x̂‖pp = ‖y‖pp − ‖z‖

p
p ≤ k

′1− p2 ‖y‖p2 − ‖z‖
p
p =
‖y‖22
c2−p

− ‖z‖pp

≤
‖y‖22 − ‖z‖

2
2

c2−p
=
∥∥x[k]

∥∥2
2 − ‖x̂‖

2
2

c2−p
≤
ε ‖x−k‖22
c2−p

.

V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang 90:7

Since c ≥ ‖y‖p
k
′ 1
p
≥ ‖y‖p

k
1
p
≥
√

ε
k ‖x−k‖2 , we have

∥∥x[k]
∥∥p
p
−‖x̂‖pp ≤ k

2−p
2 ε1−

2−p
2 ‖x−k‖2−(2−p)

2 =

k1− p2 ε
p
2 ‖x−k‖p2 . J

I Theorem 7. Fix 0 < p < 2. For x ∈ Rn, there exists a (1+ε)-approximation algorithm that
performs O(k

εp/2 loglog(n) log
2
p+1−(p− 1

2)+
(1
ε)) adaptive linear measurements in O(loglog(n))

rounds, and with probability at least 2/3, we can find a vector x̂ ∈ Rn such that

‖x− x̂‖p ≤ (1 + ε) ‖x−k‖p . (2)

Proof. The algorithm is stated in Algorithm 1. We first consider the difference
∥∥x[k]

∥∥p
p
−

‖xS0‖
p
p.

Let i∗(0) be the smallest integer such that for any l > i∗(0), |xl| ≤ ‖x−2k/f‖2/
√
k.

Case 1. i∗(0) > 4k
Then for all k < j ≤ 4k, we have |xj | > ‖x−2k/f‖2/

√
k. Hence xS0 must contain at least 1/2

of these indices; if not, the total squared loss is at least 1/2·3k‖x−2k/f‖22/k ≥ (3/2)‖x−2k/f‖22,
a contradiction to ε′ = 1/10. It follows that ‖xS0∩{k+1,...,4k}‖pp ≥ 3

2k
[
‖x−2k/f‖2√

k

]p
=

3
2k

1− p2 ‖x−2k/f‖p2. On the other hand,
∥∥x[k]

∥∥p
p
− ‖xS0‖

p
p is at most 1.1k1− p2 ‖x−2k/f‖p2, since

by the `2/`2 guarantee

‖x[k]‖pp − ‖xS0∩[k]‖pp ≤ k1− p2 ‖x[k] − xS0∩[k]‖p2 ≤ k1− p2 ‖x− xS0‖
p
2 ≤

11
10k

1− p2 ‖x−2k/f‖p2.

It follows that

‖x[k]‖pp − ‖xS0‖pp = ‖x[k]‖pp − ‖xS0∩[k]‖pp − ‖xS0∩{k+1,...,4k}‖pp

≤ 11
10k

1− p2 ‖x−2k/f‖p2 −
3
2k

1− p2 ‖x−2k/f‖p2 ≤ 0.

Case 2. i∗(0) ≤ 4k, and
∑2k/f
j=i∗(0)+1 x

2
j ≥ 4‖x−2k/f‖22.

We claim that xS0 must contain at least a 5/8 fraction of coordinates in {i∗(0) + 1, ..., 2k/f};
if not, then the cost for missing at least a 3/8 fraction of the `2-norm of x{i∗(0)+1,...,2k/f} will
be at least (3/2)‖x−2k/f‖22, contradicting the `2/`2 guarantee. Since all coordinates xj ’s for
j > i∗(0) have value at most ‖x−2k/f‖2/

√
k, it follows that the p-norm of coordinates corres-

ponding to {i∗(0)+1, ..., 2k/f}∩S0 is at least
∥∥x{i∗(0)+1,...,2k/f}∩S0

∥∥p
p
≥ 5

2k
2−p

2
‖x−2k/f‖2

2
‖x−2k/f‖2−p

2
=

5
2k

1− p2 ‖x−2k/f‖p2. Then

‖x[k]‖pp − ‖xS0‖pp ≤
11
10k

1− p2 ‖x−2k/f‖p2 + k

(‖x−2k/f‖2√
k

)p
− ‖x{i∗(0)+1,...,2k/f}∩S0‖

p
p

≤ 21
10k

1− p2 ‖x−2k/f‖p2 −
5
2k

1− p2 ‖x−2k/f‖p2 ≤ 0.

