
Fully Dynamic MIS in Uniformly Sparse Graphs
Krzysztof Onak
IBM Research, TJ Watson Research Center, Yorktown Heights, New York, USA

Baruch Schieber
IBM Research, TJ Watson Research Center, Yorktown Heights, New York, USA

Shay Solomon1

IBM Research, TJ Watson Research Center, Yorktown Heights, New York, USA

Nicole Wein2

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Abstract
We consider the problem of maintaining a maximal independent set (MIS) in a dynamic graph
subject to edge insertions and deletions. Recently, Assadi, Onak, Schieber and Solomon (STOC
2018) showed that an MIS can be maintained in sublinear (in the dynamically changing number
of edges) amortized update time. In this paper we significantly improve the update time for
uniformly sparse graphs. Specifically, for graphs with arboricity α, the amortized update time
of our algorithm is O(α2 · log2 n), where n is the number of vertices. For low arboricity graphs,
which include, for example, minor-free graphs as well as some classes of “real world” graphs, our
update time is polylogarithmic. Our update time improves the result of Assadi et al. for all
graphs with arboricity bounded by m3/8−ε, for any constant ε > 0. This covers much of the
range of possible values for arboricity, as the arboricity of a general graph cannot exceed m1/2.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation→ Graph algorithms analysis, Theory of computation→ Dynamic graph algorithms

Keywords and phrases dynamic graph algorithms, independent set, sparse graphs, graph ar-
boricity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.92

Related Version A full version of the paper is available at [23].

1 Introduction

The importance of the maximal independent set (MIS) problem is hard to overstate. In
general, MIS algorithms constitute a useful subroutine for locally breaking symmetry between
several choices. The MIS problem has intimate connections to a plethora of fundamental
combinatorial optimization problems such as maximum matching, minimum vertex cover, and
graph coloring. As a prime example, MIS is often used in the context of graph coloring, as all
vertices in an independent set can be assigned the same color. As another important example,
one can compute a large matching (approximating the maximum matching to within a factor
arbitrarily close to 1) by applying maximal independent sets of longer and longer augmenting
paths as observed by Hopcroft and Karp [11]. The seminal papers of Luby [18] and Linial [17]
discuss additional applications of MIS. A non-exhaustive list of further direct and indirect

1 Supported by the IBM Herman Goldstine Postdoctoral Fellowship.
2 Supported by an NSF Graduate Fellowship.

EA
T

C
S

© Nicole Wein and IBM Research;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 92; pp. 92:1–92:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.92
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

92:2 Fully Dynamic MIS in Uniformly Sparse Graphs

applications of MIS includes resource allocation [25], leader election [7], the construction of
network backbones [16, 12], and sublinear-time approximation algorithms [22].

In the 1980s, questions concerning the computational complexity of the MIS problem
spurred a line of research that led to the celebrated parallel algorithms of Luby [18], and
Alon, Babai, and Itai [1]. These algorithms find an MIS in O(logn) rounds without global
coordination. More recently, Fischer and Noever [8] gave an even simpler greedy algorithm
that considers vertices in random order and takes O(logn) rounds with high probability (see
also an earlier result of Blelloch, Fineman, and Shun [4]).

In this work we continue the study of the MIS problem by considering the dynamic
setting, where the underlying graph is not fixed, but rather evolves over time via edge
updates. Formally, a dynamic graph is a graph sequence G = (G0, G1, . . . , GM) on n fixed
vertices, where the initial graph is G0 = (V, ∅) and each graph Gi = (V,Ei) is obtained from
the previous graph Gi−1 in the sequence by either adding or deleting a single edge. The
basic goal in this context is to maintain an MIS in time significantly faster than it takes to
recompute it from scratch following every edge update.

In STOC’18, Assadi, Onak, Schieber, and Solomon [2] gave the first sub-linear (amortized)
update time fully dynamic algorithm for maintaining a MIS. Their amortized update time in
min{m3/4,∆}, where m is the (dynamically changing) number of edges, and ∆ is a fixed
bound on the maximum degree of the graph. For graphs of high maximum degree, the update
time of the algorithm of [2] decreases as the graph becomes sparser.

1.1 Our contribution

We focus on graphs that are “uniformly sparse” or “sparse everywhere”, as opposed to the
previous work by Assadi et al. [2] that considers unrestricted sparse graphs. We aim to
improve the update time of [2] as a function of the “uniform sparsity” of the graph. This
fundamental property of graphs has been studied in various contexts and names over the
years, one of which is via the notion of arboricity [19, 20, 24]:

I Definition 1.1. The arboricity α of a graph G = (V,E) is defined as α = maxU⊂V d |E(U)|
|U |−1 e,

where E(U) = {(u, v) ∈ E | u, v ∈ U}.

Thus a graph has bounded arboricity if every induced subgraph has bounded density. The
family of low arboricity graphs contains, among others, bounded-degree graphs, all minor-
closed graph classes (e.g., planar graphs, graphs with bounded treewidth), and randomly
generated preferential attachment graphs. Moreover, it is believed that many real-world
graphs such as the world wide web graph and social networks also have low arboricity [9].

A dynamic graph of arboricity α is a dynamic graph such that all graphs Gi have arboricity
bounded by α. We prove the following result.

I Theorem 1.2. For any dynamic n-vertex graph of arboricity α, an MIS can be maintained
deterministically in O(α2 log2 n) amortized update time.

