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Abstract
We consider the problems Zero Extension and Metric Labelling under the paradigm of
parameterized complexity. These are natural, well-studied problems with important applications,
but have previously not received much attention from this area.

Depending on the chosen cost function µ, we find that different algorithmic approaches can be
applied to design FPT-algorithms: for arbitrary µ we parameterize by the number of edges that
cross the cut (not the cost) and show how to solve Zero Extension in time O(|D|O(k2)n4 logn)
using randomized contractions. We improve this running time with respect to both parameter and
input size to O(|D|O(k)m) in the case where µ is a metric. We further show that the problem ad-
mits a polynomial sparsifier, that is, a kernel of size O(k|D|+1) that is independent of the metric µ.

With the stronger condition that µ is described by the distances of leaves in a tree, we
parameterize by a gap parameter (q − p) between the cost of a true solution q and a ‘discrete
relaxation’ p and achieve a running time of O(|D|q−p|T |m + |T |φ(n,m)) where T is the size of
the tree over which µ is defined and φ(n,m) is the running time of a max-flow computation. We
achieve a similar result for the more general Metric Labelling, while also allowing µ to be
the distance metric between an arbitrary subset of nodes in a tree using tools from the theory of
VCSPs. We expect the methods used in the latter result to have further applications.
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1 Introduction

The task of extending a partial labelling of data points to a full data set while minimizing an
error function is a natural step for many scientific and engineering tasks. For the particular
case of data imposed with a binary relationship, we find the problems Zero Extension and
Metric Labelling to be well-suited for optimization in image processing [1], social network
classification [24], or sentiment analysis [25]. The problems are as follow. For Zero Exten-
sion, we are given a graph G and a partial labelling τ : S → D, for terminals S ⊆ V (G), and
a cost function µ : D ×D → R+. Our task is to compute a labelling λ : V (G) → D which
agrees with τ on S, subject to the following cost: for each edge uv ∈ G we pay µ(λ(u), λ(v)).
In Metric Labelling, we are given G,µ as above, and a labelling cost σ : V (G)×D → R+.
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Again we are asked to compute a labelling λ and in addition to the above edge-costs we now
also pay σ(v, λ(v)). This model allows us to emulate terminals by making the cost σ(v, λ(v))
prohibitive for all but the required label λ(v). Both problems are generalizations of Mul-
tiway Cut (we simply let µ be identically one for all distinct pairs), which has garnered
considerable attention from the FPT community and formed a crystallization nucleus for the
very fruitful research of cut-based problems (see e.g. [20, 17, 3, 11, 22]).
We apply most of these tools in the following, but we wish to highlight the use of tools and re-
laxations from Valued CSPs (VCSPs) for designing FPT algorithms under gap parameters. VC-
SPs are a general framework for expressing optimisation problems, via the specification of a set
Γ of cost functions (aka constraint language). Many important problems correspond to VCSP
for a specific language, including every choice of a specific metric for the problems above. Thap-
per and Živný [30] characterized the languages Γ for which the resulting VCSP is tractable.

The use of a tractable VCSP as a discrete relaxation of an NP-hard optimisation problem
has led to powerful FPT algorithms [11] (see also related improvements [12, 32]). In this
paper, we advance this research in two ways. First, previous approaches have required
the relaxation to have a persistence property, which allows an optimum to be found by
sequentially fixing variables. Here, we relax this condition to a weaker domain consistency
property. Second, we use a folklore result from VCSP research to restrict the behaviour of
an instance’s optimal solutions in order to facilitate the proof that the domain consistency
property holds for the relevant VCSPs. See Section 5 for details.

Related work. Zero Extension and Metric Labelling have been researched primarily
from the perspective of efficient and approximation algorithms (see [19] for an overview and
hardness results). Kleinberg and Tardos [29] introduced Metric Labelling and provided a
O(log |S| log log |S|) approximation. A result by Fakcharoenphol et al. regarding embedding
general metrics into tree metrics [7] improves the ratio of this algorithm to O(log |S|) and
a lower bound of O((log |S|)1/2−ε) was proved by Chuzhoy and Naor [4]. Karzanov [14]
introduced Zero Extension with the specific case of µ being a graph metric, that is, equal
to the distance metric of some graph H. His central question—for which graphs H the
problem is tractable—was recently fully answered by Hirai [9]. Picard and Ratliff earlier
showed that an equivalent problem is tractable on trees [26]. Fakcharoenphol et al. showed
that the problem can be approximated to within a factor of O(log |S|/ log log |S|) [6]. Karloff
et al. used the approach by Chuzhoy and Naor to show that no factor of O((log |S|)1/4−ε) for
any ε > 0 is possible unless NP ⊆ QP [13]. More recently, Hirai and Pap [8, 10] studied the
problem from a more structural angle and we make use of their duality result.

Our results. We study both problems from the perspective of parameterized complexity.
As the choice of metric has a strong effect on the problem complexity, we give a range of
results, from the more generally applicable to the algorithmically stronger, both in terms
of running time and parameterization. When µ is a general cost function or a metric, we
will parametrize not by the cost of a solution but by the number of crossing edges, i.e.,
bichromatic edges under a labelling λ. This lets us consider µ with zero-cost pairs. For
general cost functions, we employ the technique of randomized contractions [3] and prove:

I Theorem 1 (?1). Zero Extension can be solved in time O(|D|O(k2)n4 logn) where k is
a given upper bound on the number of crossing edges in the solution.

