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—— Abstract

The No Low-Energy Trivial States (NLTS) conjecture of Freedman and Hastings (Quantum
Information and Computation 2014), which asserts the existence of local Hamiltonians whose low-
energy states cannot be generated by constant-depth quantum circuits, identifies a fundamental
obstacle to resolving the quantum PCP conjecture. Progress towards the NLTS conjecture was
made by Eldar and Harrow (Foundations of Computer Science 2017), who proved a closely related
theorem called No Low-Error Trivial States (NLETS). In this paper, we give a much simpler proof
of the NLETS theorem and use the same technique to establish superpolynomial circuit size lower
bounds for noisy ground states of local Hamiltonians (assuming QCMA # QMA), resolving an
open question of Eldar and Harrow. We discuss the new light our results cast on the relationship
between NLTS and NLETS.

Finally, our techniques imply the existence of approzimate quantum low-weight check (¢gLWC)
codes with linear rate, linear distance, and constant weight checks. These codes are similar to
quantum LDPC codes except (1) each particle may participate in a large number of checks, and
(2) errors only need to be corrected up to fidelity 1 — 1/poly(n). This stands in contrast to the
best-known stabilizer LDPC codes due to Freedman, Meyer, and Luo which achieve a distance
of O(v/nlogn).

The principal technique used in our results is to leverage the Feynman-Kitaev clock construc-
tion to approximately embed a subspace of states defined by a circuit as the ground space of a
local Hamiltonian.
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1 Introduction

The quantum PCP conjecture [4, 2] is a central open question in quantum complexity theory.
To understand the statement, it is helpful to review the dictionary translating between
classical constraint satisfaction problems (CSPs) and their quantum analogue, the local
Hamiltonian problem. A classical CSP on n variables corresponds to a local Hamiltonian
H =H, +---+ H,, acting on n qubits'. A solution to the CSP corresponds to an n qubit
quantum state, and the number of violated constraints corresponds to the energy (eigenvalue)
of that quantum state. The NP-hardness of SAT corresponds to the QMA-hardness of
deciding whether the H has minimum eigenvalue at most a or at least b for given a, b such
that b — a = 1/poly(n). The quantum analogue of the PCP theorem, called the qPCP
conjecture, asserts that the problem remains QMA-hard even when b —a > em = ¢||H]|.

Just as the classical PCP theorem connects coding theory to constraint satisfaction
problems, it is natural to expect any resolution of the quantum PCP conjecture to rely on —
and to reveal — deep connections between the theory of quantum error-correcting codes and
ground states (i.e. states of minimum energy) of local Hamiltonians. Examples of quantum
error-correcting codes realized as the ground spaces of local Hamiltonians already play a
central role in our understanding of the physical phenomenon known as topological order [30].
Moreover, it has been suggested that the qPCP conjecture is closely related to one of the
biggest open problems in quantum coding theory: whether quantum low density parity check
(qLDPC) codes with linear rate and linear distance exist [23, 13, 33].

The difficulty of the qPCP conjecture motivated Freedman and Hastings to formulate a
simpler goal called the No Low-Energy Trivial States (NLTS) Congjecture [22]. One way to put
one’s finger on the additional difficulty of qPCP (beyond the “standard” difficulty of proving
a classical PCP theorem) is that solutions of QMA-hard problems are expected to have high
description complexity. For example, if NP # QMA, then ground states of local Hamiltonians
do not have classically checkable polynomial-size descriptions. The NLTS conjecture isolates
this aspect of high description complexity by asserting the existence of a family of local
Hamiltonians {H ™} | where H(™ acts on n particles, such that low-energy states (of
energy less than c¢||H||) cannot be generated by quantum circuits of constant depth. A much
stronger version of the NLTS conjecture is a necessary consequence of the qPCP conjecture:
assuming QCMA # QMA,? low-energy states cannot be described even by polynomial-size
quantum circuits. However, one of the advantages of the NLTS conjecture is that it does not
involve complexity classes such as QMA, but rather focuses on the entanglement complexity
that is intrinsic to low-energy states of local Hamiltonians.

