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Abstract
Osborne’s iteration is a method for balancing n × n matrices which is widely used in linear
algebra packages, as balancing preserves eigenvalues and stabilizes their numeral computation.
The iteration can be implemented in any norm over Rn, but it is normally used in the L2 norm.
The choice of norm not only affects the desired balance condition, but also defines the iterated
balancing step itself.

In this paper we focus on Osborne’s iteration in any Lp norm, where p < ∞. We design
a specific implementation of Osborne’s iteration in any Lp norm that converges to a strictly ε-
balanced matrix in Õ(ε−2n9K) iterations, whereK measures, roughly, the number of bits required
to represent the entries of the input matrix.

This is the first result that proves a variant of Osborne’s iteration in the L2 norm (or any Lp
norm, p <∞) strictly balances matrices in polynomial time. This is a substantial improvement
over our recent result (in SODA 2017) that showed weak balancing in Lp norms. Previously,
Schulman and Sinclair (STOC 2015) showed strict balancing of another variant of Osborne’s
iteration in the L∞ norm. Their result does not imply any bounds on strict balancing in other
norms.
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1 Introduction

1.1 Problem Statement and Motivation

This paper analyzes the convergence properties of Osborne’s celebrated iteration [10] for
balancing matrices. Given a norm ‖ · ‖ in Rn, an n × n matrix A is balanced if and only
if for all i, the i-th row of A and the i-th column of A have the same norm. The problem
of balancing a matrix A is to compute a diagonal matrix D such that DAD−1 is balanced.
The main motivation behind this problem is that balancing a matrix does not affect its
eigenvalues, and balancing matrices in the L2 norm increases the numerical stability of
eigenvalue computations [10, 9]. Balancing also has a positive impact on the computational
time needed for computing eigenvalues ([9, section 1.4.3]). In practice, it is sufficient to get
a good approximation to the balancing problem. For α ≥ 1, a matrix B = DAD−1 is an
α-approximation to the problem of balancing A if and only if for all i, the ratio between the
maximum and minimum of the norms of the i-th row and column is bounded by α. It is
desirable to achieve α = 1 + ε for some small ε > 0. A matrix B that satisfies this relaxed
balancing condition is also said to be strictly ε-balanced.

Osborne’s iteration attempts to compute the diagonal matrix D by repeatedly choosing
an index i and balancing the i-th row and column (this multiplies the i-th diagonal entry of D
appropriately). Osborne proposed this iteration in the L2 norm, and suggested round-robin
choice of index to balance. However, other papers consider the iteration in other norms and
propose alternative choices of index to balance [12, 15, 11]. Notice that a change of norm not
only changes the target balance condition, but also changes the iteration itself, as in each step
a row-column pair is balanced in the given norm. An implementation of Osborne’s iteration
is used in most numerical algebra packages, including MATLAB, LAPACK, and EISPACK,
and is empirically efficient (see [9, 16] for further background). The main theoretical question
about Osborne’s iteration is its rate of convergence. How many rounds of the iteration are
provably sufficient to get a strictly ε-balanced matrix?

1.2 Our Results

We consider Osborne’s iteration in Lp norms for finite p. We design a new simple choice
of the iteration (i.e., a rule to choose the next index to balance), and we prove that this
variant provides a polynomial time approximation scheme to the balancing problem. More
specifically, we show that in the L1 norm, our implementation converges to a strictly ε-
balanced matrix in O

(
ε−2n9 log(wn/ε) logw/ logn

)
iterations, where logw is a lower bound

on the number of bits required to represent the entries of A (exact definitions await Section 2).
The time complexity of these iterations is O

(
ε−2n10 log(wn/ε) logw

)
arithmetic operations

over O(n log(w/ε))-bit numbers. This result implies similar bounds for any Lp norm where p
is fixed, and in particular the important case of p = 2. This is because applying Osborne’s
iteration in the Lp norm to A = (aij)n×n is equivalent to applying the iteration in the L1
norm to (apij)n×n. Of course, the bit representation complexity of the matrix, and thus the
bound on the number of iterations, grows by a factor of p.