Theorem 1.2 improves the result of Assadi et al. for all graphs with arboricity bounded
by m3/8−ε, for any constant ε > 0. This covers much of the range of possible values for
arboricity, as the arboricity of a general graph cannot exceed

√
m. Furthermore, we obtain

polylogarithmic update time for graphs of polylogarithmic arboricity; in particular, for the
family of constant arboricity graphs the update time is O(log2 n).

K. Onak, B. Schieber, S. Solomon, and N. Wein 92:3

1.2 Our and previous techniques

1.2.1 The dynamic edge orientation problem

Our algorithm utilizes two properties of arboricity α graphs: a) every subgraph contains a
vertex of degree at most 2α, and b) there exists an orientation of the edges so that every
vertex has out-degree at most α. The first property follows from Definition 1.1 and the
second property is due to an alternate definition [20].

Brodal and Fagerberg [5] initiated the study of the dynamic edge orientation problem and
gave an algorithm that maintains an O(α) out-degree orientation in amortized O(α+ logn)
time; our algorithm uses the algorithm of [5] as a black box. (Refer to [14, 10, 13, 3] for
additional results on the dynamic edge orientation problem.)

1.2.2 A comparison to Assadi et al.

As noted already by Assadi et al. [2], a central obstacle in maintaining an MIS in a dynamic
graph is the maintenance of a detailed 2-hop neighborhood of a vertex. We need this
information to update the MIS. Consider the “hard” case that an edge is added to the graph
and as a result, one of its endpoints v is removed from the MIS. In this case, to maintain the
maximality of the MIS we need to identify and add to the MIS all neighbors of v that are
not adjacent to a vertex in the MIS. This means that for each of v’s neighbors, we need to
know whether it has a neighbor the MIS (other than v). Alas, dynamically maintaining the
2-neighborhood of each vertex explicitly is prohibitive.

To overcome this hurdle, we build upon the approach of Assadi et al. [2] and maintain an
incomplete 2-hop neighborhood. Consequently, we may err by adding vertices to the MIS
even though they are adjacent to MIS vertices. To fix this, we need to remove vertices from
the MIS. The important property that we maintain, following [2], is that the number of
added vertices is significantly higher than the number of removed vertices. Like Assadi et al.,
we use a potential function defined as the number of vertices not in the MIS. To amortize the
update time, if an update takes a long time, then the size of the MIS increases substantially
as a result. On the other hand, the size of the MIS can only decrease by one in each update.
Our algorithm deviates significantly from Assadi et al. in several respects, described next.

I: An underlying bounded out-degree orientation. We apply the algorithm of [5] for
efficiently maintaining a bounded out-degree orientation. Given such an orientation, we
can maintain 2-hop neighborhoods with respect to outgoing edges explicitly, which helps
significantly in the maintenance of the MIS. More specifically, the usage of a bounded
out-degree orientation enables us to reduce the problem to a single nontrivial case.

II: An intricate “chain reaction”. To handle the nontrivial case efficiently, we develop an
intricate “chain reaction” process, initiated by adding vertices to the MIS that violate the
independence property, which then forces the removal of other vertices from the MIS, which
in turn forces the addition of other vertices, and so forth. Such a process may take a long
time. However, a novel partition of a subset of the in-neighborhood of each vertex in the MIS
into a logarithmic number of “buckets” (see below) together with a careful analysis allow for
limiting this chain reaction to a logarithmic number of phases; upper bounding the number
of phases is crucial for achieving a low update time. We note that such a careful analysis was
not required in [2], where the chain reaction was handled by a simple recursive treatment.

ICALP 2018

92:4 Fully Dynamic MIS in Uniformly Sparse Graphs

III: A precise bucketing scheme. In order to achieve a sufficient increase in the size of the
MIS, we need to carefully choose which vertices to add to the MIS so as to guarantee that
at every step of the aforementioned chain reaction, even steps far in the future, we will be
able to add enough vertices to the MIS. We achieve this by maintaining a precise bucketing
of a carefully maintained subset of the in-neighborhood of each vertex, where vertices in
larger-indexed buckets are capable of setting off longer and more fruitful chain reactions. At
the beginning of the chain reaction, we add vertices in the larger-indexed buckets to the MIS,
and gradually allow for vertices in smaller-indexed buckets to be added.

IV: A tentative set of MIS vertices. In contrast to the algorithm of Assadi et al., here
we cannot iteratively choose which vertices to add to the MIS. Instead, we need to build
a tentative set of vertices to add to the MIS, and only later prune this set to choose which
vertices to add. If we do not carefully select vertices added to the MIS, we may not increase
the size of the MIS sufficiently in order to amortize the cost of this process. To make sure
that the size of the tentative set remains sufficiently large after the pruning, we make critical
use of the first property of low arboricity graphs mentioned in Section 1.2.1. More details
can be found at the beginning of Section 4.1.

1.2.3 A comparison to other previous work
Censor-Hillel, Haramaty, and Karnin [6] consider the problem of maintaining MIS in the
dynamic distributed setting. They show that there is a randomized algorithm that requires
only a constant number of rounds in expectation to update the maintained MIS, as long
as the sequence of graph updates does not depend on the algorithm’s randomness. This
assumption is often referred to as oblivious adversary. As noted by Censor-Hillel et al., it is
unclear whether their algorithm can be implemented with low total work in the centralized
setting. This shortcoming is addressed by Assadi et al. [2] and by the current paper.