1 For normalization, we assume that the terms of a local Hamiltonian have spectral norm at most 1.

2 For precise definitions of the complexity classes QCMA and QMA, we refer the reader to [20, 29]. Roughly
speaking, QMA is the class of problems for which the solution is a quantum state that can be efficiently
checked by a quantum computer. QCMA is the class of problems where the solution is a classical string
that can be efficiently checked by a quantum computer.
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Like the qPCP conjecture, the NLTS conjecture remains unresolved. In [19], Eldar and
Harrow proposed a variant of the NLTS called No Low-Error Trivial States (NLETS), which
is itself a necessary consequence® of NLTS. The difference was that rather than considering
low-energy states of H, they considered a notion of “local corruption error”, what they call
e-error states: these are states that differ from the ground state in at most en qubits. More
precisely, o is e-error for a local Hamiltonian H if there exists a ground state p of H and a
set S of at most en qudits such that Trg(p) = Trg(c). Under this definition they were able
to establish a family of Hamiltonians for which any e-error state requires circuit depth of
Q(logn). This was welcomed as very encouraging progress towards establishing NLTS, since
NLETS could be regarded as a close proxy for NLTS, with a technical change in definition of
distance under which to examine the robustness of the ground space.

In this paper, we start by giving a simple argument for the 2(logn) circuit depth lower
bound of Eldar and Harrow; our lower bound holds even under a more general error model,
which allows any probabilistic mixture of e-error states (we call these states noisy ground
states). Moreover, we can use the same techniques to answer their open question of whether
one can obtain circuit size lower bounds on low-error states that go beyond logarithmic
depth: specifically, we show that there exists a family of local Hamiltonians whose noisy
ground states require superpolynomial-size circuits, assuming QCMA # QMA.

One way to view these results is that they provide further progress towards the NLTS
conjecture and beyond. However, it is instructive to take a step back to consider more
closely the basic difference between NLETS and NLTS. This lies in the different notion of
approximation: in NLETS, approximation corresponds to local corruptions in en sites, where
n is the total number of particles, whereas in NLTS approximation corresponds to energy at
most €||H|| (intuitively, at most € fraction of the terms of the Hamiltonian are violated). An
alternative perspective on our results is that they suggest these two notions of approximation
are quite different. This view is reinforced by the fact that our Q(logn)-circuit depth lower
bounds on noisy ground states holds for a family of 1D Hamiltonians, whereas we know

that NLTS and qPCP Hamiltonians cannot live on any constant-dimensional lattice [2].

This suggests that in the context of the qPCP and NLTS conjectures, the correct notion of
distance is given by the energy or number of violated terms of the Hamiltonian.

On the other hand, the local corruption distance as defined by Eldar and Harrow for
their NLETS result is the natural one that arises in quantum error correction: the distance
of a code is defined by the maximum number of qubits of a codeword that can be erased
while maintaining recoverability. We give a construction of a family of codes (inspired by the
construction used in our noisy ground state lower bound) that we call quantum low weight
check (gLWC) codes. The family of codes we consider are approximate error-correcting codes
in the sense of [16, 11]. They are closely related to qLDPC codes, with the difference that

they are not stabilizer codes and therefore the low weight checks are not Pauli operators.
Specifically, we give a family of approximate qLWCs with linear distance and linear rate.

Constructing qLDPC codes with similar parameters is a central open question in coding
theory, with the best-known stabilizer LDPC codes due to Freedman, Meyer, and Luo which
achieve a distance of O(y/nlogn) [23].

What is common to the above results is the technique. We start with the observation
that the complicated part of the Eldar and Harrow proof is constructing a local Hamiltonian

whose ground states share some of the properties of the cat state [B,) = (|0)*" +]1)®")/v2.

3 The local Hamiltonian family must be of bounded-degree, meaning no particle participates in more
than a constant number of Hamiltonian terms.
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To do so, they constructed a local Hamiltonian corresponding to a quantum error-correcting
code (based on the Tillich-Zemor hypergraph product construction) and showed that its
ground states have non-expansion properties similar to those of the cat state [19]. Our
starting point is the observation that the Tillich-Zemor construction is unnecessary and
that one can make the cat state approrimately a ground state of a local Hamiltonian in the
following sense: we construct a Feynman-Kitaev clock Hamiltonian corresponding to the
circuit that generates |[B,,) from [0)®".4 The ground state of this Hamiltonian is the history
state of this computation, and we directly argue that the circuit depth necessary to generate
this history state is at least (logn). This same argument even allows us to lower bound the
circuit depth of approzimate noisy ground states (i.e. states that are close in trace distance
to a noisy ground state).