Our results give the first theoretical analysis that indicates that Osborne’s iteration in
the L2 norm, or any Lp norm for finite p, is indeed efficient in the worst case. This partially
resolves the question that has been open since 1960 because we actually analyze a variant
of Osborne’s iteration which is different from the original iteration in the way it picks the
next index to balance. Previously, Schulman and Sinclair [15] analyzed yet another variant
of Osborne’s iteration and answered this question only for the L∞ norm. Concerning the
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convergence rate for the Lp norms discussed here, we recently published a result [11] that
considers a much weaker notion of approximation. The previous result only shows the rate
of convergence to a matrix that is approximately balanced in an average sense. The matrix
might still have row-column pairs that are highly unbalanced. The implementations in the
common numerical linear algebra packages use as a stopping condition the strict notion of
balancing, and not this weaker notion. We discuss previous work in greater detail below.

1.3 Previous Work

Osborne [10] studied the L2 norm version of matrix balancing, proved the uniqueness of the L2
solution, designed the iterative algorithm discussed above, and proved that it converges in the
limit to a balanced matrix (without bounding the convergence rate). Parlett and Reinsch [12]
generalized Osborne’s iteration to other norms. Their implementation is the one widely used in
practice (see Chen [3, Section 3.1], also the book [13, Chapter 11] and the code in [1]). Grad [6]
proved convergence in the limit for the L1 version (again without bounding the running time),
and Hartfiel [7] showed that the L1 solution is unique. Eaves et al. [5] gave a characterization
of balanceable matrices. Kalantari et al. [8] gave an algorithm for ε-balancing a matrix in
the L1 norm. The algorithm reduces the problem to unconstrained convex optimization
and uses the ellipsoid algorithm to approximate the optimal solution. This generates a
weakly ε-balanced matrix, which satisfies the following definition. Given ε > 0, a matrix
A = (aij)n×n is weakly ε-balanced if and only if

√∑n
i=1(‖a.,i‖ − ‖ai,.‖)2 ≤ ε ·

∑
i,j |ai,j |.

Compare this with the stronger condition of being strictly ε-balanced, which we use in this
paper, and numerical linear algebra packages use as a stopping condition. This condition
requires that for every i ∈ {1, 2, . . . , n}, max{‖a.,i‖, ‖ai,.‖} ≤ (1 + ε) ·min{‖a.,i‖, ‖ai,.‖}. In
L∞, Schneider and Schneider [14] gave a polynomial time algorithm that exactly balances a
matrix. The algorithm does not use Osborne’s iteration. Its running time was improved by
Young et al. [17]. Both algorithms rely on iterating over computing a minimum mean cycle in
a weighted strongly connected digraph, then contracting the cycle. Schulman and Sinclair [15]
were the first to provide a quantitative bound on the running time of Osborne’s iteration.
They proposed a carefully designed implementation of Osborne’s iteration in the L∞ norm
that strictly ε-balances an n× n matrix A in O(n3 log(%n/ε)) iterations, where % measures
the initial L∞ imbalance of A. Their proof is an intricate case analysis. Following that work,
in [11] we showed that several implementations of Osborne’s iteration in Lp norms, including
the original implementation, converge to a weakly ε-balanced matrix in polynomial time
(which, in fact, can be either nearly linear in number of non-zero entries of matrix A or nearly
linear in 1/ε). Very recently, Cohen et al. [4] gave an interior point algorithm that weakly
ε-balances matrices in the L1 norm in time Õ(m3/2 log(1/ε)), where m is the number of
non-zero entries of A. Their results also apply to matrix scaling, a problem similar to matrix
balancing, for which Allen-Zhu et al. [2] independently gave similar results. Notice that in the
results of [4], due to the logarithmic dependence on ε one can choose ε that is exponentially
small in the input representation, and thus get an algorithm for strict balancing with better
worst case running time than our claimed analysis of Osborne’s iteration. We note, however,
that the purpose of our analysis is not to present a new algorithm for matrix balancing, but
rather to provide some worst case guarantee for the time it takes some implementation of
Osborne’s iteration to achieve strict balancing. Osborne’s iteration and strict balancing are
the heuristic and stopping condition used in practice to balance matrices. We also note that
by the lower bound proved in our previous paper [11], Osborne’s iteration does not guarantee
convergence in time polynomial in log(1/ε) (the lower bound is Ω(1/

√
ε)).