Kowalik and Kurowski [15] employ a dynamic bounded out-degree orientation to answer
shortest path queries in (unweighted) planar graphs. Specifically, given a planar graph and
a constant k, Kowalik and Kurowski maintain a data structure that can check in constant
time whether two vertices are at distance at most k and if so produce a path of such length.
This data structure is fully dynamic with polylogarithmic amortized update time. Like our
data structure, their data structure maintains information on the 2-hop neighborhoods of
the vertices, however, the nature of the 2-hop neighborhood information necessary for the
two problems is different. For answering shortest path queries, one needs to maintain the
complete 2-hop neighborhood. Whereas, to maintain an MIS, we only need to maintain
partial information about the 2-hop neighborhood, however, the information that we store
must be more detailed in the sense that for each 2-hop neighbor that we store, we need to
know which 1-hop neighbors it is adjacent to. This is necessary because when we remove a
vertex v from the MIS, we need to know which of v’s neighbors have no neighbors in the
MIS in order to know which vertices we need to add to the MIS.

1.3 Dynamic MIS vs. dynamic maximal matching
In the maximal matching problem, the goal is to compute a matching that cannot be extended
by adding another edge. The problem is equivalent to finding an MIS in the line graph of
the input graph. However, despite this very close relationship between the MIS and maximal
matching problems, (efficiently) maintaining an MIS appears to be inherently harder than
maintaining a maximal matching. As a first potential evidence, one may notice that there

K. Onak, B. Schieber, S. Solomon, and N. Wein 92:5

is a significant gap in the performance of the naive algorithms for these dynamic problems.
For the maximal matching problem, the naive algorithm works in O(∆) time. For the MIS
problem, the naive algorithm has to inspect not only neighbors of a vertex v that is being
removed from MIS, but also their neighbors (i.e. its 2-hop neighborhood) in order to find
out which neighbors need to be added to the MIS; as a result the update time is O(m).
Furthermore, the worst-case number of MIS changes (by any algorithm) may be as high as
Ω(∆) [6, 2], whereas the worst-case number of changes to the maximal matching maintained
by the naive algorithm is O(1). Also, the available body of work on the dynamic MIS problem
is significantly sparser than for the dynamic maximal matching problem.

It is therefore plausible that it may be hard to obtain, for MIS, a bound better than
the best bounds known for the dynamic maximal matching problem. In particular, the
state-of-the-art dynamic deterministic algorithm for maintaining a maximal matching has an
update time of O(

√
m) [21], even in the amortized sense. Hence, in order to obtain update

time bounds sub-polynomial in m, one may have to exploit the structure of the graph, and
bounded arboricity graphs are a natural candidate. A maximal matching can be maintained
in graphs of arboricity bounded by α with amortized update time O(α+

√
α lgn) [21, 10]; as

long as the arboricity is polylogarithmic in n, the amortized update time for maintaining a
maximal matching is polylogarithmic. In this work we show that essentially the same picture
applies to the seemingly harder problem of dynamic MIS.

2 Algorithm overview

Using a bounded out-degree orientation of the edges, a very simple algorithm suffices to
handle edge updates that fall into certain cases. The nontrivial case occurs when we remove
a vertex v from the MIS and need to determine which vertices in v’s in-neighborhood have
no neighbors in the MIS, and thus need to be added to the MIS. The in-neighborhood of v
could be very large and it would be costly to spend even constant time per in-neighbor of v.
Furthermore, it would be costly to maintain a data structure that stores for each vertex in
the MIS which of its in-neighbors have no other neighbors in the MIS. Suppose we stored
such a data structure for a vertex v. Then the removal of a vertex u from the MIS could
cause the entirety of the common neighborhood of u and v to change their status in v’s data
structure. If this common neighborhood is large, then this operation is costly.

To address this issue, our algorithm does not even attempt to determine the exact set of
neighbors of v that need to be added to the MIS. Instead, we maintain partial information
about which vertices will need to be added to the MIS. Then, when we are unsure about
whether we need to add a specific vertex to the MIS, we simply add it to the MIS and remove
its conflicting neighbors from the MIS, which triggers a chain reaction of changes to the
MIS. Despite the fact that this chain reaction may take a long time to resolve, we obtain an
amortized time bound by using a potential function: the number of vertices not in the MIS.
That is, we ensure that if we spend a lot of time processing an edge update, then the size of
the MIS increases substantially as a result.

The core of our algorithm is to carefully choose which vertices to add to the MIS at
each step of the chain reaction to ensure that the size of the MIS increases sufficiently. To
accomplish this, we store an intricate data structure for each vertex which includes a partition
of a subset of its in-neighborhood into numbered buckets. The key idea is to ensure that
whenever we remove a vertex from the MIS, it has at least one full bucket of vertices, which
we add to the MIS.

ICALP 2018

92:6 Fully Dynamic MIS in Uniformly Sparse Graphs

When we remove a vertex from the MIS whose top bucket is full of vertices, we begin the
chain reaction by adding these vertices to the MIS (and removing the conflicting vertices
from the MIS). In each subsequent step of the chain reaction, we process more vertices, and
for each processed vertex, we add to the MIS the set of vertices in its topmost full bucket.
To guarantee that every vertex that we process has at least one full bucket, we utilize an
invariant (the “Main Invariant”) which says that for all i, when we process a vertex whose
bucket i is full, then in the next iteration of the chain reaction we will only process vertices
whose bucket i−1 is full. This implies that if the number of iterations in the chain reaction is
at most the number of buckets, then we only process vertices with at least one full bucket. To
bound the number of iterations of the chain reaction, we prove that the number of processed
vertices doubles at every iteration. This way, there cannot be more than a logarithmic number
of iterations. Thus, by choosing the number of buckets to be logarithmic, we only process
vertices with at least one full bucket, which results in the desired increase in the size of the
MIS.