The Feynman-Kitaev clock Hamiltonian plays a central role in our construction of qgLWCs,
with history states playing the role of codewords. The fact that such a construction yields an
error-correcting code flies in the face of classical intuition. After all, it is the brittleness of
the Cook-Levin tableau [15, 32] (the classical analogue of the history state) that motivates
the elaborate classical PCP constructions [7, 6, 18]. The difference is that time is in
superposition in a quantum history state. We do not yet understand the implications of this
observation. For example, is it possible that it might lead to new ways of constructing qLDPC
codes with super-efficient decoding procedures? There are precedents for such connections
between computational phenomena and codes, most notably with the PCP theorem and the
construction of locally testable and locally checkable codes.

Furthermore, while quantum error-correcting codes have typically provided a wealth of
examples of interesting local Hamiltonians, our construction of gLWCs also suggest that a
fruitful connection exists in the opposite direction: by considering techniques to construct
local Hamiltonians (such as the Feynman-Kitaev clock construction), we can construct an
interesting example of a quantum error-correcting code. We note that this reverse connection
is starting to take hold in other areas of quantum information theory and physics: see [12, 28].

2  Summary of Results

Before we present our results, we motivate our definition of noisy ground states.

2.1 Noisy ground states

The NLETS Theorem and NLTS conjecture describe different ways in which the ground
space entanglement is robust. The ground states of NLETS Hamiltonians are robust against
local corruptions in en sites, where n is the total number of particles. NLTS Hamiltonians
are robust against low-energy excitations in the sense that all states with energy at most
€|H|| retain nontrivial circuit complexity.

In this paper, we study another way that ground space entanglement can be robust. We
focus on the concept of noisy ground state, which is a generalization of low-error states: an
e-noisy ground state o of a local Hamiltonian H is a probabilistic mixture of e-error states
{o:}.

This notion of noisy ground state is naturally motivated by the following situation:
consider a ground state p of H. On each particle independently apply the following process

4 A similar construction of a clock Hamiltonian was also considered by Crosson and Bowen in the context
of idealized adiabatic algorithms [17]. The construction is inspired by techniques of [14, 10].
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M: with probability €, apply a noisy channel A/, and with probability 1 — e apply the identity
channel Z. The resulting state is

M(p) = (1= +eN)®" (p)

= 37 (1 - ISl ()
ng[n] (1)

S (- IS ()

S:15|<2en

%

where A denotes the tensor product of the map N acting on the particles indexed by S. The
last approximate equality follows from the fact that with overwhelmingly large probability,
N acts on at most 2en particles. Notice that the expression on the right hand side is (up
to normalization) a 2e-noisy ground state, because when |S| < 2en, the state N*°(p) is a
2e-error state.

This justifies the name “noisy ground state”, as the operation M is is a reasonable model
of noise that occurs in physical processes (and is frequently considered in work on quantum
fault-tolerance). Furthermore, we believe that our model arises naturally in the context of
noisy adiabatic quantum computation.

As mentioned before, noisy ground states are a generalization of low-error states but are
a special case of low-energy states: since low-error states are themselves low-energy states, a
convex combination of them is also low-energy.

We prove several results about the robustness of entanglement in noisy ground states.

2.2 Logarithmic circuit depth lower bound

First, we generalize Eldar and Harrow’s logarithmic circuit depth lower bound [19] to
encompass noisy ground states. Furthermore, we present a family of Hamiltonians that is
one-dimensional; in other words, the particles of the Hamiltonian are arranged on a line and
the Hamiltonian terms act on neighboring particles.

We call this the Logarithmic Noisy Ground States (LNGS) Theorem?®.

» Theorem 1 (Logarithmic lower bound). There exists a family of 3-local Hamiltonians {H ™}
on a line, acting on particles of dimension 3, such that for alln € N, for all 0 < e < 1/48,
0<d< % — Ge, the d-approzimate circuit depth of any e-noisy ground state o for H™ is at
least 3 log(n/2).

Here, the d-approximate circuit depth of p means the circuit depth needed to produce a
state that is d-close to p in trace distance.

Our proof of Theorem 1 is simple and self-contained. As a consequence of our simpler local
Hamiltonian construction, we obtain improved parameters over those in [19]. Furthermore, as
we will discuss below in Section 2.4, the fact that our LNGS Hamiltonian is one-dimensional
gives a strong separation between NLETS/LNGS and NLTS Hamiltonians.