ICALP 2018
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1.4 Our Contribution
The result of [11] is derived by observing that any implementation of Osborne’s iteration
can be interpreted as an application of coordinate descent to optimize the convex function
from [8]. This is the starting point of this paper, but to make the approach guarantee strict
balancing, we need to revise substantially previous implementations using novel algorithmic
ideas. Nevertheless, the implementation itself remains a rather simple rule for choosing the
next index to balance.

The main difficulty with respect to previous work is the following. The convergence rate
of coordinate descent can be bounded effectively as long as there is a choice of coordinate (i.e.,
index) for which the drop in the objective function in a single step is non-negligible compared
with the current objective value. But if this is not the case, then one can argue only about
the balance of each index relative to the sum of norms of all rows and columns. Indices that
have relatively heavy weight (row norm + column norm) will indeed be balanced at this point.
However, light-weight indices may be highly unbalanced. The naive remedy to this problem
is to work down by scales. After balancing the matrix globally, heavy-weight indices are
balanced, approximately, so they can be left alone, deactivated. Now there are light-weight
indices that have become heavy-weight with respect to the remaining active nodes, so we can
continue balancing the active indices until the relatively heavy-weight among them become
approximately balanced, and so forth. The problem with the naive solution is that balancing
the active indices shifts the weights of both active and inactive indices, and they move out
of their initial scale. This movement need not complicate the balancing rule—we can keep
balancing far-from-balanced nodes in the current scale. However, if the scale sets of indices
keep changing, it is harder to argue that the process converges. Shifting between scales is
precisely what our algorithm and proof deal with. Light-weight indices that have become
heavy-weight are easy to handle. They can keep being active. Heavy-weight indices that have
become light-weight cannot continue to be inactive, because they are no longer guaranteed
to be approximately balanced. Thus, in order to analyze convergence effectively, we need to
bound the number (and global effect on weight) of these reactivation events.

2 Preliminaries

The input is a real square matrix A = (aij)n×n. We denote the i-th row of such a matrix by
ai,. and the i-th column by a.,i. We also use the notation [n] = {1, 2, . . . , n}. The matrix A
is balanced in the Lp norm iff ‖a.,i‖p = ‖ai,.‖p for every index i ∈ [n]. Since the condition for
being balanced depends neither on the signs of the entries of A nor on the diagonal values,
we will assume without loss of generality that A is non-negative with zeroes on the diagonal.

An invertible diagonal matrix D = diag(d1, · · · , dn) balances A in the Lp norm iff DAD−1

is balanced in the Lp norm. A matrix A is balanceable iff there exists an invertible diagonal
matrix D that balances A. Balancing a matrix A = (aij)n×n in the Lp norm is equivalent to
balancing the matrix (apij)n×n in the L1 norm. Therefore, for the rest of the paper we focus
on balancing matrices in the L1 norm.

We use amin to denote the minimum non-zero entry of A. We also define w = 1
amin
·
∑
ij aij .

I Definition 1. Given ε > 0 and an n× n matrix A, we say that the index i of A (where
i ∈ [n]) is ε-balanced iff

max {‖a.,i‖1, ‖ai,.‖1}
min {‖a.,i‖1, ‖ai,.‖1}

≤ 1 + ε.

We say that A is strictly ε-balanced iff every index i of A is ε-balanced.
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Any implementation of Osborne’s iteration can be thought of as computing vectors
x(t) ∈ Rn for t = 1, 2, . . . , where iteration t is applied to the matrix (a(t)

ij ) = DAD−1 for
D = diag(ex

(t)
1 , ex

(t)
2 , . . . , ex

(t)
n ). Thus, for all i, j, a(t)

ij = aij · ex
(t)
i
−x(t)

j . Initially, x(1) =
(0, 0, . . . , 0). A balancing step of the iteration chooses an index i, then sets x(t+1)

i =
x

(t)
i + 1

2 ·
(

ln ‖a(t)
.,i ‖1 − ln ‖a(t)

i,. ‖1

)
, and for all j 6= i, keeps x(t+1)

j = x
(t)
j . For x ∈ Rn,

we denote the sum of entries of the matrix DAD−1 for D = diag(ex1 , ex2 , . . . , exn) by
f(x) = fA(x) =

