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—— Abstract

We prove results on the decidability and complexity of computing the total variation distance
(equivalently, the Li-distance) of hidden Markov models (equivalently, labelled Markov chains).
This distance measures the difference between the distributions on words that two hidden Markov
models induce. The main results are: (1) it is undecidable whether the distance is greater than
a given threshold; (2) approximation is #P-hard and in PSPACE.
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1 Introduction

A (discrete-time, finite-state, finite-word) labelled Markov chain (LMC) (often called hidden
Markov model) has a finite set @ of states and for each state a probability distribution over
its outgoing transitions. Each outgoing transition is labelled with a letter from an alphabet %
and leads to a target state, or is labelled with an end-of-word symbol $. Here are two LMCs:
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The LMC starts in a given initial state (or in a random state according to a given initial
distribution), picks a random transition according to the state’s distribution over the outgoing
transitions, outputs the transition label, moves to the target state, and repeats until the end-
of-word label $ is emitted. This induces a probability distribution over finite words (excluding
the end-of-word label $). In the example above, if ¢; and ¢y are the initial states then the
LMCs induce distributions 71, me with m (aa) = % . % . i and my(aa) = % . é . % +3-35" 5
LMCs are widely employed in fields such as speech recognition (see [23] for a tutorial),
gesture recognition [4], signal processing [8], and climate modeling [1]. LMCs are heavily

used in computational biology [12], more specifically in DNA modeling [6] and biological
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sequence analysis [11], including protein structure prediction [17] and gene finding [2]. In
computer-aided verification, LMCs are the most fundamental model for probabilistic systems;
model-checking tools such as Prism [18] or Storm [9] are based on analyzing LMCs efficiently.

A fundamental yet non-trivial question about LMCs is whether two LMCs generate the
same distribution on words. This problem itself has applications in verification [16] and can
be solved in polynomial time using algorithms that are based on linear algebra [24, 22, 7].
If two such distributions are not equal, one may ask how different they are. There exist
various distances between discrete distributions, see, e.g., [7, Section 3]. One of them is
the total variation distance (in the following just called distance), which can be defined by
d(m,m2) = maxy s« |1 (W) — w2 (W)| in the case of LMCs. That is, d(mq,m2) is the largest
possible difference between probabilities that 71 and 7o assign to the same set of words.
This distance is, up to a factor 2, equal to the Li-norm of the difference between m; and 7o,
ie., 2d(my,m2) = ) cx- |T1(w) — m2(w)|. Clearly, m; and 7 are equal if and only if their
distance is 0.

It is immediate from the definition of the distance that if L is a family of LMCs whose
pairwise distances are bounded by b > 0 then for any event W C ¥* and any two LMCs
My, Mz € L we have |1 (W) — mo(W)| < b. From a verification point of view, this means
that one needs to model check only one LMC in the family to obtain an approximation
within b for the probabilities that the LMCs satisfy a given property W. Therefore, computing
or approximating the distance can make model checking more efficient. It is shown in [3]
that the bisimilarity pseudometric defined in [10] is an upper bound on the total variation
distance and can be computed in polynomial time. The bisimilarity pseudometric has more
direct bearings on branching-time system properties, which, in addition to emitted labels,
take LMC states into account (not considered in this paper).

The problem of computing the distance was first studied in [20]: they show that computing
the distance is NP-hard. In [7] it was shown that even approximating the distance within an
€ > 0 given in binary is NP-hard. In this paper we improve these results. We show that it is
undecidable whether the distance is greater than a given threshold. Further we show that
approximating the distance is #P-hard and in PSPACE. The #P-hardness construction is
relatively simple, perhaps simpler than the construction underlying the NP-hardness result
in [7]. In contrast, our PSPACE algorithm requires a combination of special techniques:
rounding-error analysis in floating-point arithmetic and Ladner’s result [19] on counting in

polynomial space.