3 Algorithm setup

Let M be the MIS that we maintain. Our algorithm uses a dynamic edge orientation
algorithm as a black box.

For each vertex v, let N(v) denote the neighborhood of v, let N+(v) denote the out-
neighborhood of v, and let N−(v) denote the in-neighborhood of v.

3.1 The trivial cases
For certain cases of edge updates, there is a simple algorithm to update theM. Here, we
introduce this simple algorithm and then describe the case that this algorithm does not cover.

I Definition 3.1. We say that a vertex v is resolved if either v is inM or a vertex in N−(v)
is inM. Otherwise we say that v is unresolved.

The data structure is simply that each vertex v stores a partition of its in-neighborhood
into resolved vertices and unresolved vertices. To maintain this data structure, whenever a
vertex v enters or exitsM, v notifies its 2-hop out-neighborhood.

Delete(u,v):
It cannot be the case that both u and v are inM sinceM is an independent set.
If neither u nor v is inM then both must already have neighbors inM and we do
nothing.
If u ∈M and v 6∈ M, then we may need to add v toM. If v is resolved, we do not
add v toM. Otherwise, we scan N+(v) and if no vertex in N+(v) is inM, we add
v toM.

Insert(u,v):
If it is not the case that both u and v are inM, then we do nothing andM remains
maximal.
If both u and v are inM we remove v fromM. Now, some of v’s neighbors may need
to be added toM, specifically, those with no neighbors inM. For each unresolved
vertex w ∈ N+(v), we scan N+(w) and if N+(w) ∩M = ∅, then we add w toM.
For each resolved vertex w ∈ N−(v), we know not to add w toM. On the other
hand, for each unresolved vertex w ∈ N−(v), we do not know whether to add w to
M and it could be costly to scan N+(w) for all such w. This simple algorithm does
not handle the case where v has many unresolved in-neighbors.

K. Onak, B. Schieber, S. Solomon, and N. Wein 92:7

In summary, the nontrivial case occurs when we delete a vertex v from M and v has
many unresolved in-neighbors.

3.2 Data structure

As in the trivial cases, each vertex v maintains a partition of N−(v) into resolved vertices
and unresolved vertices. In addition, we further refine the set of unresolved vertices. One
important subset of the unresolved vertices in N−(v) is the active set of v, denoted Av. As
motivated in the algorithm overview, Av is partitioned into b buckets Av(1), . . . , Av(b) each
of size at most s. We will set b and s so that b = Θ(logn) and s = Θ(α).

The purpose of maintaining Av is to handle the event that v is removed fromM. When
v is removed from M, we use the partition of Av into buckets to carefully choose which
neighbors of v to add toM to begin a chain reaction of changes toM. For the rest of the
vertices in Av, we scan through them and update the data structure to reflect the fact that
v 6∈ M. This scan of Av is why it is important that each active set is small (size O(α logn)).

One important property of active sets is that each vertex is in the active set of at most
one vertex. For each vertex v, let a(v) denote the vertex whose active set contains v. Let
B(v) denote the bucket of Aa(v) that contains v.

For each vertex v the data structure maintains the following partition of N−(v):
Zv is the set of resolved vertices in N−(v).
Av (the active set) is a subset of the unresolved vertices in N−(v) partitioned into
b = Θ(logn) buckets Av(1), ..., Av(b) each of size at most s = Θ(α). Av is empty if
v 6∈ M.
Pv (the passive set) is the set of unresolved vertices in N−(v) in the active set of some
vertex other than v. Pv is partitioned into b buckets Pv(1), ..., Pv(b) such that each vertex
u ∈ Pv is in the set Pv(i) if and only if B(u) = i.
Rv (the residual set) is the set of unresolved vertices in N−(v) not in the active set of
any vertex.

We note that while Zv depends only onM and the orientation of the edges, the other
three sets depend on internal choices made by the algorithm. In particular, for each vertex v,
the algorithm picks at most one vertex a(v) for which v ∈ Aa(v) and this choice uniquely
determines for every vertex u ∈ N+(v), which set (Au, Pu, or Ru) v belongs to.

We now outline the purpose of the passive set and the residual set. Suppose a vertex v is
removed fromM. We do not need to worry about the vertices in Pv because we know that
all of these vertices are in the active set of a vertex inM and thus none of them need to
be added toM. On the other hand, we do not know whether the vertices in Rv need to be
added toM. We cannot afford to scan through them all and we cannot risk not adding them
since this might cause M to not be maximal. Thus, we add them all to M and set off a
chain reaction of changes toM. That is, even though our analysis requires that we carefully
choose which vertices of Av to add toM during the chain reaction, it suffices to simply add
every vertex in Rv toM (except for those with edges to other vertices we are adding toM).

3.3 Invariants

We maintain several invariants of the data structure. The invariant most central to the overall
argument is the Main Invariant (Invariant 6), whose purpose is outlined in the algorithm
overview. The first four invariants follow from the definitions.