1 Results marked by ? are found in the full version of the paper [27]
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When µ is a metric, we are able to give a linear-time FPT algorithm, while also improving
the dependency on the parameter, using important separators [20]:

I Theorem 2. Zero Extension with metric cost functions can be solved in time O(|D|O(k) ·
m) where k is a given upper bound on the number of crossing edges in the solution.

For the general metric setting, we also have our most surprising result, demonstrating that
Zero Extension admits a sparsifier ; that is, we prove that it admits a polynomial kernel
independent of the metric µ. This result crucially builds on the technique of representative
sets [17, 21, 18]. The exact formulation of the result is somewhat technical and we defer
it to Section 4.2, but roughly, we obtain a kernel of size O(k|S|+1), independent of µ,
where k is again the number of crossing edges. This result is a direct, seemingly far-reaching
generalization of the polynomial kernel for s-Multiway Cut [17].

Next, we consider the case when µ : D ×D → Z+ is induced by the distance in a tree T
with D ⊂ V (T ). Here, relaxing the problem to allow all labels V (T ) as vertex values defines
a tractable discrete relaxation, in the sense discussed above. In particular, we can compute a
relaxed solution cost p in polynomial time which lower-bounds the optimal integral solution q.
Using techniques from VCSP, we design a gap-parameter algorithm:

I Theorem 3. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is an induced
tree metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance.
Let p = cost(Î). Then we can solve I in time O(|D|q−p|T ||D|nm).

For the further restriction when µ corresponds to the distances of the leaves D of a tree T ,
we obtain an algorithm with a slightly better polynomial dependence. Moreover, it uses only
elementary operations like computing cuts and flows:

I Theorem 4. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is a leaf
metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance. Let
p = cost(Î). Then we can solve I in time O(|D|q−p|T |m+ |T |φ(n,m)), where φ is the time
needed to run a max-flow algorithm.

Finally, we apply the VCSP toolkit to Metric Labelling and obtain a similar gap algorithm
(see Section 5 for undefined terms).

I Theorem 5. Let I = (G, σ, µ, q) be an instance of Metric Labelling where µ is an
induced tree metric for a tree T and a set of nodes D ⊆ V (T ), and where every unary cost
σ(v, ·) admits an interpolation on T . Let Î = (G, σ̂, µ̂, q) be the relaxed instance, and let
p = cost(Î). Then the instance I can be solved in time O∗(|D|q−p). In particular, this
applies for any σ if D is the set of leaves of T .

2 Preliminaries

For a graph G = (V,E) we will use nG = |V | and mG = |E| to denote the number of vertices
and edges, respectively. For two disjoint vertex sets A,B ⊆ V we write E(A,B) to denote the
edges that have one endpoint in A and the other in B. We write dG for the distance-metric
induced by G, that is, dG(u, v) is the length of a shortest path between vertices u, v ∈ V (G).
We denote by NG(v) and NG[v] the open and closed neighbourhood of a vertex. For a vertex
set S ⊆ V (G) we write δG(S) to denote the set of edges with exactly one endpoint in S. We
omit the subscript G, if clear from the context, in all these notations.

Let T be a tree and xy ∈ T an edge, then we use the notation Tx to denote the component
of T − xy that contains x. We call a sequence of nodes x1x2 . . . xp in T a monotone sequence

ICALP 2018
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if x1 6P x2 6P . . . 6P xp where P is a path in T and 6P is the linear order induced
by P . Note that xi = xi+1 is explicitly allowed. For two nodes x, y ∈ T we will denote the
unique x-y-path in T by T [x, y]. For a vertex set S, an S-path packing is a collection of
edge-disjoint paths P that connect pairs of vertices in S. We will also consider half-integral
path packings where every edge is allowed to be used by at most two paths.

Let D be a set of labels. For a graph G we call a function τ : S → D for S ⊆ V (G) a
partial labelling and a function λ : V (G) → D a labelling. The labelling λ is an extension
of τ if λ and τ agree on S, that is, for every vertex u ∈ S we have that λ(u) = τ(u). Given
a graph G and a labelling λ we call an edge uv ∈ E(G) crossing if λ(u) 6= λ(v). A τ -path
packing is a collection P of edge-disjoint paths such that every path P ∈ P connects two
vertices that receive distinct labels under τ (and both are labelled).

A cost function over D is a symmetric positive function µ : D × D → R+. We call it
simple if µ(x, x) = 0. A cost function is a metric if it is simple and further obeys the triangle
inequality; it is a tree metric if it corresponds to the distance metric of a tree. We derive an
induced tree metric from a tree metric by restricting its domain to a subset D of the nodes
of the underlying tree. A leaf metric is an induced tree metric where D is the set of leaves
of the tree. Given a cost function µ, we define the cost of a labelling λ of a graph G as
costµ(λ,G) =

∑
uv∈G µ(λ(u), λ(v)).