∑
ij aij · exi−xj . For any n× n non-negative matrix B = (bij), we denote by

GB the weighted directed graph with node set {1, 2, . . . , n}, arc set {(i, j) : bij > 0}, where
an arc (i, j) has weight bij . We will assume henceforth that the undirected version of GA is
connected, otherwise we can handle each connected component separately. We quote a few
useful lemmas. The references contain the proofs.

I Lemma 2 (Theorem 1 in Kalantari et al. [8]). The input matrix A is balanceable if and only
if GA is strongly connected. Moreover, DAD−1 is balanced in the L1 norm if and only if
D = diag(ex∗1 , ex∗2 , . . . , ex∗n), where x∗ = (x∗1, x∗2, . . . , x∗n) minimizes f(x) over x ∈ Rn.

Notice that f is a convex function and the gradient ∇f(x) of f at x is given by

∂f(x)
∂xi

=
n∑
j=1

aij · exi−xj −
n∑
j=1

aji · exj−xi ,

the difference between the total weight of arcs leaving node i and the total weights of arcs
going into node i in the graph of DAD−1 for D = diag(ex1 , ex2 , . . . , exn). If DAD−1 is
balanced then the arc weights aij · exi−xj form a valid circulation in the graph GA, since the
gradient has to be 0. Some properties of f are given in the following lemma.

I Lemma 3 (Lemmas 2.1 and 2.2 in Ostrovsky et al. [11]). If x′ is derived from x by balancing
index i of a matrix B = (bij)n×n, then f(x)− f(x′) = (

√
‖b.,i‖1 −

√
‖bi,.‖1)2. Also, for all

x ∈ Rn, f(x)− f(x∗) ≤ n
2 · ‖∇f(x)‖1.

We also need the following absolute bounds on the arc weights.

I Lemma 4 (Lemma 3.2 in Ostrovsky et al. [11]). Suppose that a matrix B is derived from a
matrix A through a sequence of balancing operations. Then, for every arc (i, j) of GB,(

amin∑
ij aij

)n
·
∑
ij

aij ≤ bij ≤
∑
ij

aij .

(Notice that the arcs of GB are identical to the arcs of GA.)

Finally, we prove the following global condition on indices being ε-balanced.

I Lemma 5. Consider a matrix B = DAD−1 = (bij)n×n, where D = diag(ex1 , ex2 , . . . , exn),
that was derived from A by a sequence of zero or more balancing operations. Let ε ∈ (0, 1/2],
and put ε′ = ε2

64n4 . Suppose that ‖∇fA(~0)‖1 ≤ ε′ · fA(~0). Then, for every i ∈ [n] we have the
following implication. If ‖b.,i‖1 + ‖bi,.‖1 ≥ 1

8n3 · fA(x), then index i is ε-balanced in B.

Proof. We will show the contrapositive claim that if a node is not ε-balanced then it must
have low weight (both with respect to B). Let i be an index that is not ε-balanced in B.
Without loss of generality we may assume that the in-weight is larger than the out-weight,

ICALP 2018
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so ‖b.,i‖1/‖bi,.‖1 > 1 + ε. Consider what would happen if we balance index i in B, yielding a
vector x′ that differs from x only in the i-th coordinate.

fA(x)− fA(x′) =
(√
‖b.,i‖1 −

√
‖bi,.‖1

)2

> ‖b.,i‖1 ·

(
1−

√
1

1 + ε

)2

>
ε2

16 · (‖b.,i‖1 + ‖bi,.‖1) , (1)

where the equation follows from Lemma 3 and the last inequality uses the fact that ε ≤ 1
2 .