ICALP 2018

92:8 Fully Dynamic MIS in Uniformly Sparse Graphs

I Invariant 1. (Resolved Invariant). For all resolved vertices v, for all u ∈ N+(v), v is in
Zu.

I Invariant 2. (Orientation Invariant). For all v, Zv ∪Av ∪ Pv ∪Rv = N−(v).

I Invariant 3. (Empty Active Set Invariant). For all v 6∈ M, Av is empty.

I Invariant 4. (Consistency Invariant).
If v is resolved, then for all vertices u ∈ N+(v), v 6∈ Au.
If v is unresolved then v is in Au for at most one vertex u ∈ N+(v).
If v is in the active set of some vertex u, then for all w ∈ N+(v) \ {u}, v is in Pw(i)
where i is such that B(v) = i.
If v is in the residual set for some vertex u, then for all w ∈ N+(v), v is in Rw.

The next invariant says that the active set of a vertex is filled from lowest bucket to
highest bucket and only then is the residual set filled.

I Definition 3.2. We say that a bucket Av(i) is full if |Av(i)| = s. We say Av is full if all b
of its buckets are full.

I Invariant 5. (Full Invariant). For all vertices v and all i < b, if Av(i) is not full then
Av(i+ 1) is empty. Also, if Av is not full then Rv is empty.

The next invariant, the Main Invariant, says that if we were to move v from Aa(v) to the
active set of a different vertex u by placing v in the lowest non-full bucket of Au, then B(v)
would not decrease.

I Invariant 6. (Main Invariant). For all v, if B(v) = i > 1 then for all u ∈ N+(v) ∩M,
Au(i− 1) is full.

4 Algorithm

The algorithm works in four phases.

1. UpdateM.
2. Update the data structure.
3. Run a black-box edge orientation algorithm.
4. Update the data structure.

The data structure is completely static during phases 1 and 3.

4.1 UpdatingM
When an edge (u, v) is deleted, we run the procedure Delete(u,v) specified in the trivial
cases section. When an edge (u, v) is inserted and it is not the case that both u and v are in
M, then we do nothing andM remains maximal. In the case that both u and v are inM,
we need to remove either u or v fromM which may trigger many changes toM.

The procedure of updatingM happens in two stages. In the first stage, we iteratively
build two sets of vertices, S+ and S−. Intuitively, S+ is a subset of vertices that we intend to
add toM and S− is the set of vertices that we intend to delete fromM. The aforementioned
chain reaction of changes toM is captured in the construction of S+ and S−. In the second
stage we make changes toM according to S+ and S−. In particular, the set of vertices that
we add toM contains a large subset of S+ as well as some vertices not in S+ and the set of
vertices that we remove fromM is a subset of S−. In accordance with our goal of increasing

K. Onak, B. Schieber, S. Solomon, and N. Wein 92:9

the size ofM substantially, we ensure that S+ is much larger than S−. The most interesting
part of updatingM is captured in the first stage. We defer the description of the second
stage to the full version [23].

Why is it important to build S+ before choosing which vertices to add toM? The answer
is that it is important that we add a large subset of S+ toM since our goal is to increase
the size ofM substantially. We find this large subset of S+ by finding a large MIS in the
graph induced by S+, which exists (and can be found in linear time) because the graph has
bounded arboricity (see the full version for details [23]). Suppose that instead of iteratively
building S+, we tried to iteratively add vertices directly to M in a greedy fashion. This
could result in only very few vertices successfully being added to M. For example, if we
begin by adding the center of a star graph toM and subsequently try to add the leaves of
the star, we will not succeed in adding any of the leaves toM. On the other hand, if we first
add the vertices of the star to S+ then we can find a large MIS in the star (the leaves) to
add it toM.

For the rest of this section we consider an edge insertion (u, v).

4.1.1 Stage 1: Constructing S+ and S−

A key property of the construction is that S+ is considerably larger than S−:

I Lemma 4.1. If |S−| > 1 then |S+| ≥ 4α|S−|.

After constructing S+ and S− we will add at least |S
+|

2α vertices to M and remove at
most |S−| vertices fromM. Thus, Lemma 4.1 implies thatM increases by Ω(|S

+|
α).

To construct S+ and S−, we define a recursive procedure Process(w) which adds at
least one full bucket of Aw to S+. A key idea in the analysis is to guarantee that for every
call to Process(w), Aw indeed has at least one full bucket.

Algorithm description

We say that a vertex w ∈ S− has been processed if Process(w) has been called and otherwise
we say that w is unprocessed. We maintain a partition of S− into the processed set and the
unprocessed set and we maintain a partition of the set of unprocessed vertices w into two
sets based on whether Aw is full or not. We also maintain a queue Q of vertices to process,
which is initially empty. Recall that (u, v) is the inserted edge and both u and v are inM.
The algorithm is as follows.

First, we add v to S−. Then, if Av is not full, we terminate the construction of S+ and
S−. Otherwise, we call Process(v).
Process(w):
1. If Aw is full, then add all vertices in Aw(b) ∪Rw to S+. If Aw is not full, then let i

be the largest full bucket of Aw and add all vertices in Aw(i) and Aw(i+ 1) to S+.
We will claim that such an i exists (Lemma 4.2).

2. For all vertices x added to S+ in this call to Process, we add N+(x) ∩M to S−.
3. If S− contains an unprocessed vertex x with full Ax, we call Process(x).