2.2.1 Superpolynomial circuit size lower bound

A question that was left open by [19] is whether one can obtain circuit lower bounds on
low-error states that are better than logarithmic — say polynomial or even exponential. We
show that there exists a family of local Hamiltonians whose noisy ground states require

5 We pronounce this “Longs.”
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superpolynomial® size circuits, assuming QCMA # QMA. Since low-error states are noisy
ground states, this provides an answer to Eldar and Harrow’s open question.
We call this the Superpolynomial Noisy Ground States (SNGS) Theorem” .

» Theorem 2 (Superpolynomial Noisy Ground States (SNGS)). If QCMA # QMA, then there
exists q,e€ > 0 and a family of 7-local Hamiltonians {H(")} acting on dimension-q qudits such
that for all 0 < § < 1/5, the d-approximate circuit complexity of any family {c,} of e-noisy
ground states for {H™} grows faster than any polynomial in n.

We call such a family {H™} SNGS Hamiltonians. The following is a proof sketch. Let
L = (Lyes, Lno) be the QMA-complete language consisting of descriptions of polynomial-size
verifier circuits acting on a witness state and ancilla qubits. We convert each circuit C € L,
into a circuit C’ where C’ applies in order: (a) a unitary V to encode the state in an
error-correcting code®, (b) a collection of identity gates, (c) the unitary V1 to decode the
state, and (d) the gate circuit C. The construction maintains that the circuits C’ and C' are
equivalent. We then generate the Feynman-Kitaev clock Hamiltonian for C’. Let Hc be this
Hamiltonian. The family of SNGS Hamiltonians is precisely {H¢ : C' € Lyes}.

In order to prove that all noisy ground states of this Hamiltonian must have superpoly-
nomial circuit size, we show that if there was a noisy ground state with a polynomial-size
generating circuit, then the description of the generating circuit would suffice as a classical
witness for the original QMA-complete problem. In the yes case, the construction of C’ from
C enforces that tracing out the time register of the noisy ground state will yield a state
close to a convex combination of {Enc(|¢;,0))} where Enc(-) is the encoding function for
the error-correcting code and {|¢;)}, a collection of accepting witness. Therefore, given the
description of the generating circuit for the noisy ground state, we can generate the noisy
ground state and decode the original witness state. It suffices then to check the witness by
running the original circuit C'. The no case follows easily from the definition of L,,. This
proves that L € QCMA, proving QCMA = QMA, contradicting the original assumption.

2.2.2 Semi-explicit SNGS Hamiltonians via oracle separations

It is an open question in quantum complexity theory of whether QCMA is equal to QMA.
Aaronson and Kuperberg gave the first complexity-theoretic evidence that they are different
by constructing a quantum oracle © such that QCMA® C QMA® [1]. Fefferman and Kimmel
later showed that one can obtain the same oracle separation with in-place oracles O, which
are permutation matrices in the standard basis [20]. The separations of [1, 20] hold as long
as the locality of the oracles O is w(logn) (i.e. superlogarithmic in the problem size).

We show that any oracle separation between QCMA and QMA can be leveraged to obtain
a semi-explicit family of SNGS Hamiltonians:

» Theorem 3. There exists q,¢ > 0, a function k(n) = O(log' ™ n) for arbitrarily small
a > 0 and a family of k-local Hamiltonians {H(")} acting on dimension-q qudits such that
the following holds: The circuit complexity of any family {c,} of e-noisy ground states for
{H(”)} grows faster than any polynomial in n. Furthermore, there is exactly one term in
H®™ that is k(n)-local; all other terms are 7-local.

5 Here, “superpolynomial” refers to functions f(n) that grow faster than any polynomial in n.
7 We pronounce this “Songs”.
8 Such asymptotically good codes are known to exist (e.g, [8, 24]).
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Unlike Theorem 2, the superpolynomial lower bound on the circuit complexity of noisy
ground states does not require any complexity-theoretic assumption! The caveat is that
this family is only known to exist via a counting argument; there is exactly one term of the
Hamiltonian that has w(logn)-locality and does not have an explicit description. However,
however, all of other the terms of the local Hamiltonians are 7-local and have explicit
descriptions.