2 Preliminaries

Let Q be a finite set. We view elements of R? as wectors, more specifically as row vectors.
We write 1 for the all-1 vector, i.e., the element of {1}?. For a vector u € R?, we denote
by u' its transpose, a column vector. A vector u € [0,1]% is a distribution over Q if p17 = 1.
For g € Q we write ¢, for the (Dirac) distribution over @ with d4(¢) = 1 and d6,4(r) = 0 for
r € Q\ {q}. We view elements of R¥*? as matrices. A matrix M € [0,1]9*% is called
stochastic if each row sums up to one, i.e., M1T =17,

» Definition 1. A labelled (discrete-time, finite-state, finite-word) Markov chain (LMC)
is a quadruple M = (Q,X%, M,n) where @ is a finite set of states, ¥ is a finite alphabet
of labels, the mapping M : ¥ — [0,1]9*® specifies the transitions, and n € [0,1]9, with
n' + > s M(a)1"T =17, specifies the end-of-word probability of each state.

Intuitively, if the LMC is in state ¢, then with probability M (a)(g,q’) it emits a and moves
to state ¢’, and with probability n(q) it stops emitting labels. For the complexity results
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in this paper, we assume that all numbers in 1 and in the matrices M(a) for a € ¥ are
rationals given as fractions of integers represented in binary. We extend M to the mapping
M : 3% — [0,1]9%9 with M(ay ---ax) = M(a1) -+ M(ay) for ay,...,a; € X. Intuitively, if
the LMC is in state ¢ then with probability M (w)(q,q’) it emits the word w € ¥* and moves
(in |w]| steps) to state ¢’. We require that each state of an LMC have a positive-probability
path to some state ¢ with 7(q) > 0.

Fix an LMC M = (Q, X, M, n) for the rest of this section. To an (initial) distribution 7
over @ we associate the discrete probability space (X*, 2%, Pr,) with Pr(w) := Pr,({w}) :=
7M(w)n'. To avoid clutter and when confusion is unlikely, we may identify the distribu-
tion 7 € [0,1]% with its induced probability measure Pr,; i.e., for a word or set of words W
we may write (W) instead of Pr, ().

Given two initial distributions 71, 7o, the (total variation) distance between 71 and my is
defined as follows:*

d(my,ma) = V[EICJIX)} |1 (W) — 7 (W)].

As (W) —=m2(W) = mo(X*\W)—m1 (X \W), we have d(m1, T2) = supy c s (71 (W) —m2(W)).
The following proposition follows from basic principles, see, e.g., [21, Lemma 11.1]. In
particular, it says that the supremum is attained and the total variation distance is closely
related to the Li-distance:

» Proposition 2. Let M be an LMC. For any two initial distributions 71, 7o we have:

dlrivms) = g (V) =ma(W) = 5 3 () = maw)

The mazimum is attained by W = {w € ¥* : m(w) > ma(w)}.

In view of this proposition, all complexity results on the (total variation) distance hold
equally for the L;-distance.

An LMC M is called acyclic if its transition graph is acyclic. Equivalently, M is acyclic
if for all ¢ € @ we have that Prs_ has finite support, i.e., {w € ¥* : Prs_(w) > 0} is finite.

3 The Threshold-Distance Problem

In [20, Section 6] (see also [7, Theorem 7]), a reduction is given from the clique decision problem
to show that computing the distance in LMCs is NP-hard. In that reduction the distance is
rational and its bit size polynomial in the input. It was shown in [5, Proposition 12] that the
distance d can be irrational. Define the non-strict (resp. strict) threshold-distance problem
as follows: Given an LMC, two initial distributions m, 72, and a threshold 7 € [0,1] N Q,
decide whether d(my,m3) > 7 (resp. d(my,m2) > 7). In [5, Proposition 14] it was shown that
the non-strict threshold-distance problem is NP-hard with respect to Turing reductions.

In the following two subsections we consider the threshold-distance problem for general
and acyclic LMCs, respectively.