3 Cost functions: Randomized Contractions

We apply the framework by Chitnis et al. [3] to show that the general case of Zero Extension
is in FPT when parameterized by the number of crossing edges. Note that crossing edges could
incur an arbitrary cost, including zero. The stronger parameterization of only counting the
number of crossing edges at non-zero cost makes for an intractable problem: With zero-cost
edges, we can express the problem H-Retraction for reflexive graphs H, which asks us to
find a retraction of a graph G into a fixed graph H. This problem is already NP-complete
for H being the reflexive 4-cycle [31] and thus Zero Extension is paraNP-complete for
k = 0 when parameterized by the number of non-zero crossing edges or the total cost.

A (σ, κ)-good separation is a partition (L,R) of V (G) such that |L|, |R| > σ, |E(L,R)| 6 κ,
and both G[L] and G[R] are connected. There exists an algorithm that finds a (σ, κ)-good
separation in time O((σ+κ)O(min(σ,κ))n3 logn) (Lemma 2.2 in [3]) or concludes that the graph
is (σ, κ)-connected, that is, no such separation exists. The following lemma is a slight refor-
mulation of Lemma 1.1 in [3] which in turn is based on splitters as defined by Naor et al. [23]:

I Lemma 6 (Edge splitter). Given a set E of size m and integers 0 6 a, b 6 m one can in
time O((a + b)O(min{a,b})m logm) construct a set family F over E of size at most O((a +
b)O(min{a,b}) logm) with the following property: for any disjoint sets A,B ⊆ E with |A| 6 a

and |B| 6 b there exists a set H ∈ F with A ⊆ H and B ∩H = ∅.

We first prove that Zero Extension can be solved on such highly connected instances and
then apply the ‘recursive understanding’ framework to handle graphs with good separations.

I Lemma 7. Let G be (σ, k)-connected for some σ > k. Then we can find an optimal solution
in time O((|D|+ 2σk + k)O(k)(n+m) logn).

Proof sketch. Let λ ∈ opt(I) and let Eλ be the crossing edges with endpoints V (Eλ).
Let C0, C1, . . . , C` be the connected components of G− Eλ with C0 being the largest one.
Since G is (σ, k)-connected, we know that ` 6 k and that all components C1, . . . , C` have
size at most σ (cf. Lemma 3.6 in [3]). We will assume that |C0| > σ, otherwise |V (G)| 6 σk

vertices and we find Eλ by brute-force.
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We proceed by colouring E(G). Such a colouring is successful if 1) Eλ is red, 2) each Ci,
i > 1, contains a blue spanning tree, and 3) each vertex u ∈ C0 ∩ V (Eλ) is contained in a
blue tree of size > σ+ 1. It is easy to verify that we need to correctly colour a set B ⊆ E(G),
|B| 6 (σ − 1)`+ σk 6 2σk edges blue while colouring a set R ⊆ E(G), |R| 6 k, edges red.
We construct an edge-splitter F with a = 2σk and b = k according to Lemma 6 of size
O((2σk + k)O(k) logm). By construction, at least one colouring in F will be successful.

Fix a successful colouring. Let GB be the graph on the blue edges. Call a component
of GB small if it contains 6 σ vertices and big otherwise. Our task is to recover C0, C1, . . . , C`.
Every Ci, i > 1 is small in GB and all components reachable from Ci via red edges must
either be a solution component Cj , j > 1, or a big component in GB. Thus, we can
‘discover’ the sets C1, . . . , C` by marking small components that contain a terminal and
then successively mark small components with red edges into already marked components.
Afterwards we identify the crossing edges Eλ and λ. The total running time to identify Eλ
is (2σk + k)O(k)(n+m) logn. Given Eλ, the final step is to find an optimal assignment. We
simply try all possible assignments for non-terminal components in time O(|D|`k) = O(|D|kk)
and the claimed running time follows. J

With the well-connected cases handled, the theorem follows by a straightforward application
of recursive understandings [3].

I Theorem 1 (?2). Zero Extension can be solved in time O(|D|O(k2)n4 logn) where k is
a given upper bound on the number of crossing edges in the solution.

4 General metrics: Pushing separators

We now consider the more restricted, but reasonable case that µ is a metric, observing the
triangle inequality. We find that this allows a ‘greedy’ operation of pushing in a solution
λ, which allows both the design of a faster algorithm (Section 4.1) and the computation of
a metric sparsifier (Section 4.2). Throughout the section, let I = (G = (V,E), τ, µ, q) be
an instance of Zero Extension for an arbitrary metric µ, let S be the set of terminals
of G, and let D be the set of labels. We assume that the following reductions have been
performed on G: For every label ` used by τ there is a terminal t`, and every vertex v such
that τ(v) = ` has been identified with this terminal t`.

We first prove a useful lemma. Let λ : V → D be an extension of τ , and let U = λ−1(`)
for some ` ∈ D. By pushing from ` in λ we refer to the operation of relabelling vertices
to grow the set U “as large as possible”, without increasing the number of crossing edges.
Formally, this refers to the following operation: Let C be the furthest min-cut between vertex
sets U and S − t`, respectively S if there is no terminal t` (cf. [20, Lemma 3]); let U ′ be the
vertices reachable from U in G− C; and let λ′ be the labelling where λ′(v) = ` for v ∈ U ′
and λ′(v) = λ(v) otherwise. Clearly, λ′ is an extension of τ . We show that as long as µ is a
metric (observing the triangle inequality), pushing does not increase the cost of the solution.