The essential idea is to apply the proof of Theorem 2 to the QMAZ® verifier that decides a
language L which is not in QCMA®. In both [1, 20], this verifier only makes a single call to
the oracle O. Thus there is one term in the Feynman-Kitaev clock Hamiltonian corresponding
to the propagation of that oracle call. Since we do not have an explicit description of a
separating oracle O, this Hamiltonian term is non-explicit.

2.3 Asymptotically good approximate low-weight check codes

The techniques from the previous sections also give rise to what we call approximate quantum
low-weight check (qLWC) codes. These are closely related to quantum low-density parity
check (qLDPC) codes, which are stabilizer codes where each parity check acts on a bounded
number of particles, and each particle participates in a bounded number of parity checks. It

is a long-standing open question of whether asymptotically good qLDPC codes exist (i.e.

constant locality, constant rate, and constant relative distance). The qLDPC conjecture
posits that such codes exist.

We show that if one relaxes the conditions of (a) each particle participating in a small
number of constraints, and (b) that we can exactly recover from errors, we can obtain locally
defined quantum error-correcting codes with such good parameters. First, we define our
notion of approximate qLWC codes:

» Definition 4 (Approximate qLWC code). A local Hamiltonian H = Hy + - - - + H,, acting

on n dimension-q qudits is a [[n, k, d]], approzimate quantum LWC' code with error § and

locality w iff each of the terms H; act on at most w qudits and there exists encoding and

decoding maps Enc, Dec such that

1. (V| H|¥) = 0 if and only if [U}¥| = Enc(|£)€]) for some |¢) € (C9)®*.

2. For all |¢) € (C?)®* @ R where R is some purifying register, for all completely positive
trace preserving maps £ acting on at most (d — 1)/2 qudits,

[Dec o £ o Enc(|¢)e]) — [#Xolll; < 0. (2)

Here, the maps Enc, £, and Dec do not act on register R.
The first condition of the above definition enforces that the ground space of the Hamiltonian
H of an approximate qLWC code is a ¢*-dimensional codespace; it is the exactly the image of
the encoding map Enc. The second condition corresponds to the approximate error-correcting
condition, where we only require that the decoded state is close to the original state (i.e., we
no longer insist that Dec o £ o Enc is exactly the identity channel Z). Although there are
few results on approximate quantum error-correcting codes, we do know that relaxing the
exact decoding condition yields codes with properties that cannot be achieved using exact
codes [31, 16, 11].

Our proof of Theorem 2 yields a construction of an approximate quantum LWC code
with distance Q(n).We believe this may be of independent interest.

91:7
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» Theorem 5 (Good approximate qLWC codes exist). For all error functions 6(n) there exist
a family of [[n, k, d]], approzimate quantum LWC codes with the following parameters:

Qudit dimension ¢ o(1),

Error 6 = 4(n),
Locality w = 34 2r,
Blocklength n = O(rk),
Distance d Q(n/r)

where
log (1 + 4/42
r=0<g( / )>+2. (3)
logn

Furthermore, the encoding and decoding maps for these codes are explicit and efficiently
computable.

Observe that when §(n) = 1/poly(n), the parameter r = O(1).

By comparison, the best-known qLDPC codes (of the stabilizer variety) with constant
locality have distance bounded by O(y/nlogn) [23]. Hastings constructs a qLDPC stabilizer
code with constant locality that has distance n!~¢ for any € > 0, assuming a conjecture in
high-dimensional geometry [26, 25]. Bacon, et al. were able to construct sparse subsystem
codes (a generalization of stabilizer codes) with constant locality and distance n' (1) [9]. We
note that, interestingly, the codes of [9] are constructed from fault-tolerant quantum circuits
that implement a stabilizer code — this is similar to the way we construct our approximate
qLWC codes!

2.4 Implications for NLTS, quantum PCP and quantum LDPC

Our investigation into noisy ground states and approximate low-weight check codes is
motivated by a number of important open questions in quantum information theory: NLTS,
quantum PCP, and quantum LDPC. We believe that our results help clarify the status of
these open problems, and the relationships between them.

A separation between LNGS/SNGS and NLTS Hamiltonians.