L One could analogously define the total variation distance between two LMCs M; = (Q1, %, M1,n1) and
Mz = (Q2,%, M2, n2) with initial distributions 71 and 72 over @1 and Q2, respectively. Our definition
is without loss of generality, as one can take the LMC M = (Q, X, M, n) where @ is the disjoint union
of @1 and @2, and M, n are defined using M1, M2,7n1,72 in the straightforward manner.
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3.1 General LMCs

We show:
» Theorem 3. The strict threshold-distance problem is undecidable.

Proof. We reduce from the emptiness problem for probabilistic automata. A probabilistic
automaton is a tuple A = (Q, %, M, a, F) where @ is a finite set of states, X is a finite
alphabet of labels, the mapping M : ¥ — [0,1]9*?, where M (a) is a stochastic matrix for
each a € X, specifies the transitions, a € [0,1]% is an initial distribution, and F C Q is a
set of accepting states. Extend M to M : ¥* — [0,1]9%? as in the case of LMCs. In the
case of a probabilistic automaton, M (w) is a stochastic matrix for each w € ¥*. For each
w € %* define Pr4(w) := aM(w)n" where € {0,1}? denotes the characteristic vector of F'.
The probability Pr4(w) can be interpreted as the probability that A accepts w, i.e., the
probability that after inputting w the automaton A is in an accepting state. The emptiness
problem asks, given a probabilistic automaton A, whether there is a word w € ¥* such that
Pry(w) > % This problem is known to be undecidable [22, p. 190, Theorem 6.17].

In the following we assume ¥ = {a1,...,ar}. Given a probabilistic automaton 4 as
above, construct an LMC M = (QU{q1,gs}, ZU{b, f+, f-}, M, d4,) such that g1, g are fresh
states, and b, f, f_ are fresh labels. The transitions originating in the fresh states ¢, qg are
as follows:

1
if+

Here and in the subsequent pictures we use a convention that there be a state gg with
7(¢gs) = 1 and that n(q) = 0 hold for all other states.

Define m; := d,4,. Then for all w € £* we have:

m(wb) = m(wfy) = (;)Mi (1)

The transitions originating in the states in @) are defined so that all ¢ € () emit each a €
with probability i (like ¢1). For all ¢ € F there is a transition to gg labelled with % and fy;
for all ¢ € @ \ F there is a transition to gg labelled with % and f_:

1 1
251 251

E
e A
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Formally, for ¢, € Q and a € ¥ set M(a)(q,7) = 5-M(a)(q,7). For q¢ € F set

M(f1)(g,q5) == %, and for ¢ € Q \ F set M(f-)(q,qs) := 3. Define 75 := a (in the

natural way, i.e., with m2(q1) = m2(gg) = 0). Then for all w € ¥* we have:

jwl
mo(wfy) = (21k> 'PI",A(’U))'% and
1\ vl 1 (2)
m(wfo) = (%> F(1=Pra(w)) - 5

Consider L := X*{b, f+}. We have 1 (L) = 1. One can compute m3(L) in polynomial time by

computing the probability of reaching a transition labelled by f (the label b is not reachable).

We claim that there is w € £* with Pra(w) > % if and only if d(my, 72) > 71 (L) — m2(L). It
remains to prove this claim.

Suppose there is no w € X* with Pr4(w) > % Then, by (1) and (2), for all w € X* we

have 71 (wfy) > mo(wfy). Hence:
{we (Buib, fi, /- :m(w) >0, m(w) >m(w)} = L

By Proposition 2 it follows d(my, me) = m1 (L) — m2(L).
Conversely, suppose there is w € ¥* with Pry(w) > % Consider L' := L\ {wf;}. We
have:

d(my,ma) > m (L) —m (L) Proposition 2
= m (L) — m(wfy) — ma(L) + ma(wfi) definition of L'
= m(L) — m(L) + 1 " 1Pr (w) — 1 by (1) and (2)
- 2 2k 2 A 1 Y
1
> m1(L) — mo(L) Prg(w) > B <
Cortes, Mohri, and Rastogi [7] conjectured “that the problem of computing the [...] distance

[...] is in fact undecidable”, see the discussion after the proof of [7, Theorem 7]. Theorem 3
proves one interpretation of that conjecture. But the distance can be approximated with
arbitrary precision, cf. Section 4, so the distance is “computable” in this sense.