On the other hand, we have

fA(x)− fA(x′) ≤ fA(~0)− f(x∗)

≤ n

2 · ‖∇fA(~0)‖1

≤ n

2 · ε
′ · fA(~0)

= ε2

128n3 · fA(~0). (2)

where the first inequality follows from the the fact that every balancing step decreases fA,
the second inequality follows from Lemma 3, the third inequality follows from the assumption
on fA(~0), and the last equation follows from the choice of ε′. Combining the bounds on
fA(x)− fA(x′) in Equations (1) and (2) gives

‖b.,i‖1 + ‖bi,.‖1 <
1

8n3 · fA(~0),

and this completes the proof. J

3 Strict Balancing

In this section we present a variant of Osborne’s iteration and prove that it converges
in polynomial time to a strictly ε-balanced matrix. The algorithm, a procedure named
StrictBalance, is defined in pseudocode labeled Algorithm 1 on page 7. Lemma 5 above
motivates the main idea of contracting heavy nodes in step 14 of StrictBalance.

Our main theorem is

I Theorem 6. StrictBalance(A, ε) returns a strictly ε-balanced matrix B = DAD−1 after
at most O

(
ε−2n9 log(wn/ε) logw/ logn

)
balancing steps, using O

(
ε−2n10 log(wn/ε) logw

)
arithmetic operations over O(n log(w/ε))-bit numbers.

The proof of Theorem 6 uses a few arguments, given in the following lemmas. A phase of
StrictBalance is one iteration of the outer while loop. Notice that in the beginning of this
loop the variable s indexes the phase number (i.e., s− 1 phases were completed thus far).
Also in the beginning of the inner while loop the variable t indexes the total iteration number
from all phases (i.e., t− 1 balancing operations from all phases were completed thus far).

We identify outer loop iteration s with an interval [ts, ts+1) = {ts, ts + 1, . . . , ts+1 − 1} of
the inner loop iterations executed during phase s. We denote by Bs,t the value of Bs in the
beginning of the inner while loop iteration number t (dubbed time t). If t ∈ [tj , tj+1), then
Bs,t is defined only for s ≤ j. We also use G(Bs,t) to denote the graph that is obtained by
contracting the nodes of set Bs,t in graph GA. Also f (Bs,t) is the function corresponding to
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Algorithm 1 StrictBalance(A, ε)
Input: Matrix A ∈ Rn×n, ε
Output: A strictly ε-balanced matrix

1: B1 = ∅, τ1 = 0, s = 1, ε′ = ε2/64n4, x(1) = (0, . . . , 0), t = 1

2: while Bs 6= [n] and there is i ∈ [n] that is not ε-balanced do

3: Define f (Bs) : Rn → R, f (Bs)(x) =
∑

i,j:i/∈Bs or j /∈Bs

aije
xi−xj

4: while ‖∇f
(Bs)(x(t))‖1

f (Bs)(x(t))
> ε′ do

5: Pick i = arg maxi/∈Bs

{(√
‖a(t)
.,i ‖1 −

√
‖a(t)
i,. ‖1

)2
}

6: Balance ith node: x(t+1) = x(t) + αtei, where αt = ln
√
‖a(t)
.,i ‖1/‖a(t)

i,. ‖1

7: t← t+ 1

8: if s > 1 and ‖a(t)
.,i ‖1 + ‖a(t)

i,. ‖1 < τs for some i ∈ Bs \ Bs−1 then

9: Bs = Bs \ {i /∈ Bs−1 : ‖a(t)
.,i ‖1 + ‖a(t)

i,. ‖1 < τs}

10: Redefine f (Bs) : Rn → R, f (Bs)(x) =
∑

i,j:i/∈Bs or j /∈Bs

aije
xi−xj

11: end if
12: end while

13: τs+1 = 1
4n3 f

(Bs)(x(t))

14: Bs+1 = Bs ∪
{
i : ‖a(t)

.,i ‖1 + ‖a(t)
i,. ‖1 ≥ τs+1

}
15: s← s+ 1

16: end while
17: return the resulting matrix

graph G(Bs,t) and f (Bs,t)(x(t)) denotes the sum of weights of arcs of graph G(Bs,t) at time
t. If set Bs is unchanged during an interval and there is no confusion, we may use G(Bs)

instead of G(Bs,t). Particularly we use f (Bs)(x(t)) instead of f (Bs,t)(x(t)). We refer to the
quantity ‖a(t)

.,i ‖1 + ‖a(t)
i,. ‖1 as the weight of node i at time t.