I Lemma 8 (Pushing Lemma). For any τ -extension λ and every label ` ∈ D, pushing from `

in λ yields a τ -extension λ′ with costµ(λ′, G) 6 costµ(λ,G).

Proof sketch. Since C is a min-cut there is a set of paths that begin in δ(U), saturate C,
and end in terminals S− t`. By the triangle inequality, the cost incurred by λ on these paths
is at least as large as that incurred by λ′, and no other edge increases its cost in λ′. J

2 Results marked by ? are found in the full version of the paper [27]
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An immediate consequence of the above lemma is the following reduction rule.

I Corollary 9 (?). We can reduce to the case where for every terminal t` ∈ S, δ(t`) is the
unique (t`, S − t`)-min cut in G.

4.1 An FPT algorithm
We now show that Zero Extension is FPT for a metric µ parameterized by k + |D|,
where k is a bound on the number of crossing edges of an optimum λ. The algorithm
uses Lemma 8 to guess a solution λ using the classical technique of important separators,
pioneered by Marx [20] as an important technique for FPT algorithms solving cut problems.
Our algorithm roughly follows the algorithm for Multiway Cut of Chen, Liu and Lu [2],
with two complications. First, unlike in Multiway Cut, there may be crossing edges in λ
that are not reachable by a terminal, which makes the branching more expensive; second,
even after all crossing edges have been found, it still remains to find an optimal labelling λ.

Since these complications can be present or absent for different metrics µ, we describe
the algorithm in stages, where the first stage identifies all crossing edges reachable from a
terminal, the second stage identifies the remaining crossing edges, and the third stage finds
an assignment λ. For specific metrics µ, it may then be possible to speed this up by skipping
some steps. In summary, we show the following.

I Theorem 2. Zero Extension with metric cost functions can be solved in time O(|D|O(k) ·
m) where k is a given upper bound on the number of crossing edges in the solution.

We begin by providing the running time for the first stage. This is analysed in terms of a
lower bound p on the crossing number of any labelling λ. This may be defined as follows:
First apply Corollary 9, then compute p =

∑
t∈S |δ(t)|/2. It is known that p is a lower bound

on the multiway cut number of (G,S) [28], hence also on the number of crossing edges of λ,
making k − p a valid gap parameter. (Note that p does not measure the cost of a crossing
edge or path; such results are shown in Section 5.)

I Lemma 10 (?). Let p be the lower bound as above. In O(4k−pkm) time and 4k−p guesses,
we can reduce to the case where every edge of δ(t) is a crossing edge in the optimal solution
for every t ∈ S.

A similar result (without a lower bound) finds the remaining crossing edges of a solution.

I Lemma 11 (?). Given an input from stage 1, with p edges already marked as crossing,
in O(42k−pm) time and 42k−p guesses we can reduce to the case where every edge of G is
crossing in the optimal solution.

After stage 2, the remaining graph contains at most k edges, hence at most O(k) vertices,
and it only remains to find the min-cost labelling of the non-terminal vertices. In the absence
of any stronger structural properties of the metric µ, this last phase can be completed in
|D|O(k)O(m) time. Theorem 2 follows.

4.2 A kernel for any metric
We next show that Zero Extension has a kernel of O(ks+1) vertices for any metric µ,
where k is a bound on the number of crossing edges of a solution and s is the number of labels
of µ. Moreover, the kernel can be computed without access to µ. This gives us a kind of
metric sparsifier for (G,S), up to parameters k and s, as follows. The result is an adaptation
of the kernel for s-Multiway Cut of Kratsch and Wahlström [17]. For an instance I, let
cost(I, k) be the minimum cost of a labelling with at most k crossing edges (otherwise ∞).
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I Theorem 12 (?). Let s > 3 be a constant. For every graph G = (V,E) with a set S of
terminals, |S| 6 s, and integer k, there is a randomized polynomial-time computable set
Z ⊆ E with |Z| = O(ks+1) such that for any instance I = (G, τ, µ, q) of Zero Extension
with S being the set of terminals in I and µ having at most s labels, if cost(I, k) <∞ then
there is a τ -extension λ with crossing number at most k and cost cost(I, k) such that every
crossing edge of λ is contained in Z.

By contracting any edges not in
⋃
t∈S δ(t) ∪ Z we then get the kernelized instance (G′, S).

5 Tree metrics: Gap algorithms and VCSP relaxations

In this section we present more powerful algorithms parameterized by the gap parameter for
problems where the metric embeds into a tree metric. We begin by a purely combinatorial
algorithm for Zero Extension on leaf metrics, then we move on to the more general
Zero Extension and Metric Labelling problems for general induced tree metrics. The
algorithms for the latter problems rely on the domain consistency property of the relaxation,
which allows us to solve the problem by simply branching on the value of a single variable at
a time. This property is shown by way of a detour into an analysis of properties of VCSP
instances whose cost functions are weakly tree submodular, which is a tractable problem class
containing tree metrics. The algorithms for these problems are then straight-forward.