In [5, Theorem 15] it was shown that there is a polynomial-time many-one reduction

from the square-root-sum problem to the non-strict threshold-distance problem for LMCs.

Decidability of the non-strict threshold-distance problem remains open.

3.2 Acyclic LMCs

It was shown in [20, Section 6] and [5, Proposition 14] that the non-strict threshold-distance
problem is NP-hard with respect to Turing reductions, even for acyclic LMCs. We improve
this result to PP-hardness:

» Proposition 4. The non-strict and strict threshold-distance problems are PP-hard, even
for acyclic LMCs and even with respect to many-one reductions.

The proof uses the connection between PP and #P. Consider the problem #NFA, which
is defined as follows: given a nondeterministic finite automaton (NFA) A over alphabet X,
and a number n € N in unary, compute |L(A) N X", i.e., the number of accepted words of
length n. The problem #NFA is #P-complete [14]. The following lemma forms the core of
the proof of Proposition 4:

130:5

ICALP 2018



130:6

On Computing the Total Variation Distance of Hidden Markov Models

» Lemma 5. Given an NFA A= (Q, E,(S,q(l),F) and a number n € N in unary, one can
compute in polynomial time an acyclic LMC M and initial distributions w1, 7o and a rational
number y such that

127\ L(A)|

d(m,m) = y+
X[ |Q["

Proof. In the following we assume Q = {¢"),... ¢} and ¥ = {ay,...,ax}. Construct the
acyclic LMC M = (Q', X U {b, f+, f—}, M) such that

Q, = {pOapla"'vpn7Q$} U {qz(])OSlgny ISJSS} U {T’LOSZSH}

and b, fy, f_ are fresh labels. The transitions and end-of-word probabilities originating in

the states pg,...,pn,qs are as follows:
@ ! Fa1
: : : orb
(L= 30/
Define 7y := dp,. Then for all w € ¥™ we have:
1 1
m(wdb) = ? e 1 3)
m(wf) = 1?”(1_37") (4)

The transitions originating in the states q(j )

. ,ri are as follows. For each a € ¥ and each
i€{0,...,n— 1} set:

M(CL) (7"7;,7”7;+1) =

. ., 1 1 . , '
M(a)(q?,q9)) = s Vie{l,....s} VYqu) edq?,a)
; 1 5(qY9) . q .
M(a)(qi(j),rzqu) = % (1—¥) Vjie{l,...,s}
1
k

Observe that if 7 € {0,...,n — 1} then r; and all ql(j) emit each a € ¥ with probability 1/k.
For each ¢\9) € F set M(f+)(q£tj),q$) := 1. For each ¢\9) ¢ F set M(f,)(qgj),%) = 1.
Finally, set M (f_)(rn,qs) := 1.

» Example 6. We illustrate this construction with the following NFA A over ¥ = {a;,as}:

Q=Ix

ag

DO
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For n = 3 we obtain the following transitions:

1 1 1 1 1 1

a1, 5Q a1, 7Q a1, 7Q

241, 102 @ 241, 7042 @ 2491, 742
1 2

Define 7y := 5q<1). For all w € ¥* write #acc(w) for the number of accepting w-labelled
0

runs of the automaton A, i.e., the number of w-labelled paths from ¢(*) to a state in F. For
all w € ¥™ we have:

1 #ace(w)

mwfs) = o (5)
ma(wf ) = ki (1- #%ffw)) (6)

Define B := X"{b, f_}. By (3), (4) we have m;(B) = 1. One can compute m3(B) in
polynomial time by computing the probability of reaching a transition labelled by f_ (the
label b is not reachable). Set y := 71 (B) — m2(B).