Case 3. i∗(0) ≤ 4k, and
∑2k/f
j=i∗(0)+1 x

2
j ≤ 4‖x−2k/f‖22.

With a little abuse of notation, let xS0 denote the output of the `2/`2 with parameters
(4k, f/r2). Notice that there are at most 8k non-zero elements in xS0 , and ‖x−4k‖22 ≤
‖x−i∗(0)‖22 =

∑2k/f
j=i∗(0)+1 x

2
j + ‖x−2k/f‖22 ≤ 5‖x−2k/f‖22. By Lemma 6, we have

∥∥x[k]
∥∥p
p
−

‖xS0‖
p
p ≤

∥∥x[4k]
∥∥p
p
− ‖xS0‖

p
p ≤ (4k)1− p2 f

p
2

rp ‖x−4k‖p2 ≤ O
(1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2. According

to the above three cases, we conclude that ‖x[k]‖pp − ‖xS0‖pp ≤ O
(1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2.

Thus with failure probability at most 1/6,

‖x− x̂‖pp−‖x−k‖pp = ‖x[k]‖pp−
r∑
j=0
‖xSj‖pp ≤ O

(
1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2−

r∑
j=1

∥∥xSj∥∥pp . (3)

ICALP 2018

90:8 Improved Algorithms for Adaptive Compressed Sensing

In order to convert the first term on the right hand side of (3) to a term related to the `p
norm (which is a semi-norm if 0 < p < 1), we need the following inequalities: for every u
and s, by splitting into chunks of size s, we have

s1− p2 ‖u−2s‖p2 ≤ ‖u−s‖
p
p , and

∥∥∥u[s]∩[2s]

∥∥∥
2
≤
√
s |us| .

Define c = (r + 1)min{p,1}. This gives us that, for 0 < p < 2 1
(r+1)p k

1− p2 f
p
2
∥∥x−2k/f

∥∥p
2 ≤

k1− p2 f
p
2

c

∥∥∥∥x−2k/f1+ 2
p

∥∥∥∥p
2

+ k1− p2 f
p
2

c

∑r
j=1

∥∥∥x[2jk/f]∩[2j+1k/f]

∥∥∥p
2
≤ f

(1− p2)(1+ 2
p

)+ p
2

c

∥∥∥∥x−k/f1+ 2
p

∥∥∥∥p
p

+

1
c

∑r
j=1 k2pj/2

∣∣x2jk/f
∣∣p . Therefore,

‖x̂− x‖pp − ‖x−k‖pp ≤ O
(1
c

)
f

2
p

∥∥∥∥x−k/f1+ 2
p

∥∥∥∥p
p

+
r∑
j=1

O
(1
c

)
k2pj/2|x2jk/f |

p −
r∑
j=1

‖xSj‖
p
p

≤ O
(1
c

)
f

2
p

∥∥x−k/f∥∥pp +
r∑
j=1

O
(1
c

)
k2pj/2|x2jk/f |

p −
r∑
j=1

‖xSj‖
p
p. (4)

Let y = xT denote an independent subsample of x with probability f/(2jk), and ŷ be
the output of the `2/`2 algorithm with parameter s(2, 1/(4(r + 1))

2
p). Notice that |Sj | ≤

2k/(r + 1)f by the adaptive `2/`2 guarantee. Define Q = [2jk/f] \ (S0 ∪ · · · ∪ Sj−1). There
are at least 2jk/(2f) elements in Q, and every element in Q has absolute value at least∣∣x2jk/f