At this point, we need to address a subtlety regarding the input cost function µ. So far,
the cost function only had to obey basic properties that are easily verifiable or could be seen
as a ‘promise’. However, some of our arguments below will explictly need the tree T that
induces the metric. Luckily this issue has been solved already: given a induced tree metric µ
over D in matrix form, one can in time O(|D|2) compute a tree that induces µ [5]. If µ is
a leaf metric, the output will obviously have D as the leaves of T . In conclusion, we will
tacitly assume that we have access to the tree T in the following.

5.1 Leaf metrics: A duality approach
The µ-Edge Disjoint Packing problem asks to find an edge-disjoint packing P of paths
whose endpoints both lie in a terminal set S ⊆ V (G) that maximizes pack(µ,G, S) :=∑

P∈P µ(sP , tP ) (where sP , tP denote start- and endpoint of P ). Hirai and Pap [10] show
that if µ is a tree metric then pack(µ,G, S) = minλ maxF⊆E

∑
uv∈E\F µ(λ(u), λ(v)), where λ

is a zero-extension of the terminal-set S and the sets F ⊆ E are edges whose deletion leaves
every non-terminal vertex with an even degree. It follows that the maximum value of a
half-integral τ -path packing is just the minimum cost of a τ -extension λ, since a half-integral
path-packing is just a path-packing in the graph where every edge of G has been duplicated.

Let in the following I = (G, τ, µ, q) be an instance of Zero Leaf Extension, where µ is
a leaf metric over a tree T with leaves D. Let µ̂ = dT be the underlying tree metric. We define
the relaxed instance Î = (G, τ, µ̂, q). Let opt(I), opt(Î) denote the set of optimal solutions
for the integral and the relaxed instance, respectively. Using this notation, we can summarize
the duality: Given a relaxed instance Î, there exists a half-integral τ -path-packing P of cost
precisely cost(Î). In the following we will assume, by the usual identification argument,
that τ is a bijection and a τ -path packing is equivalent to an S-path packing.

I Lemma 13 (?). Let P be an half-integral τ -path packing with 1
2

∑
P∈P µ(τ(sP ), τ(tP )) =

cost(Î). Let λ ∈ opt(Î) be a relaxed optimum and let P ∈ P with endpoints s, t. Then
costµ̂(λ, P ) = µ(τ(s), τ(t)).

ICALP 2018
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A direct consequence is that if we trace an s-t-path P ∈ P, then the labels assigned by any
relaxed optimum λ to P induce a monotone sequence from s to t in T . That is, not only will
we only encounter those labels that lie on T [s, t], we also will encounter them ‘in order’.

Consider an edge xy ∈ E(T ). Then, as a consequence of Lemma 13 the set of edges
Cxy(λ) = {uv ∈ E(G) | λ(u) ∈ Tx, λ(v) ∈ Ty} between the vertex sets with labels in Tx
and Ty, respectively, must be saturated by paths of the packing P . For cuts right above leafs
of T , this implies the following.

I Lemma 14 (?). Let S be the vertices labelled by τ in G and assume that τ is a bijection.
Let C be any minimum (x, S − x)-cut for some terminal x ∈ S. Then every optimal,
half-integral S-path-packing in G will saturate C.

I Theorem 4. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is a leaf
metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance. Let
p = cost(Î). Then we can solve I in time O(|D|q−p|T |m+ |T |φ(n,m)), where φ is the time
needed to run a max-flow algorithm.

Proof sketch. We first construct for every edge ij ∈ T a flow network Hij from G as fol-
lows: let Di be those leaves that lie in the same component as i in T − ij and Dj all others.
ThenHij is obtained fromG by identifying all terminals τ−1(Di) into a source s and all termin-
als τ−1(Dj) into a sink t. For each Hij we compute a maximum flow fij in time φ(n,m). We
can show that for every λ ∈ opt(Î) it holds that

∑
xy∈T |fij | =

∑
xy∈T |Cxy(λ)| = costµ(Î).

Note that we can also, in linear time, find the furthest cuts Cmax(x) for terminals x ∈ S
using the residual network of (Hij , fij) with i = τ(x) and j the parent of i in T .

Next, we test whether G contains a vertex u that is not part of a furthest min-cut Cmax(x)
for any x ∈ S; such a vertex cannot take an integral value in any relaxed optimum. We then
branch on the |D| possible integral values for u: for x ∈ S with τ(x) ∈ D being the chosen
integral value, we update the networks (Hij , fij) by adding an edge xu of infinite capacity, then
augment the flow. The number of augmentations is 6 k − p, as each augmentation witnesses
the increase of p and thus the decrease of the parameter. We charge each augmentation to a
level of the search tree and thus spend only O(m) time per flow fij , for a total of O(|T |m).