It follows from Proposition 2 that d(my,m2) = 71 (L) — m2(L) holds for

= {weEU{b fr,f-})": 0 <m(w) = ma(w)}.
Observe that L(A) = {w € X" : #acc(w) > 1}. Hence it follows with (3), (4), (6):
L = ¥y U ("N LAD{S-}

Defining L(A) := X"\ L(A) we can write:

L = B\ (L(A){f-})
Thus we have:

d(my,m) = m (B\ (L(A){f- })) — Ty (B\ (m&ﬂ})) as argued above
Y + o (L(A){f_}) — 771( A){f-1}) definition of y

Observe that L(A) = {w € ¥" : #acc(w) = 0}. Hence we can continue:

I I
_ s EALJEAL 1y by (6). (4
= y+ ’L('A)‘ M definitions <

knsn e
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The PP lower bound from Proposition 4 is tight for acyclic LMCs:

» Theorem 7. The non-strict and strict threshold-distance problems are PP-complete for
acyclic LMCs.

» Remark 8. The works [20, 7] also consider the Lj-distances for integers k:

di(m1,m2) = Z |1 (w) — o (w)|*

wEX*

For any fixed even k one can compute dj, in polynomial time, see, e.g., [7, Theorem 6]. In
contrast, it is NP-hard to compute or even approximate dj for any odd & [7, Theorems 7
and 10]. Our PP- and #P-hardness results (Proposition 4 and Theorem 9) hold for d; (due
to Proposition 2) but the reductions do not apply in an obvious way to dj, for any k > 2.
However, the argument in the proof of Theorem 7 for the PP upper bound does generalize
to all dy, see [15].

4 Approximation

As the strict threshold-distance problem is undecidable (Theorem 3), one may ask whether
the distance can be approximated. It is not hard to see that the answer is yes. In fact, it was
shown in [5, Corollary 8] that the distance can be approximated within an arbitrary additive
error even for infinite-word LMCs, but no complexity bounds were given. In this section we
provide bounds on the complexity of approximating the distance for (finite-word) LMCs.

4.1 Hardness
Lemma 5 implies hardness of approximating the distance:

» Theorem 9. Given an LMC and initial distributions w, 7 and an error bound ¢ > 0 in
binary, it is #P-hard to compute a number x with |d(my,72) — x| < €, even for acyclic LMCs.

Proof. Recall that the problem #NFA is #P-complete [14]. Let A be the given NFA and
n € N. Let M, 1,72,y be as in Lemma 5. Approximate d(my,72) within 1/(3|%]|"|Q|™) and
call the approximation d. It follows from Lemma 5 that |L(.A) N X"| is the unique integer u
with

n 2" —u - < 1

Y+ =————-d < ————.

1=l 3[X[Q

Such u can be computed in polynomial time. |

Theorem 9 improves the NP-hardness result of [5, Proposition 9]. In fact, PP and #P are
substantially harder than NP: By Toda’s theorem [25], the polynomial-time hierarchy (PH)
is contained in PPP = P#P. Therefore, any problem in PH can be decided in determin-
istic polynomial time with the help of an oracle for the threshold-distance problem or for
approximating the distance.

4.2 Acyclic LMCs

Towards approximation algorithms, define Wy := {w € ¥* : m1(w) > ma(w)} and Wy =
{w € ¥* : m(w) < m2(w)}. By Proposition 2 we have:

d(Trl,’/TQ) = 7T1(W2)77I'2(W2) = 177T1(W1)*71’2(W2) (7)
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Therefore, to approximate d(m,m2) it suffices to approximate m;(W;). A simple sampling
scheme leads to the following theorem:

» Theorem 10. There is a randomized algorithm, R, that, given an acyclic LMC M and
initial distributions w1, 7o and an error bound € > 0 and an error probability 6 € (0,1), does
the following:

R computes, with probability at least 1 — &, a number x with |d(71,72) — x| < &;
R runs in time polynomial in @ and in the encoding size of M and my, 3.
Note that % is not polynomial in the bit size of €, so combining Theorems 9 and 10 does not
imply breakthroughs in computational complexity.