∣∣. In each subsample, notice that E[|T ∩Q|] = 1
2 . Thus with sufficiently small constant

failure probability there exists at least 1 element in y with absolute value at least |x2jk/f |.
On the other hand, by Lemma 6 and Lemma 5,∥∥y[1]

∥∥p
p
− ‖ŷ‖pp ≤

∥∥y[2]
∥∥p
p
− ‖ŷ‖pp ≤

21− p2

4(r + 1) ‖y−2‖p2 ≤
1

2(r + 1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2
, (5)

with sufficiently small constant failure probability given by the union bound. For the
k/(2f(r + 1)q) independent copies of subsamples, by a Chernoff bound, a 1/4 fraction of
them will have the largest absolute value in Q and (5) will also hold, with the overall failure
probability being e−Ω(k/(frq)). Therefore, since k/f > 2pj/2k,

∥∥xSj∥∥pp ≥ 2pj/2k
8(r + 1)q

[∣∣x2jk/f
∣∣p − 1

2(r + 1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2

]

≥ 2pj/2k
8(r + 1)q

∣∣x2jk/f
∣∣p − k1− p2 f

p
2

16(r + 1)q+1

∥∥x−2k/f
∥∥p

2 ,

and by the fact that 0 < q < p < 2,

‖x− x̂‖pp − ‖x−k‖pp ≤ O(1
rp

)k1− p2 f
p
2 ‖x−2k/f‖p2 −

r∑
j=1

∥∥xSj∥∥pp
≤
[
O
(

1
rp

)
+ r

16(r + 1)q+1

]
k1− p2 f

p
2 ‖x−2k/f‖p2 −

r∑
j=1

2pj/2k
8(r + 1)q

∣∣x2jk/f
∣∣p

≤ O
(

1
c

)
f

2
p

∥∥x−k/f∥∥pp +
[
O
(

1
c

)
+ 1

16(r + 1)q −
1

8(r + 1)q

] r∑
j=1

k2pj/2
∣∣x2jk/f

∣∣p
≤ f

2
p

∥∥x−k/f∥∥pp ≤ ε ‖x−k‖pp .
The total number of measurements will be at most

O
(
k

f
loglog(n)+4kr2

f
loglog(n)+ kr

2frq r
2
p loglog(n)

)
= O

(
k

ε
p
2

loglog(n) log
2
p

+1−(p− 1
2)+
(1
ε

))
,

V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang 90:9

while the total failure probability given by the union bound is 1/6 + e−Ω(k/(frq)) < 1/3,
which completes the proof. J

3 `∞/`2 Adaptive Sparse Recovery

In this section, we will prove Theorem 3. Our algorithm first approximates ‖x−k‖2. The
goal is to compute a value V which is not much smaller than 1

k‖x−k‖
2
2, and also at least

Ω(1
k)‖x−Ω(k)‖22. This value will be used to filter out coordinates that are not large enough,

while ensuring that heavy coordinates are included. We need the following lemma, which for
example can be found in Section 4 of [13].

I Lemma 8. Using log(1/δ) non-adaptive measurements we can find with probability 1− δ a
value V such that 1

C1k
‖x−C2k‖22 ≤ V ≤ 1

k‖x−k‖
2
2, where C1, C2 are absolute constants larger

than 1.

We use the aforementioned lemma with Θ(log k) measuremenents to obtain such a value
V with probability 1−1/poly(k). Now let c be an absolute constant and let g : [n]→ [kc] be a
random hash function. Then, with probability at least 1− 1

poly(k) we have that for every i, j ∈
Hk(x), g(i) 6= g(j). By running PartitionCountSketch (x, 2C1k, {g−1(1), g−1(2), . . . ,
g−1(kc)}, we get back an estimate wj for every j ∈ [kc]; here C1 is an absolute constant.
Let γ′ be an absolute constant to be chosen later. We set S = {j ∈ [kc] : w2

j ≥ γ′V } and
T =

⋃
j∈S g

−1(j). We prove the following lemma.