Otherwise, we find that every vertex of the current graph G is contained in at least one fur-
thest min-cut. It can be shown (see full version) that the intersection of three or more such cuts
is empty. Consequently, the graph decomposes into sets whose label is either fixed or is one of
two possible values. A simple cut argument shows that we can fix one of the two labels greedily
for the latter, and we construct an integral solution that matches the relaxed optimum. J

5.2 VCSP toolkit
Given a set of cost functions Γ over a domain D, an instance I of VCSP(Γ) is defined by a set
of variables V and a sum of valued constraints fi(v̄i), where for each i, fi ∈ Γ and v̄i is a tuple
of variables over V . We write fi(v̄) ∈ I to signify that fi(v̄) is a valued constraint in I. It is
known that the tractability of a VCSP is characterized by certain algebraic properties of the
set of cost functions. In full generality, such conditions are known as fractional polymorphisms
for the finite-valued case and more general weighted polymorphisms in the general-valued
case. Dichotomies are known in these terms both for the finite-valued [30] and general case
of VCSP [16], i.e., characterizations of each VCSP as being either in P or NP-hard. We will
only need a less general term.

A binary multimorphism 〈◦, •〉 of a language Γ over a domain D is a pair of binary
operators that satisfy f(x̄) + f(ȳ) > f(x̄ ◦ ȳ) + f(x̄ • ȳ), for all f ∈ Γ, x̄, ȳ ∈ Dar(f), where
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ar(f) is the arity of f and where we extend the binary operators to vectors by applying
them coordinate-wise. An operator ◦ is idempotent if x ◦ x = x for every x ∈ D, and
commutative if x◦y = y ◦x. A (finite, finite-valued) language Γ with a binary multimorphism
where both operators are idempotent and commutative is solvable in polynomial time via
an LP-relaxation [30]. The most basic example is the Boolean domain D = {0, 1}, in which
case the multimorphism 〈∧,∨〉 corresponds to the well-known class of submodular functions,
which is a tractable class that generalizes cut functions in graphs.

The following is folklore, but will be important to our investigations. Again, the cor-
responding statements apply for arbitrary fractional polymorphisms, but we only give the
version we need in the present paper.

I Definition 15 (Preserved under equality). Let f be a function that admits a multi-
morphism 〈◦, •〉. We say that two tuples x̄, ȳ ∈ Dar(f) are preserved under equality if
f(x̄) + f(ȳ) = f(x̄ ◦ ȳ) + f(x̄ • ȳ). For a relation R ⊆ Dar(r), we say that f is preserved under
equality in R if every pair of tuples x̄, ȳ ∈ R is preserved under equality and x̄ ◦ ȳ, x̄ • ȳ ∈ R.

I Lemma 16 (?). Let Γ be a language of cost functions that admit a multimorphism 〈◦, •〉 and
let λ1, λ2 ∈ opt(I) for some instance I of VSCP(Γ). Then for every valued constraint f(v̄) ∈
I it holds that f(λ1(v̄)) + f(λ2(v̄)) = f((λ1 ◦ λ2)(v̄)) + f((λ1 • λ2)(v̄)), where f(λ(v̄)) =
f(λ(v1), . . . , λ(vr)) for v̄ = v1, . . . , vr is the value of f(v̄) under λ. In other words, every
valued constraint f(v̄) ∈ I is preserved under equality in opt(I).

To illustrate, let us return again to the case of graph cut functions and submodularity
over the Boolean domain. Let G = (V,E) be an undirected graph, and define the cut
function fG : 2V → Z as fG(S) = |δ(S)|. Then fG is the sum over binary valued constraints
f(u, v) = [u 6= v] over all edges uv ∈ E, in Iverson bracket notation. Since a single valued
constraint f(u, v) is submodular, the same holds for the cut function as a whole. Then
Lemma 16 specialises into the statement that for two sets A,B ⊂ V such that δ(A), δ(B) are
minimum s-t-cuts in G for some s, t ∈ V , there is no edge between A \B and B \A. This
kind of observation is a common tool in, e.g., graph theory and approximation algorithms.

The above lemma will be very useful when reasoning about the structure of opt(I) subject
to more complex multimorphisms, as we will define next.

5.3 Submodularity on trees
Let �T denote the ancestor relationship in a rooted tree T . For a path P [x, y] ⊆ T , let z1, z2
be the middle vertices of P [x, y] (allowing z1 = z2 in case P [x, y] has odd length) such
that z1 �T z2. Define the commutative operators x,y as returning exactly those two
mid vertices, e.g. xx y = yxx = z1 and xy y = yyx = z2. Languages admitting the
multimorphism 〈x,y〉 are called strongly tree-submodular.

Define the commutative operator ↑ to return the common ancestor of two nodes x, y in a
rooted tree T . Define x↗ y to be the vertex z on P [x, y] which satisfies dT (x, z) = dT (y, x ↑ y).
In other words, to find z = x↗ y, we measure the distance from y to the common ancestor
of x and y and walk the same distance from x along P [x, y]. Languages that admit 〈↑,↗〉 as a
multimorphism are called weakly tree-submodular. In particular, all strongly tree-submodular
languages are weakly tree-submodular [15]. Tree-metric are, not very surprisingly, strongly
tree-submodular:

I Lemma 17 (?). Every tree-metric is strongly (and thus also weakly) tree-submodular for
every rooted version of the tree.
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We will need the following characterization of which value-pairs are preserved under equality
by strong tree submodularity for tree distance functions. The proof follows from a long case
analysis which we omit here.