When a call to Process terminates, including the recursive calls, we check whether
Lemma 4.1 is satisfied (that is, whether |S+| ≥ 4α|S−|), and if so, we terminate.
Otherwise, if Q is not empty, we let w be the next vertex in Q and call Process(w). If
Q is empty we enqueue a new batch of vertices to Q. This batch consists of the set of
all unprocessed vertices in S−. We will claim that such vertices exist (Lemma 4.2).

ICALP 2018

92:10 Fully Dynamic MIS in Uniformly Sparse Graphs

I Remark. The reason we terminate without calling Process(v) if Av is not full (i.e. Rv is
empty) is because Rv is the only set for which we cannot afford to determine whether or not
each vertex has another neighbor inM (besides v): We know that each vertex w ∈ Zv ∪ Pv
has another neighbor inM, and the set Av is small enough to scan. For the same reason,
step 3 of Process is necessary because it ensures that for every vertex w in S−, all vertices
in Rw are in S+. If this weren’t the case and we removed a vertex w in S− from M, we
might be left in the “hard case” of needing to deal with Rw.

Lemma 4.1 follows from the algorithm specification: either the algorithm terminates
immediately with S− = {v} or the algorithm terminates according to the termination
condition, which is that Lemma 4.1 is satisfied.

Several steps in the algorithm (Step 2 of Process(w) and the last sentence of the
algorithm specification) rely on Lemma 4.2:

I Lemma 4.2.
1. If we call Process(w), then Aw has at least one full bucket.
2. Every batch of vertices that we enqueue to Q is nonempty.

Proof of Lemma 4.2

Let epoch 1 denote the period of time until the first batch of vertices has been enqueued to
Q. For all i > 1, let epoch i denote the period of time from the end of epoch i− 1 to when
the ith batch of vertices has been enqueued to Q.

To prove Lemma 4.2, we prove a collection of lemmas that together show that (i)
Lemma 4.2 holds for all calls to Process before epoch b ends (recall that b is the number of
buckets) and (ii) the algorithm terminates before the end of epoch b.

For all i, let pi and ui be the number of processed and unprocessed vertices in S−

respectively, when epoch i ends. Let S+
i and S−i be the sets S+ and S− respectively when

epoch i ends. Recall that s is the size of a full bucket. Let s = 8α and let b = log2 n+ 1.

I Lemma 4.3. For all 1 ≤ j ≤ b, every time we call Process(w) during epoch j, Aw(b−j+1)
is full.

Proof. We proceed by induction on j.
Base case. If j = 1 then the algorithm only calls Process(w) on vertices w with full Aw
and thus full Aw(b).
Inductive hypothesis. Suppose that during epoch j, all of the processed vertices have full
Aw(b− j + 1).
Inductive step. We will show that during epoch j + 1, all of the processed vertices have full
Aw(b− j). We first note that during Process(w), the algorithm only adds the vertices in
the topmost full bucket of Aw to S+. Thus, the inductive hypothesis implies that at the end
of epoch j for all vertices x ∈ S+, B(x) ≥ b− j + 1.

Then, by the Main Invariant, at the end of epoch j, for all x ∈ S+ and all y ∈ N+(x)∩M,
Ay(b−j) is full. By construction, the only vertices in S− other than v are those in N+(x)∩M
for some x ∈ S+. Thus, at the end of epoch j, for all vertices y ∈ S−, Ay(b − j) is full.
During epoch j + 1, the set of vertices that we process consists only of vertices w that are
either in S− at the end of epoch j or have full Aw. We have shown that all of these vertices
w have full Aw(b− j). J

I Lemma 4.4. For all 1 ≤ j ≤ b, |S+
j | ≥ pjs.

K. Onak, B. Schieber, S. Solomon, and N. Wein 92:11

Proof. By Lemma 4.3, for all calls to Process(w) until the end of epoch j, Aw has at least
one full bucket. During each call to Process(w), the algorithm adds at least one full bucket
(of size s) of Aw to S+. By the Consistency Invariant, (i) every vertex is in the active set of
at most one vertex and (ii) if a vertex w appears in the active set of some vertex, then w is
not in the residual set of any vertex. The only vertices added to S+ are those in some active
set or some residual set, so every vertex in some active set that is added to S+, is added at
most once. Thus, for each processed vertex, there are at least s distinct vertices in S+. J

I Lemma 4.5. For all 1 ≤ j ≤ b, pj < uj . That is, there are more unprocessed vertices than
processed vertices.

Proof. At the end of epoch j, Lemma 4.1 is not satisfied because if it were then the algorithm
would have terminated. That is, |S+

j | < 4α|S−j |. Combining this with Lemma 4.4 and the
fact that pj + uj = |S−j |, we have pjs < 4α(pj + uj). Choosing s = 8α completes the
proof. J

I Lemma 4.6. For all 1 ≤ j ≤ b, pj > 2pj−1. That is, the number of processed vertices
more than doubles during each epoch.

Proof. At the end of epoch j− 1, we add all unprocessed vertices to Q. As a result of calling
Process on each vertex in Q, the number of processed vertices increases by uj−1 by the
end of epoch j. That is, pj ≥ pj−1 + uj−1. By Lemma 4.5, pj−1 < uj−1, so pj > 2pj−1. J

We apply these lemmas to complete the proof of Lemma 4.2:
1. In epoch 1 we process at least one vertex, so p1 ≥ 1. By Lemma 4.6, pj > 2pj−1. Thus,

pj ≥ 2j−1. If j = b = log2 n+ 1, then pj > n, a contradiction. Thus, the algorithm never
reaches the end of epoch b. Then, by Lemma 4.3, every time we call Process(w), Aw
has at least one full bucket.