First, our logarithmic circuit-depth lower bound for noisy ground states (Theorem 1) gives a
strong separation between the notions of entanglement robustness in NLETS and NLTS: we
showed that a one-dimensional local Hamiltonian is NLETS. However, it is easy to see that
one-dimensional Hamiltonians (or any Hamiltonian on a constant-dimensional lattice) cannot
be NLTS. To see this, consider taking a n-particle ground state |¥) of a 1D Hamiltonian H;
divide up the n particles into contiguous chunks of length L. Let 0 = p1 @ p2 @ - @ py, /1,
where p; is the reduced density matrix of |¥) on the ¢’th chunk. This state o violates O(n/L)
terms of the Hamiltonian (since H is one-dimensional). Therefore, it is a e-energy state of
H for L = O(1/¢). On the other hand, o is a tensor product state that can be generated
by 20(1/€)_depth circuits, which is constant for constant e. This indicates that the form
of entanglement robustness as expressed in NLETS and in our LNGS/SNGS Hamiltonian
constructions is much weaker than the entanglement robustness required by the NLTS
conjecture and quantum PCP, where one has to look for Hamiltonians on high-dimensional
geometries.
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Quantum LDPC codes and the Quantum PCP conjecture.

Resolving the qPCP conjecture would likely involve a transformation from H to H’ that
(at the very least) has the property that exact ground states of H (or closeby states in
trace distance) can be recovered from low-energy states of H’'. It has been suggested that
such a transformation would involve some kind of gLDPC code [22, 3, 26, 19]. In fact, it is
believed that a special kind of qLDPC code, called a quantum locally testable code (¢LTC),
is necessary [3]. However, the existence of qLTCs (or even qLDPC codes) with constant
relative distance is a major open problem.

We believe our results on approximate quantum LWC codes present two take-home
messages for the qPCP and qLDPC conjectures. First, it is important that a qPCP (or
a qLTC) Hamiltonian be local, but it is not necessary that the Hamiltonian be bounded
degree (meaning that each particle only participates in a few terms). The bounded degree
condition is useful in the original context for qLDPCs, where an important motivation is to
find fast decoding algorithms. In the context of qPCP/qLTC, however, decoding efficiency is
not an immediate concern; thus resolving the qPCP conjecture need not resolve the qLDPC
conjecture.

Second, we believe this gives evidence that considering codes other than stabilizer codes —
such as approximate codes or subsystem codes — may be useful in the quest for both qPCP
and qLDPC. Most work on qLDPC codes has focused on constructing CSS and stabilizer
codes, but it may be fruitful to branch out beyond the CSS/stabilizer setting for the purposes
of understanding the possibilities (or limits) of qPCP/qLDPC. For example, our gLWC codes
are unconventional in a few ways: they are defined by non-commuting Hamiltonians, they
only admit approximate recovery, and each particle participates in a large number of checks.

2.5 Open questions

We list a few open problems.

1. Are there SNGS Hamiltonians or (approximate) qLWC codes that are geometrically local
(with respect to, say, the Euclidean metric)? Our construction of a one-dimensional NLGS
Hamiltonian uses a simplification of a technique of Aharanov et. al. [5] of converting
a quantum circuit into a two-dimensional local Hamiltonian. This technique works
because of the specific structure of the circuit generating the &) state. In general, the
transformation involves increasing the number of qudits by more than a constant factor.
If this factor is ©(n®), then the ground states are resilient to errors of size at most n!=2.

2. Is there a family of local Hamiltonians such that any superposition (not just convex com-
bination) of low-error states have large circuit complexity? This notion is a generalization
of a noisy state; such states have small quantum Hamming distance to the ground space.
This is an interesting notion in the context of quantum locally testable codes (qLTCs)
because low-energy states are equivalent to states with low quantum Hamming distance
to the codespace (see [19] for definitions of quantum Hamming distance and qLTCs).

3. Are there applications of our qLWC constructions?

4. There has been a number of recent results about approximate quantum error-correcting
codes in a variety of areas including many-body physics [12], the AdS/CFT correspond-
ence [28], and quantum resource theories [27]. Could approximate error-correcting codes
play a role in trying to resolve the qPCP and qLDPC conjectures?

5. Eldar and Harrow showed that quantum locally testable codes of the CSS type are
NLTS [19]. Can this argument be extended to general qLTCs?

91:9
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This conjecture posits that there exist a family of local Hamiltonians where states that
have non-zero energy penalty on only a small constant fraction of Hamiltonian terms
must have non-trivial circuit complexity.
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