I Lemma 18 (?). Two tuples (a, b), (x, y) ∈ V (T ) × V (T ) are preserved under equality
by dT with multimorphism 〈x,y〉 iff all four nodes lie on a single path P in T and
either a, b 6P x, y or a, x 6P b, y.

I Corollary 19 (?). Let dT be preserved under equality in R for some R ⊆ VT × VT , with at
least one pair (a, b) ∈ R with a 6= b. Then there is a path P in T which can be oriented as a
directed path such that for every pair (a, b) ∈ R the nodes a and b lie on P with a �P b.

5.4 The domain consistency property
Consider a problem VCSP(Γ) over a domain DI and a discrete relaxation VCSP(Γ′) of
VCSP(Γ) over a domain D ⊇ DI . We say that the relaxation has the domain consistency
property if the following holds: for any instance I of VCSP(Γ′), if for every variable v there is
an optimal solution to I where v takes a value in DI , then there is an optimal solution where
all variables take values in DI , i.e. an optimal solution to the original problem at the same
cost. We show that the discrete relaxations of Zero Extension and Metric Labelling
on induced tree metrics have the domain consistency property, allowing for FPT algorithms
under the gap parameter via simple branching algorithms.

The result builds on a careful investigation of the binary constraints that opt(I) can
induce on a pair of vertices u, v ∈ V , starting from Corollary 19. For the rest of the section,
let us fix a relaxed instance I = (G = (V,E), τ, µ, q) of Zero Extension where µ is a tree
metric defined by a tree T , and the original (non-relaxed) metric is the restriction of µ to a
set of nodes DI . Note that I can be expressed as a VCSP instance using assignments and the
cost function µ. Let opt be the set of optimal labellings. For a vertex v ∈ V , let D(v) denote
the set {λ(v) | λ ∈ opt}, and let DI(v) = DI ∩D(v). Furthermore, for a pair of vertices
u, v ∈ V , let R(u, v) = {(λ(u), λ(v)) | λ ∈ opt} be the projection of opt onto (u, v), and
RI(u, v) = R(u, v) ∩ (DI ×DI) the integral part of this projection. We begin by observing
that the “path property” of Corollary 19 applies to all vertices and edges in opt.

I Lemma 20 (?). For every vertex v that lies in a connected component of G containing at
least one terminal, D(v) is a path in T . Furthermore, for every edge uv ∈ E, R(u, v) embeds
into the transitive closure of a directed path in T .

Next, we show the main result of this section: if u and v is a pair of variables, then whether
or not there is an edge uv in E, the constraint R(u, v) induced on u and v by opt is only
non-trivial on values in D(u) ∩D(v).

I Lemma 21 (?). Let u and v be a pair of variables and a ∈ D(u), b ∈ D(v) a pair of values.
If (a, b) /∈ R(u, v), then a, b ∈ D(u) ∩D(v) and a 6= b.

This gives us the following algorithmic consequence.

I Lemma 22. There is a labelling λ ∈ opt such that for every variable v with DI(v)
non-empty, we have λ(v) ∈ DI .

Proof sketch. Order V (T ) such that the values DI come first, and assign to every variable
v the value of D(v) that is earliest in this ordering. By Lemma 21, this gives an assignment
that is consistent with R(u, v) for every pair of variables u, v ∈ V , and since opt has a
majority polymorphism, this implies that the resulting assignment is in opt. J
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Let us for reusability spell out the explicit assumptions and requirements made until now.

I Theorem 23 (?). Let I = (G = (V,E), τ, µ, q) be an instance of Zero Extension
with no isolated vertices and where every connected component of G contains at least two
terminals, and where µ is an induced tree metric for some tree T and integral nodes DI ⊆ T .
Additionally, assume a collection of cost functions F = (fi(v̄i))mi=1 has been given, where
for every fi the scope is contained in V and where fi is weakly tree submodular for every
rooted version of T . Let I ′ be the VCSP instance created from the sum of the cost functions
of I and F . Then I ′ has the domain consistency property, i.e., there is an integral relaxed
optimum if and only if every vertex v is integral in at least one relaxed optimum of I ′.

5.5 Gap algorithms for general induced tree metrics
By Theorem 23, we get FPT algorithms parameterized by the gap parameter q − p.

I Theorem 3. Let I = (G, τ, µ, q) be an instance of Zero Extension where µ is an induced
tree metric on a set of labels D in a tree T , and let Î = (G, τ, µ̂, q) be the relaxed instance.
Let p = cost(Î). Then we can solve I in time O(|D|q−p|T ||D|nm).