2. Suppose by way of contradiction that we enqueue no vertices to Q at the end of some
epoch 1 ≤ j ≤ b. Then, uj = 0. By Lemma 4.5, pj < uj , so pj < 0, a contradiction.

5 Analysis

In this section we present the most interesting part of the analysis and defer the rest of the
analysis to the full version [23]. When a vertex v is added toM, Av is empty and needs to
be populated in order to satisfy the Main Invariant. This process is the bottleneck of the
runtime and we analyze it here.

We begin by analyzing the runtime of two basic processes that happen while updating
the data structure: adding a vertex to some active set (Lemma 5.1) and removing a vertex
from some active set (Lemma 5.2).

Recall that our algorithm uses a dynamic edge orientation algorithm as a black box.
Let T be the amortized update time of this algorithm and let D be the out-degree of the
orientation. Ultimately, we will apply the algorithm of Brodal and Fagerberg [5] to get
D = O(α) and T = O(α+ logn).

I Lemma 5.1. Suppose vertex v is not in any active set. Adding v to some active set and
updating the data structure accordingly takes time O(D).

Proof. When we add a vertex v to some Au(i), for all w ∈ N+(v) this could causes a
violation to the Consistency Invariant. To remedy this, it suffices to remove v from whichever
set it was previously in with respect to w (which is not Aw) and add it to Pw(i). J

ICALP 2018

92:12 Fully Dynamic MIS in Uniformly Sparse Graphs

I Lemma 5.2. Removing a vertex v from some active set Au and updating the data structure
accordingly takes time O(D logn).

Proof. When we remove a vertex v from some Au(i), this leaves bucket Au(i) not full so
the Full Invariant might be violated. To remedy this, we move a vertex, the replacement
vertex, from a higher bucket or the residual set to Au(i). That is, the replacement vertex w is
chosen to be any arbitrary vertex from Ru ∪Au(i+ 1) ∪ · · · ∪Au(b) ∪ Pu(i+ 1) ∪ · · · ∪ Pu(b).
We can choose a vertex from this set in constant time by maintaining a list of all non-empty
Px(i) and Ax(i) for each vertex x. If w is chosen from Pu, we remove w from Aa(w) before
adding w to Au(i).

The removal of w from its previous bucket in its previous active set may leave this bucket
not full, so again the Full Invariant might be violated and again we remedy this as described
above, which sets off a chain reaction. The chain reaction terminates when either there does
not exist a viable replacement vertex or until the replacement vertex comes from the residual
set. Since the number of the bucket that we choose the replacement vertex from increases at
every step of this process, the length of this chain reaction is at most b.3

For each vertex v that we add to an active set, we have already removed v from its
previous active set, so Lemma 5.1 applies. Overall, we move at most b vertices to a new
bucket and by Lemma 5.1, for each of these b vertices we spend time O(D). Thus, the
runtime is O(bD) = O(D logn). J

I Lemma 5.3. The time to update the data structure in response to a violation of the Main
Invariant triggered the addition of a single vertex to M is O(Dα log2 n).

Proof. To satisfy the Main Invariant, we need to populate Av. We fill Av in order from
bucket 1 to bucket b. First, we add the vertices in Rv until either Av is full or Rv becomes
empty. If Rv becomes empty, then we start adding the vertices of Pv(i) in order from i = b

to i = 1; however, we only add vertex u to Av if this causes B(u) to decrease. Once we
reach a vertex u in Pv where moving u to the lowest numbered non-full bucket of Av does
not cause B(u) to decrease, then we stop populating Av. Each time we add a vertex u to
Av from Pv, we first remove u from Aa(u) and apply Lemma 5.2. Also, each time we add a
vertex to Av, we apply Lemma 5.1. We note that this method of populating Av is consistent
with the Main Invariant.

We add at most sb = O(α logn) vertices to Av and for each one we could apply Lemmas 5.2
and 5.1 in succession. Thus, the total time is O(αD log2 n). J

References

1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. doi:10.
1016/0196-6774(86)90019-2.

2 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic max-
imal independent set with sublinear update time. In Proc. 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC, 2018.

3 We note that the length of the chain reaction can be shortened by choosing the replacement vertex from
the highest possible bucket. However, we could be forced to choose from bucket i + 1 (if all buckets
higher than Au(i + 1) or Pu(i + 1) are empty).

http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1016/0196-6774(86)90019-2

K. Onak, B. Schieber, S. Solomon, and N. Wein 92:13

3 Edvin Berglin and Gerth Stølting Brodal. A simple greedy algorithm for dynamic
graph orientation. In Proc. 28th International Symposium on Algorithms and Compu-
tation, ISAAC 2017, December 9-12, 2017, Phuket, Thailand, pages 12:1–12:12, 2017.
doi:10.4230/LIPIcs.ISAAC.2017.12.

4 Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal in-
dependent set and matching are parallel on average. In Proc. 24th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2012, Pittsburgh, PA, USA, June 25-27,
2012, pages 308–317, 2012. doi:10.1145/2312005.2312058.