I Lemma 9. Let C ′ be an absolute constant. With probability at least 1 − 1/poly(k) the
following holds.
1. |S| = O(k).
2. Every j ∈ [kc] such that there exists i ∈ Hk(x) ∩ g−1(j), will be present in S.
3. For every j ∈ S, there exists exactly one coordinate i ∈ g−1(j) with x2

i ≥ 1
C′k‖x−C2k‖22.

4. For every j ∈ S, ‖xg−1(j)\Hk(x)‖22 ≤ 1
k2 ‖x−k‖22.

Proof. Let C0 be an absolute constant larger than 1. Note that with probability 1−C2
0 ·k6−c,

all i ∈ HC0k3(x) (and, hence, also in HC0k3,1/k3(x)) are isolated under g. Fix j ∈ [kc] and,
for i ∈ [n], define the random variable Yi = 1g(xi)=jx2

i . Now observe that

E

 ∑
i∈g−1(j)\HC0k3,1/k3 (x)

Yi

 = 1
kc
‖x−C0k3‖22.

Applying Bernstein’s inequality to the variables Yi with

K = 1
C0k3 ‖x−C0k3‖22, and σ2 <

1
kc+3 ‖x−C0k3‖42,

we have that

Pr

 ∑
i∈g−1(j)\HC0k3,1/k3 (x)

x2
i ≥ 1/k2‖x−C0k2‖22

 ≤ e−k,
where c is an absolute constant. This allows us to conclude that the above statement holds
for all different kc possible values j, by a union-bound. We now prove the bullets one by
one. We remind the reader that PartitionCountSketch aproximates the value of every
‖xg−1(j)‖22 with a multiplicate error in [1− γ, 1 + γ] and additive error 1

C0k
‖x−k‖22.

ICALP 2018

90:10 Improved Algorithms for Adaptive Compressed Sensing

1. Since there are at most 1
γ′(1+γ)C2k+C2k indices j with (1 + γ)‖xg−1(j)‖22 ≥

γ′

k ‖x−k‖
2
2 ≥

γ′V , the algorithm can output at most O(k) indices.
2. The estimate for such a j will be at least (1 − γ) 1

k‖x−k‖
2
2 − 1

2C1k
‖x−C2k‖22 ≥ γ′V , for

some suitable choice of γ′. This implies that j will be included in S.
3. Because of the guarantee for V and the guarantee of PartitionCountSketch, we have

that all j that are in S satisfy (1 + γ)‖xg−1(j)‖22 + 1
k‖x−2C1k‖22 ≥

γ′

k ‖x−C2k‖22, and since

∑
i∈g−1(j)\HC0k3 (x)

x2
i ≤

1
k2 ‖x−k‖

2
2,

this implies that there exists i ∈ HC0k3(x) ∩ g−1(j). But since all i ∈ HC0k3(x) are
perfectly hashed under g, this implies that this i should satisfy x2

i ≥ 1
C′k‖x−C2k‖22, from

which the claim follows.
4. Because elements in HC0k3(x) are perfectly hashed, we have that

‖xg−1(j)\Hk(x)‖22 = ‖xg−1(j)\HC0k3 (x)‖22 ≤
1
k2 ‖x−k‖

2
2

for C0 large enough. J

Given S, we proceed in the following way. For every j ∈ S, we run the algorithm
guaranteed by Lemma 15 from the full version 2 to obtain an index ij , using O(kloglogn)
measurements. Then we observe directly xij using another O(k) measurements, and form
vector z = x− x{ij}j∈S . We need the following lemma.

I Lemma 10. With probability 1− 1/poly(k), |Hk(x) \ {ij}j∈S | ≤ k
log2 n

.

Proof. Let us consider the calls to the 1-sparse recovery routine in j for which there
exists i ∈ Hk(x) ∩ g−1(j). Since the 1-sparse recovery routine succeeds with probability
1− 1/poly(logn), then the probability that we have more than k

log2 n
calls that fail, is

(
k
k

log2 n

)(
1

poly(logn)

)k/ log2 n

≤ 1
poly(k) .