I Lemma 7. For every phase s ≥ 1, for every t ≥ ts+1, Bs,t = Bs,ts+1 .

Proof. The claim follows easily from the fact that any iteration t ≥ ts+1 belongs to a phase
s′ > s, so Bs,ts+1 ∩ (Bs′,t \ Bs′−1,t) = ∅, and by line 8 and 9 of StrictBalance none of the
nodes in Bs,ts+1 will be removed. J

I Lemma 8. For all s > 1, for all t ∈ [ts, ts+1), f (Bs,t)(x(t)) ≤ (n− |Bs,t|) · τs.

Proof. Let ts = ts,1 < ts,2 < ts,3 < · · · < ts,`s
denote the time steps before which Bs changes

during phase s. For simplicity, we abuse notation and use Bs,j instead of Bs,ts,j
. Clearly

Bs,1 ⊇ Bs,2 . . . ⊇ Bs,`s , because we only remove nodes from Bs once it is set. Fix s > 1. We
prove this lemma by induction on r ∈ {1, 2, . . . , `s}. For the basis, let r = 1. Clearly, by

ICALP 2018
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the way the algorithm sets Bs before time ts,1, all nodes with weight ≥ τs are in Bs, and
therefore every node i 6∈ Bs has weight at most τs, so the lemma follows. Now, assume that
the lemma is true for every t ≤ ts,r, we show that the lemma holds for every t ≤ ts,r+1. If
t ∈ [ts,r, ts,r+1), then Bs,t = Bs,ts,r , and we have:

f (Bs)(x(t)) ≤ f (Bs)(x(ts,r)) ≤
(
n−

∣∣Bs,ts,r

∣∣) · τs = (n− |Bs,t|) · τs.

The first inequality holds because balancing operations from time ts,r to time t only reduce
the value of f (Bs), and the second inequality holds by the induction hypothesis.

Just before iteration t = ts,r+1, the set Bs changes, and one or more nodes are removed
from it. However, every removed node has weight at most τs, and its removal does not change
the weights of the other nodes in [n] \ Bs. Therefore, if k nodes are removed from Bs,

f (Bs)(x(ts,r+1)) ≤
(
n−

∣∣Bs,ts,r

∣∣) · τs + k · τs =
(
n−

∣∣Bs,ts,r+1

∣∣) · τs.
This completes the proof. J

I Corollary 9. For all s > 1, f (Bs)(x(ts+1)) ≤ 1
4n2 · f (Bs−1)(x(ts)). If s > 2, then τs ≤ τs−1

4n2 .

Proof. Notice that

f (Bs)(x(ts+1)) ≤ n · τs = 1
4n2 · f

(Bs−1)(x(ts)),

where the inequality follows from Lemma 8, and the equation follows from line 13 of
StrictBalance. This proves the first assertion. As for the second assertion, notice that if
s > 2 then s− 1 > 1, so using line 13 of StrictBalance and Lemma 8 again,

τs = 1
4n3 · f

(Bs−1)(x(ts)) ≤ 1
4n3 · nτs−1 = 1

4n2 · τs−1,

as stipulated. J

I Lemma 10. For every phase s > 1, for every t ≥ ts, all the nodes in Bs,t have weight
≥ τs/2 and are ε-balanced at time t.

Proof. Fix s > 1 and let i ∈ Bs,t. Without loss of generality i 6∈ Bs−1,t, otherwise we can
replace s with s− 1. (Recall that B1 = ∅ at all times.) Also note that it must be the case
that i ∈ Bs,ts , because Bs does not accumulate additional nodes after being created. If
t ∈ [ts, ts+1], then lines 13-14 and 8-9 of StrictBalance guarantee that if i ∈ Bs,t \ Bs−1,t,
then its weight at time t is at least τs.