Proof. Let i € {1,2}. The length of a longest word w with m;(w) > 0 is polynomial in the
encoding of the (acyclic) LMC M. Thus, one can sample, in time polynomial in the encoding

of M, 7y, m, a word w according to Pry,; i.e., any w is sampled with probability m;(w).

Similarly, one can check in polynomial time whether w € W;. If m samples are taken,
the proportion, say p;, of samples w such that w € W, is an estimation of m;(W;). By

Hoeffding’s inequality, we have |p; — m;(W;)| > €/2 with probability at most 2e~me/2,
Choose m > —2 In2. It follows that |p; — m;(W;)| > /2 with probability at most §/2.

Therefore, by (7), the algorithm that returns 1 — p; — po has the required properties. <

4.3 General LMCs

Finally we aim at an algorithm that approximates the distance within ¢, for € given in binary.

By Theorem 9 such an algorithm cannot run in polynomial time unless P = PP. For LMCs
that are not necessarily acyclic, words of polynomial length may have only small probability,
so sampling approaches need to sample words of exponential length. Thus, a naive extension
of the algorithm from Theorem 10 leads to a randomized exponential-time algorithm. We
will develop a non-randomized PSPACE algorithm, resulting in the following theorem:

» Theorem 11. Given an LMC, and initial distributions w1, w2, and an error bound € > 0
in binary, one can compute in PSPACE a number x with |d(m,m2) — x| < e.

The approximation algorithm combines special techniques. The starting point is again the
expression for the distance in (7). The following lemma allows the algorithm to neglect words
that are longer than exponential:

» Lemma 12. Given an LMC, and initial distributions 71,7, and a rational number A > 0
in binary, one can compute in polynomial time a number n € N in binary such that

mi(X7") < A for bothi € {1,2}.

For n as in Lemma 12 and both i € {1,2}, define W/ := W; N ¥=". By Lemma 12 it would
suffice to approximate ; (W) for both i, as we have by (7):

m (W) +m(Wy) < 1—d(m,m) < m(W])+m(Ws)+2) (8)

However, it not obvious if m;(W/) can be approximated efficiently, as for exponentially long
words w it is hard to check if w € W/ holds. Indeed, 7;(w) may be very small and may have
exponential bit size. The main trick of our algorithm will be to approximate ;(w) using
floating-point arithmetic with small relative error, say 7;(w) € [m;(w)(1 — ), m;(w)(1 + 0)]
for small # > 0. This allows us to approximate m1(W7) + m2(W3) (crucially, not the two
summands individually). Indeed, define approximations for W7 and W3 by

Wy = {weX" : 7(w) < F(w)} and Wy = {weI=": 7 (w) > ma(w)}.

130:9
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Then we have:

ma(w) < m(w) < mo(w)+ bm (w) + Omy(w)  for w e Wy N W,
m(w) < m(w) < m(w)+ 0m(w) + Ome(w) for w € Wo N W/

It follows:

WQ(W]QWQI) < Fl(WlﬁWQ/) < WQ(’WlﬂWQ/)JFQe
Wl(WQﬂWll) < WQ(WQQW{) < 7T1(W2ﬂW{)+29

Hence we have:

T (W) + ma(Wh) = m (Wi NWY) + (W N W) + mo(Wa N W) + m (Wa N W)

9) —~ —
< m(Wh) + ma(Wa)

(9)
< m (W) + ma(W3) + 40

By combining this with (8) we obtain:
(W) +m(Wy) =48 < 1—d(m,m) < (W) +ma(Wa) + 2A (10)

It remains to tie two loose ends:

1. develop a PSPACE method to approximate 7;(w) within relative error 6 for any 6 > 0 in
binary, where w is an at most exponentially long word (given on a special input tape);

2. based on this method, approximate m(Wl) in PSPACE.