This gives the proof of the lemma. J

For the last step of our algorithm, we run PartitionCountSketch(zT , k/ log(n), [n])
to estimate the entries of z. We then find the coordinates with the largest 2k estimates, and
observe them directly. Since

logn
k
‖(zT)−k/ logn‖22 ≤

logn
k
· 1
k2 ‖x−k‖

2
2 = logn

k3 ‖x−k‖
2
2,

every coordinate will be estimated up to additive error logn
k3 ‖x−k‖22, which shows that every

coordinate in T ∩Hk,1/k(x) will be included in the top 2k coordinates. Putting everything
together, we obtain the desired result.

2 see https://arxiv.org/pdf/1804.09673.pdf

V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang 90:11

4 `2/`2 Adaptive Sparse Recovery in Optimal Rounds

In this section, we give an algorithm for `2/`2 compressed sensing using O(loglogn) rounds,
instead of O(log∗ k · loglogn) rounds. Specifically, we prove the first bullet of Theorem 4. We
call this algorithm AdaptiveSparseRecovery`∞/`2 .

We proceed with the design and the analysis of the algorithm. We note that for k/ε =
O(log5 n)3, `∞/`2 gives already the desired result. So, we focus on the case of k/ε = Ω(log5 n).
We pick a hash function h : [n] → [B], where B = ck/(ε logn) for some constant c large
enough. The following follows by an application of Bernstein’s Inequality and the Chernoff
Bound, similarly to `∞/`2.

I Lemma 11. With probability 1− 1/poly(n), the following holds:

∀j ∈ [B] : |Hk/ε(x) ∩ h−1(j)| ≤ logn, and

∣∣∣∣∣∣
∑

i∈h−1(j)\Hk/ε(x)

x2
i

∣∣∣∣∣∣ ≤ ε

k
‖x−k‖22.

We now run the `∞/`2 algorithm for the previous section on vectors xh−1(1), xh−1(2), . . . ,

xh−1(B) with sparsity parameter O(logn), to obtain vectors x̂1, x̂2, . . . , x̂B. The number
of rounds is O(loglog(n)), since we can run the algorithm in every bucket in parallel. By
the definition of the `∞/`2 algorithm, one can see that |supp(x̂j)| ≤ O(logn). We set
S = ∪j∈B |supp(xj)|, and observe that |S| = ck/(ε logn) · O(logn) = O(k/ε). The number of
measurements equals ck/(ε logn)·O(logn·loglog(n log(n/k))) = O((k/ε)·loglog(n log(n/k))).

I Lemma 12. With probability 1− 1/poly(n), we have that |S \Hk/ε(x)| ≤ k
ε log2 n

.

Proof. Since every call to `∞/`2 fails with probability 1/poly(logn), the probability that
we have more than a 1

logn fraction of the calls that fail is at most(
B

B/ log2 n

)(
1

logn

)B/ logn
≤ (e log2 n)logn(logn)−B/ logn ≤ 1

poly(n) .

This implies that S will contain all but at most B/ log2 n · logn = k/(ε log2 n) coordinates
i ∈ Hk(x). J

We now observe xS directly and form the vector z = x− xS , for which ‖z−k/(ε log2 n)‖2 ≤
‖x−k/ε‖2. We now run a standard `2/`2 algorithm that fails with probability 1/poly(n) to
obtain a vector ẑ that approximates z (for example PartitionCountSketch(z, k/(ε log2 n), [n])
suffices). We then output ẑ+xS , for which ‖ẑ+xS−x‖2 = ‖ẑ−z‖ ≤ (1+ε)‖z−k/(ε logn)‖2 ≤
(1 + ε)‖x−k‖2. The number of measurements of this step is O(1

ε
k

log2 n
· logn) = o(kε). The

total number of rounds is clearly O(loglog(n log(nεk))).

5 `2/`2 with Improved Dependence on ε

In this section, we prove the second part of Theorem 4. We first need an improved algorithm
for the 1-sparse recovery problem.