Otherwise, consider t > ts+1 and let s′ > s be the phase containing t. Consider a phase
j > s. By Lemma 8 the total weight of f (Bj) during phase j is at most nτj , and f (Bj) never
drops below 0. So, the total weight that a node i ∈ Bj can lose (which is at most the total
weight that f (Bj) can lose) is at most nτj . By Corollary 9, for every j > s, τj+1 ≤ τj

4n2 . Now,
suppose that t is an iteration in phase s′ > s. Then, the weight of i at time t is at least

τs −
s′∑

j=s+1
nτj ≥ τs ·

1− n ·
s′−s∑
k=1

(2n)−2k

 ≥ τs
2 .

Thus we have established that at any time t ≥ ts, if i ∈ Bs,t then its weight is at least
τs

2 = 1
8n3 f

(Bs−1)(x(ts)). By line 4 of StrictBalance, ‖∇f (Bs−1,ts )(x(ts))‖1 ≤ ε′ ·f (Bs−1,ts )(x(ts)).
By Lemma 7, Bs−1 does not change in the interval [ts, t]. Therefore, we conclude from
Lemma 5 that i is ε-balanced at time t. J
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I Lemma 11. Suppose that t < t′ satisfies [t, t′) ⊆ [ts, ts+1), and furthermore, during the
iterations in the interval [t, t′) the set Bs does not change (it could change after balancing
step t′ − 1). Then, the length of the interval

t′ − t = O
(
ε−2n7 log(wn/ε)

)
.

Proof. Rename the nodes so that Bs,t = Bs,t′−1 = {p, p+ 1, . . . , n}. The assumption that Bs
does not change during the interval [t, t′) means that the weights of all the nodes p, p+1, . . . , n
remain at least τs for the duration of this interval. During the interval [t, t′), the graph G(Bs)

(which remains fixed) is obtained by contracting the nodes p, p+ 1, . . . , n in GA. So G(Bs)

has p nodes 1, 2, . . . , p− 1, p, where the last node p is the contracted node. In each iteration
in the interval [t, t′), one of the nodes 1, 2, . . . , p− 1 is balanced. Consider some time step
t′′ ∈ [t, t′), and let Ii and Oi, respectively, denote the current sums of weights of the arcs
of G(Bs) into and out of node i, respectively. Let j ∈ [p − 1] be the node that maximizes
(Ij−Oj)2

Ij+Oj
. We have

f (Bs)(x(t′′))− f (Bs)(x(t′′+1)) = max
i∈[p−1]

(√
Ii −

√
Oi

)2
≥
(√

Ij −
√
Oj

)2

≥ (Ij −Oj)2

2(Ij +Oj)
≥
∑p−1
i=1 (Ii −Oi)2

2
∑p−1
i=1 (Ii +Oi)

≥

(∑p−1
i=1 |Ii −Oi|

)2

2n
∑p
i=1(Ii +Oi)

≥
(
∑p
i=1 |Ii −Oi|)

2

8n
∑p
i=1(Ii +Oi)

= 1
16n ·

‖∇f (Bs)(x(t′′))‖2
1

f (Bs)(x(t′′))
. (3)

The first equation follows from the choice of i in line 5 StrictBalance, and Lemma 3. The
third inequality follows from an averaging argument and the choice of j. The fourth
inequality uses Cauchy-Schwarz. The last inequality holds because

∑p
i=1(Ii −Oi) = 0, so

|Ip−Op| =
∣∣∣∑p−1

i=1 (Ii −Oi)
∣∣∣ ≤∑p−1

i=1 |Ii−Oi|, and therefore
∑p
i=1 |Ii−Oi| ≤ 2

∑p−1
i=1 |Ii−Oi|.

Since the interval [t, t′) is contained in phase s, the stopping condition for the phase does
not hold, so

‖∇f (Bs)(x(t′′))‖1

f (Bs)(x(t′′))
> ε′ = ε2

64n4 .

Therefore,

f (Bs)(x(t′′))− f (Bs)(x(t′′+1))) ≥ 1
16n ·

‖∇f (Bs)(x(t′′)‖2
1

f (Bs)(x(t′′))

>
ε′

16n · ‖∇f
(Bs)(x(t′′))‖1

≥ ε′

8n2 · (f
(Bs)(x(t′′))− f (Bs)(x∗)),

where the last inequality follows from Lemma 3. Rearranging the terms gives

f (Bs)(x(t′′+1))− f (Bs)(x∗) ≤
(

1− ε′

8n2

)
· (f (Bs)(x(t′′))− f (Bs)(x∗)).