Proof. This algorithm is similar to the algorithm for a leaf metric, except that we are not
as easily able to test whether every variable has an integral value in opt. By the results of
Section 5.1, the value of opt is witnessed by the collection of min-cuts for edges in T ; we
will use this as a value oracle for I. We initially compute a max-flow across every edge of T ,
then for every assignment made we can compute the new value of opt using O(|T |) calls
to augmenting path algorithms. This allows us to test for optimality of an assignment in
O(|T |m) time. The branching step then in general iterates over at most n variables, testing
at most |D| assigned values for each, and testing for optimality each time. Hence the local
work in a single node of the branching tree is O(|T ||D|nm). This either produces a variable
for branching on or (by Theorem 23) produces an integral assignment, and in each branching
step the value of p increases but q does not. The time for the initial max-flow computation
is eaten by the factor |T |nm. The result follows. J

For Metric Labelling, we first need to restrict the unary cost functions. Intuitively, the
property is analogous to linear interpolation or convexity, applied along paths of the tree.
The precise definition is as follows.

I Lemma 24 (?). Let f : V (T ) → R be a unary function on a tree T . Then f is weakly
tree submodular on T for every choice of root r ∈ VT if and only if it observes the following
interpolation property: for any nodes u, v ∈ V (T ), at distance dT (u, v) = d, and every
i ∈ [d− 1], let wi be the node on T [u, v] satisfying dT (u,wi) = i. Then for any such choice
of u, v and i, it holds that f(wi) 6 ((d− i)/d)f(u) + (i/d)f(v).

Let f0 : U → Z+ be a non-negative function defined on a subset U of the nodes of a tree T .
We say that f0 admits an interpolation on T if there is an extension f : V (T )→ Z+ with the
interpolation property such that f(v) = f0(v) for every v ∈ U . Note that this only restricts
the values f0(u) for nodes u ∈ U that lie on a tree path between two other nodes u1, u2 ∈ U .
In particular, if U is the set of leaves of T , then every function f0 admits an interpolation
by simply padding with zero values (although stronger interpolations are in general both
possible and desirable).

We get the following.

ICALP 2018



94:12 Parameterized Algorithms for Zero Extension and Metric Labelling Problems

I Theorem 5. Let I = (G, σ, µ, q) be an instance of Metric Labelling where µ is an
induced tree metric for a tree T and a set of nodes D ⊆ V (T ), and where every unary cost
σ(v, ·) admits an interpolation on T . Let Î = (G, σ̂, µ̂, q) be the relaxed instance, and let
p = cost(Î). Then the instance I can be solved in time O∗(|D|q−p). In particular, this
applies for any σ if D is the set of leaves of T .

Proof. Assume that G is connected, or else repeat the below for every connected component
of G. Select two arbitrary vertices u, v ∈ V and exhaustively guess their labels; in the case
that you guess them to have the same label, identify the vertices in I (adding up their costs in
σ) and select a new pair to guess on. Note that this takes at most O(|D|2n) time, terminating
whenever you have guessed more than one label in a branch or when you have guessed that
all vertices are to be identical. This guessing phase can only increase the value of p. We
may now treat u and v as terminals, and the instance I as the sum of a Zero Extension
instance on those two terminals and a collection of additional unary cost functions σ(v′, ·),
as in Theorem 23. Note that the resulting VCSP is tractable, i.e., the value of an optimal
solution can be computed in polynomial time. The running time from this point on consists
of iterating through all variables verifying whether each one has an integral value in some
optimal assignment, and branching exhaustively on its value if not. J

In particular, as noted, for a leaf metric µ the algorithm applies without any assumptions on
σ (and without T being explicitly provided).

6 Conclusion

We have given a range of algorithmic results for the Zero Extension and Metric La-
belling problems from a perspective of parameterized complexity. Most generally, we
showed that Zero Extension is FPT parameterized by the number of crossing edges of
an optimal solution, i.e. the number of edges whose endpoints receive distinct labels, for a
very general class of cost functions µ that need not even be metrics. This is a relatively
straight-forward application of the technique of recursive understanding [3].

For the case that µ is a metric we gave two stronger results for the same parameter.
First, we showed a linear-time FPT algorithm, with a better parameter dependency, using
an important separators-based algorithm. Second, and highly surprisingly, we show that
every graph G with a terminal set S admits a polynomial-time computable, polynomial-sized
metric sparsifier G′, with O(ks+1) edges, such that (G′, S) mimics the behaviour of (G,S)
over any metric on at most s labels (up to solutions with crossing number k). This is a
direct and seemingly far-reaching generalization of the polynomial kernel for s-Multiway
Cut [17], which corresponds to the special case of the uniform metric.

Finally, we further developed the toolkit of discrete relaxations to design FPT algorithms
under a gap parameter for Zero Extension and Metric Labelling where the metric is
an induced tree metric. This in particular involves a more general FPT algorithm approach,
supported by an applicability condition of domain consistency, relaxing the previously used
persistence condition.

Let us highlight some questions. First, is there a lower bound on the size of a metric
sparsifier for s labels for Zero Extension? This is particularly relevant since the existence
of a polynomial kernel for s-Multiway Cut whose degree does not scale with s is an
important open problem, and since the metric sparsifier is a more general result.

Second, can the FPT algorithms for induced tree metrics parameterized by the relaxation
gap be generalised to restrictions of other tractable metrics, such as graph metrics for median
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graphs or the most general tractable class of orientable modular graphs [9]? Complementing
this, what are the strongest possible gap parameters that allow FPT algorithms for metrics
that are either arbitrary, or do not explicitly provide their relaxation?
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