I Lemma 13. Let x ∈ Rn. There exists an algorithm ImprovedOneSparseRecovery,
that uses O(loglogn + 1

ε loglog(1
ε)) measurements in O(loglog(n)) rounds, and finds with

sufficiently small constant probability an O(1)-sparse vector x̂ such that ‖x̂ − x‖2 ≤ (1 +
ε)‖x−1‖2.

3 the constant 5 is arbitrary

ICALP 2018

90:12 Improved Algorithms for Adaptive Compressed Sensing

Proof. We pick a hash function h : [n] → [B], where B = d1/εhe for a sufficiently large
constant h. Observe that all elements of H√B(x) are perfectly hashed under h with constant
probability, and, ∀j ∈ [B], E

[∥∥∥xh−1(j)\H√B (x)
∥∥∥

2

]
≤ 1/B‖x−√B‖2. As in the previous

sections, invoking Bernstein’s inequality we can get that with probability 1 − 1/poly(B),
∀j ∈ [B],

∥∥∥xh−1(j)\H√B(x)‖2

∥∥∥2

2
≤ c logB

B ‖x−√B‖
2
2, where c is some absolute constant, and the

exponent in the failure probability is a function of c.
We now define the vector z ∈ RB , the j-th coordinate of which equals zj =

∑
i∈h−1(j) σi,jxi.

We shall invoke Khintchine inequality to obtain ∀j,

Pr


∣∣∣∣∣∣

∑
i∈h−1(j)\H√B(x)

σi,jxi

∣∣∣∣∣∣
2

>
c′

ε

∥∥∥xh−1(j)\H√B(x)

∥∥∥2

2

 ≤ e−Ω(1/ε2),

for some absolute constant c′. This allows us to take a union-bound over all B = d1/εhe
entries of z to conclude that there exists an absolute constant ζ such that ∀j ∈ [B],∣∣∣∑i∈h−1(j)\H√B(x) σi,jxi

∣∣∣2 ≤ c′

ε ‖xh−1(j)\H√B(x)‖22 < ζε‖x−1‖22, by setting h large enough.
Now, for every coordinate j ∈ [B] for which h−1(j) ∩H1,ε(x) = i∗ or some i∗ ∈ [n], we have

that |zj | ≥
∣∣∣∣|xi∗ | −√ c logB

B · c′ε ‖x−√B‖2
∣∣∣∣ ≥ (1− ζ)

√
ε‖x−1‖2, whereas for every j ∈ [B] such

that h−1(j)∩H1,εζ(x) = ∅ it holds that |zj | ≤ 2ζ
√
ε‖x−1‖2. We note that H1,ε(x) ⊂ H√B(x),

and hence all elements of H1,ε(x) are also perfectly hashed under h. Moreover, observe that
E‖z−1‖22 ≤ ‖x−1‖22, and hence by Markov’s inequality, we have that ‖z−1‖22 ≤ 10‖x−1‖22
holds with probability 9/10. We run the `2/`2 algorithm of Theorem 4 for vector z with
the sparsity being set to 1, and obtain vector ẑ. We then set S = supp(ẑ). We now
define w = (|z1|, |z2|, . . .), for which ‖w−1‖2 = ‖z−1‖2. Clearly, ‖z − zS‖22 ≤ ‖z − ẑ‖22 ≤
(1 + ε)‖z−1‖22 = (1 + ε)‖w−1‖22. So ‖w − wS‖22 = ‖z − zS‖22 ≤ (1 + ε)‖w−1‖22. We now prove
that

∥∥x− x∪j∈Sh−1(j)
∥∥

2 ≤ (1 +O(ε))‖x−1‖2. Let i∗ be the largest coordinate in magnitude
of x, and j∗ = h(i∗). If j∗ ∈ S, then it follows easily that ‖x − x∪j∈Sh−1(j)‖2 ≤ ‖x−1‖2.
Otherwise, since

∑
j 6=j∗ w

2
j = ‖w−1‖22, and

∑
j /∈S w

2
j ≤ (1+ε)‖w−1‖22, it must be the case that∣∣w2

j∗ − ‖wS‖22
∣∣ ≤ ε‖w−1‖22 ≤ 10ε‖x−1‖22. The above inequality, translates to

∑
i∈h−1(j∗) x

2
i ≤

|S|ζε‖x−1‖22+ζε‖x−1‖22+10ε‖x−1‖22+
∑
j∈S

∑
i∈h−1(j) x

2
j = O(ε)‖x−1‖22+

∑
j∈S

∑
i∈h−1(j) x

2
j .