Iterating for T step yields

f (Bs)(x(t+T))− f (Bs)(x∗) ≤
(

1− ε′

8n2

)T
· (f (Bs)(x(t))− f (Bs)(x∗)).

ICALP 2018
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Now, by Lemma 4, we have that f (Bs)(x(t))− f (Bs)(x∗) ≤ f (Bs)(x(t)) ≤
∑n
i,j=1 aij , and for

all t′′, f (Bs)(x(t′′)) ≥ 1
wn

∑n
i,j=1 aij . Therefore, if t′ − t ≥

8n2

ε′ · ln
(
16nwn/(ε′)2)+ 1, then

f (Bs)(x(t′−1))− f (Bs)(x∗) ≤
(

ε′

4
√
n

)2
· 1
wn
·

n∑
i,j=1

aij ≤
(

ε′

4
√
n

)2
· f (Bs)(x(t′−1)).

Therefore,

1
16n ·

‖∇f (Bs)(x(t′−1)‖2
1

(f (Bs)(x(t′−1)))2 ≤ f (Bs)(x(t′−1))− f (Bs)(x(t′))
f (B)(x(t′−1))

≤ f (Bs)(x(t′−1))− f (Bs)(x∗)
f (B)(x(t′−1))

≤
(

ε′

4
√
n

)2
,

where the first inequality follows from (3), and the second inequality holds because
f (Bs)(x∗) ≤ f (Bs)(x(t′−1)). We get that ‖∇f

(B)(x(t′−1))‖1
f(B)(x(t′−1)) ≤ ε′, in contradiction to our

assumption that the phase does not end before the start of iteration t′. J

I Corollary 12. In any phase, the number of balancing steps is at most O
(
ε−2n8 log(wn/ε)

)
.

Proof. In the beginning of phase s the set Bs contains at most n− 1 nodes. Partition the
phase into intervals [t, t′) where Bs does not change during an interval, but does change
between intervals. By Lemma 11, each interval consists of at most O

(
ε−2n7 log(wn/ε)

)
balancing steps. Since nodes that are removed from Bs between intervals are never returned
to Bs, the number of such intervals is at most n− 1. Hence, the total number of balancing
steps in the phase is at most O

(
ε−2n8 log(wn/ε)

)
. J

I Lemma 13. The total number of phases of the algorithm is O(n logw/ logn).

Proof. Let s > 2 be a phase of the algorithm and t ∈ [ts, ts+1). By Lemma 4, f (Bs,t)(x(t)) ≥
1
wn ·

∑
ij aij . On the other hand, by Lemma 8 and Corollary 9, τs ≤ 1

(4n2)s−2 · τ2 ≤ 1
(4n2)s−2 ·∑

ij aij , and f (Bs,t)(x(t)) ≤ nτs. Combining these gives 1
wn ·

∑
ij aij ≤ nτs ≤

n
(4n2)s−2 ·

∑
ij aij

which implies that s ≤ log(nwn)
log(4n2) + 2. J

Proof of Theorem 6. By Lemma 13, for some s = O(n logw/ logn), StrictBalance ter-
minates, so Bs,ts = [n]. By Corollary 12, the number of balancing steps in a phase is
at most O

(
ε−2n8 log(wn/ε)

)
. Therefore, the total number of balancing steps is at most

O
(
ε−2n9 log(wn/ε) logw/ logn

)
. These steps require at most O

(
ε−2n10 log(wn/ε) logw

)
arithmetic operations. When the algorithm terminates at time ts, all the nodes are in Bs,ts ,
and by Lemma 10 they are all ε-balanced, so the matrix is strictly ε-balanced.

Thus, assuming exact arithmetics with infinite precision we have shown that the algorithm
converges to a strictly ε-balanced matrix in the claimed number of arithmetic operations. To
show that the algorithm still works if all numbers are represented with only O(n log(w/ε))
bits, we apply an analysis similar to the one in section 3 of [11]. J
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