5 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In
Proc. 6th International Workshop on Algorithms and Data Structures WADS, pages 342–
351. Springer-Verlag, 1999.

6 Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. Optimal dynamic distributed
MIS. In Proc. ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 217–226, 2016. doi:10.1145/2933057.2933083.

7 Sebastian Daum, Seth Gilbert, Fabian Kuhn, and Calvin C. Newport. Leader election in
shared spectrum radio networks. In Proc. ACM Symposium on Principles of Distributed
Computing, PODC 2012, Funchal, Madeira, Portugal, July 16-18, 2012, pages 215–224,
2012. doi:10.1145/2332432.2332470.

8 Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy
MIS. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 2152–2160, 2018. doi:10.1137/1.
9781611975031.140.

9 Gaurav Goel and Jens Gustedt. Bounded arboricity to determine the local structure of
sparse graphs. In Proc. Graph-Theoretic Concepts in Computer Science, 32nd International
Workshop, WG, pages 159–167, 2006. doi:10.1007/11917496_15.

10 Meng He, Ganggui Tang, and Norbert Zeh. Orienting dynamic graphs, with applications
to maximal matchings and adjacency queries. In Proc. Algorithms and Computation -
25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, pages
128–140, 2014. doi:10.1007/978-3-319-13075-0_11.

11 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

12 Tomasz Jurdzinski and Dariusz R. Kowalski. Distributed backbone structure for algorithms
in the SINR model of wireless networks. In Proc. Distributed Computing - 26th International
Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012, pages 106–120, 2012. doi:
10.1007/978-3-642-33651-5_8.

13 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully
dynamic graphs with worst-case time bounds. In Proc. Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Part II, pages 532–543, 2014. doi:10.1007/978-3-662-43951-7_45.

14 Lukasz Kowalik. Adjacency queries in dynamic sparse graphs. Inf. Process. Lett.,
102(5):191–195, 2007. doi:10.1016/j.ipl.2006.12.006.

15 Lukasz Kowalik and Maciej Kurowski. Short path queries in planar graphs in constant time.
In Proc. 35th Annual ACM Symposium on Theory of Computing, STOC, pages 143–148,
2003.

16 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Initializing newly deployed
ad hoc and sensor networks. In Proc. 10th Annual International Conference on Mobile
Computing and Networking, MOBICOM 2004, Philadelphia, PA, USA, September 26 -
October 1, 2004, pages 260–274, 2004. doi:10.1145/1023720.1023746.

ICALP 2018

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.12
http://dx.doi.org/10.1145/2312005.2312058
http://dx.doi.org/10.1145/2933057.2933083
http://dx.doi.org/10.1145/2332432.2332470
http://dx.doi.org/10.1137/1.9781611975031.140
http://dx.doi.org/10.1137/1.9781611975031.140
http://dx.doi.org/10.1007/11917496_15
http://dx.doi.org/10.1007/978-3-319-13075-0_11
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1007/978-3-642-33651-5_8
http://dx.doi.org/10.1007/978-3-642-33651-5_8
http://dx.doi.org/10.1007/978-3-662-43951-7_45
http://dx.doi.org/10.1016/j.ipl.2006.12.006
http://dx.doi.org/10.1145/1023720.1023746

92:14 Fully Dynamic MIS in Uniformly Sparse Graphs

17 Nathan Linial. Distributive graph algorithms-global solutions from local data. In Proc.
28th Annual Symposium on Foundations of Computer Science, FOCS 1987, Los Angeles,
California, USA, 27-29 October 1987, pages 331–335, 1987. doi:10.1109/SFCS.1987.20.

18 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4):1036–1053, 1986. doi:10.1137/0215074.

19 Crispin St.J. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math.
Soc., 36(1):445––450, 1961.

20 Crispin St.J. Nash-Williams. Decomposition of finite graphs into forests. J. London Math.
Soc., 39(1):12, 1964.

21 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Proc. Symposium on Theory of Computing Conference, STOC 2013, Palo Alto,
CA, USA, June 1-4, 2013, pages 745–754, 2013. doi:10.1145/2488608.2488703.

22 Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via lo-
cal improvements. In Proc. 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 327–336, 2008.
doi:10.1109/FOCS.2008.81.

23 Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully dynamic mis in
uniformly sparse graphs. arXiv CoRR, 2018.

24 William T. Tutte. On the problem of decomposing a graph into n connected factors. J.
London Math. Soc., 36(1):221–230, 1961.

25 Dongxiao Yu, Yuexuan Wang, Qiang-Sheng Hua, and Francis C. M. Lau. Distributed
(∆+1)-coloring in the physical model. Theor. Comput. Sci., 553:37–56, 2014. doi:10.
1016/j.tcs.2014.05.016.

http://dx.doi.org/10.1109/SFCS.1987.20
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1145/2488608.2488703
http://dx.doi.org/10.1109/FOCS.2008.81
http://dx.doi.org/10.1016/j.tcs.2014.05.016
http://dx.doi.org/10.1016/j.tcs.2014.05.016

	Introduction
	Our contribution
	Our and previous techniques
	The dynamic edge orientation problem
	A comparison to Assadi et al.
	A comparison to other previous work

	Dynamic MIS vs. dynamic maximal matching

	Algorithm overview
	Algorithm setup
	The trivial cases
	Data structure
	Invariants

	Algorithm
	Updating M
	Stage 1: Constructing S^+ and S^-

	Analysis