This gives
∥∥x− x∪j∈Sh−1(j)

∥∥
2 =

∑
i∈h−1(j∗) x

2
i +

∑
j /∈S∪{j∗}

∑
i∈h−1(j) x

2
i ≤ O(ε)‖x−1‖22 +

O(1)ζε‖x−1‖22 +
∑
j∈S

∑
i∈h−1(j) x

2
j +

∑
j /∈S∪{j∗}

∑
i∈h−1(j) x

2
i+ ≤ (1 +O(ε))‖x−1‖22.

Given S, we run the 1-sparse recovery routine on vectors xj for j ∈ S, with a total of
O(loglogn) measurements and O(loglogn) rounds. We then output {xij}j∈S . Let ij be the
index returned for j ∈ S by the 1-sparse recovery routine. Since we have a constant number of
calls to the 1-sparse recovery routine (because S is of constant size), all our 1-sparse recovery
routines will succeed. We now have that ‖x− x∪j∈Sij‖2 ≤ ‖xS̄‖2 +

∑
j∈S ‖xh−1(j) − xij‖2 ≤

‖xS̄‖2 +
∑
j∈S(1 + ε)‖xh−1(j)\H1(x)‖1 ≤ (1 +O(ε))‖x−1‖2. Rescaling ε, we get the desired

result. J

The algorithm for general k is similar to [10], apart from the fact that we subsample at a
slower rate, and also use our new 1-sparse recovery algorithm as a building block. In the
algorithm below, Rr is the universe we are restricting our attention on at the rth round.
Moreover, J is the set of coordinates that we have detected so far. We are now ready to
prove Theorem 4.

Proof. The number of measurements is bounded in the exact same way as in Theorem 3.7
from [10].

V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang 90:13

Algorithm 2 Adaptive `2/`2 Sparse Recovery.
1. R0 ← [n].
2. x0 ← ~0.
3. δ0 ← δ/2, ε0 ← ε/e, f0 ← 1/32, k0 ← k.
4. J ← ∅.
5. For r = 0 to O(log∗ k) do
6. For t = 0 to Θ(kr log(1/(δrfr))) do
7. St ← Subsample(x− x(r), Rr, 1/(C0kr)).
8. J ← J ∪ ImprovedOneSparseRecovery((x− x(r))St).
9. End For
10. Rr+1 ← [n] \ J .
11. δr+1 ← δr/8.
12. εr+1 ← εr/2.
13. fr+1 ← 1/21/(4i+rfr).
14. kr+1 ← frkr.
15. Rr+1 ← [n] \ J .
16. End For
17. x̂← x(r+1).
18. Return x̂.

We fix a round r and i ∈ Hkr,εr (x(r)). Then the call to Subsample(Rr, 1/(C0kr)) yields

Pr
[
|Hkr,εr (x− x(r)) ∩ St| = {i}

]
≥ 1
C0kr

, E
[
‖xSt\Hkr,εi (x(r))‖22

]
= 1
C0kr

‖x−kr‖22.

Setting C0 to be large enough and combining Markov’s inequality with the guarantee of Lemma
13, we get that the probability that the call to ImprovedOneSparseRecovery(xSt) returns
i is Θ(1/kr). Because we repeat kr log(1/(frδr)), the probability that i or a set Si of size O(1)
such that ‖x{i} − xSi‖2 ≤ εi‖x−kr‖22, is not added in J is at most (1− 1/kr)kr log(1/(frδr)) =
frδr.

Given the above claim, the number of measurements is O((kloglogn+k/εloglog(1/ε) log(1/δ))
and the analysis of the iterative loop proceeds almost identically to Theorem 3.7 of [10]. J

References
1 Akram Aldroubi, Haichao Wang, and Kourosh Zarringhalam. Sequential adaptive com-

pressed sampling via Huffman codes. arXiv preprint arXiv:0810.4916, 2008.
2 Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learning

and 1-bit compressed sensing under asymmetric noise. In Annual Conference on Learning
Theory, pages 152–192, 2016.

3 Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse
recovery. In ACM-SIAM Symposium on Discrete Algorithms, pages 1190–1197, 2010.

4 Rui M. Castro, Jarvis Haupt, Robert Nowak, and Gil M. Raz. Finding needles in noisy
haystacks. In International Conference on Acoustics, Speech and Signal Processing, pages
5133–5136, 2008.

5 Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery:
optimizing time and measurements. SIAM Journal on Computing, 41(2):436–453, 2012.

6 Rishi Gupta, Piotr Indyk, Eric Price, and Yaron Rachlin. Compressive sensing with
local geometric features. International Journal of Computational Geometry & Applications,
22(04):365–390, 2012.

ICALP 2018

90:14 Improved Algorithms for Adaptive Compressed Sensing

7 Jarvis Haupt, Waheed U Bajwa, Michael Rabbat, and Robert Nowak. Compressed sensing
for networked data. IEEE Signal Processing Magazine, 25(2):92–101, 2008.

8 Jarvis Haupt, Robert Nowak, and Rui Castro. Adaptive sensing for sparse signal recovery.
In Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop,
pages 702–707, 2009.

9 Jarvis D. Haupt, Richard G. Baraniuk, Rui M. Castro, and Robert D. Nowak. Compress-
ive distilled sensing: Sparse recovery using adaptivity in compressive measurements. In
Asilomar Conference on Signals, Systems and Computers, pages 1551–1555, 2009.

10 Piotr Indyk, Eric Price, and David P. Woodruff. On the power of adaptivity in sparse
recovery. In Annual IEEE Symposium on Foundations of Computer Science, pages 285–
294, 2011.

11 Shihao Ji, Ya Xue, and Lawrence Carin. Bayesian compressive sensing. IEEE Transactions
on Signal Processing, 56(6):2346–2356, 2008.

12 Raghunandan M. Kainkaryam, Angela Bruex, Anna C. Gilbert, John Schiefelbein, and
Peter J. Woolf. poolmc: Smart pooling of mrna samples in microarray experiments. BMC
Bioinformatics, 11:299, 2010.

13 Yi Li and Vasileios Nakos. Sublinear-time algorithms for compressive phase retrieval. arXiv
preprint arXiv:1709.02917, 2017.

14 Dmitry M. Malioutov, Sujay Sanghavi, and Alan S. Willsky. Compressed sensing with
sequential observations. In International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 3357–3360, 2008.

15 Tom Morgan and Jelani Nelson. A note on reductions between compressed sensing guar-
antees. CoRR, abs/1606.00757, 2016.

16 Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Found-
ations and Trends in Theoretical Computer Science, 1(2):117–236, 2005.

17 Eric Price and David P. Woodruff. (1+eps)-approximate sparse recovery. In IEEE Sym-
posium on Foundations of Computer Science, pages 295–304, 2011.

18 Eric Price and David P. Woodruff. Lower bounds for adaptive sparse recovery. In ACM-
SIAM Symposium on Discrete Algorithms, pages 652–663, 2013.

19 Noam Shental, Amnon Amir, and Or Zuk. Rare-allele detection using compressed
se(que)nsing. CoRR, abs/0909.0400, 2009.

20 Tasuku Soma and Yuichi Yoshida. Non-convex compressed sensing with the sum-of-squares
method. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 570–579, 2016.

	Introduction
	Our Results
	Our Techniques

	Adaptive l_p/l_p Recovery
	l_infty/l_2 Adaptive Sparse Recovery
	l_2/l_2 Adaptive Sparse Recovery in Optimal Rounds
	l_2/l_2 with Improved Dependence on epsilon