For item 1 we use floating-point arithmetic, for item 2 we use Ladner’s result [19] on counting

in polynomial space.

For k € N, define F, := {m -2*: 2 € Z, 0 < m < 2¥ — 1}, the set of k-bit floating-point
numbers. For our purposes, nonnegative floating-point numbers suffice, and there is no need
to bound the exponent z, as all occurring exponents will have polynomial bit size. We define
rounding as usual: for x > 0 write (x); for the number in Fj that is nearest to = (break
ties in an arbitrary but deterministic way). Then there is 6 with (x)y = = - (1 + ) and
|6] < 2%, see [13, Theorem 2.2]. A standard analysis of rounding errors in finite-precision
arithmetic [13, Chapter 3] yields the following lemma:

» Lemma 13. Let m be an initial distribution and 0 < 6 < 1. Let k € N be such that
28 >2(n+1)|Q|/0. Let w = ajag---ay, € X% with m < n. Compute 7(w) as

(- ((m- M(a1)) - M(az))---) - M(am)) 0",

where rounding (-)i, s applied after each individual (scalar) multiplication and addition. Then

T(w) € [r(w)(1 — 0),n(w)(1 + 0)].

Proof. For all i € N write ; := i-27%/(1 —4-27%). By [13, Equation (3.11)] there are
matrices Ay, ..., A, and a vector 1 such that

T(w) = 7 (M(a1) + A1) - (M(az) + A2) -+ (M(am) + D) - (n+7) "

and |A;] < yo/M(a;) and || < 7|gn, where by [A;] and |5)] we mean the matrix and vector
obtained by taking the absolute value componentwise. (In words, the result 7(w) of the
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floating-point computation is the result of applying an exact computation with slightly
perturbed data—a “backward error” result.) It follows:

m—+1
|7 (w) — w(w)|] < (— 1+ H (1+v0)) )W(w) by [13, Lemma 3.8]
j=1
< Ym+1) o (w) by [13, Lemma 3.3]
< 2(n+1)|Q[ -2 7 (w) as (n+1)Q|-27F < 1/2
< Or(w) <

The development so far suggests the following approximation approach: Let € > 0 be the
error bound from the input. Let n € N be the number from Lemma 12, where A is such that
2\ = ¢/2. Let k € N be the smallest number such that 2% > 2(n + 1)|Q|/6, where 6 is such
that 40 = /2. Observe that k (the bit size of 2¥) is polynomial in the input. Define, for

each word w and both i, the approximation 7;(w) as in Lemma 13. This defines also W7, Ws.

By (10) we have:

~ ~ € ~ ~ €
7T1(W1)+772(W2)—§ < 1—-d(m,m) < 771(W1)+7T2(W2)+§

Thus we can complete the proof of Theorem 11 by proving the following lemma:
» Lemma 14. For both i, one can approzimate m(vaZ) within £/4 in PSPACE.

Proof. We discuss only the approximation of m; (W1 ); the case of (W) is similar.
Construct a “probabilistic PSPACE Turing machine” 7 that samples a random word w
according to Pr,,. For that, T uses probabilistic branching according to the transition
probabilities in M. While producing w in this way, but without storing w as a whole,
T computes also the values 71 (w), T2 (w) according to Lemma 13. If and when w gets longer
than n then 7 rejects. If 71 (w) < To(w) then T accepts; otherwise T rejects. The probability
that 7 accepts equals ﬂl(Wl). This probability can be computed in PSPACE by Ladner’s
result [19] on counting in polynomial space. To be precise, note that this probability is a
fraction p/q of two natural numbers p, g of at most exponential bit size. By Ladner’s result
one can compute arbitrary bits of p, ¢ in PSPACE. Hence an approximation within /4 can
also be computed in PSPACE. Technical details about how we apply Ladner’s result are
provided in [15]. <

5 Open Problems

In this paper we have considered the total variation distance between the distributions
on finite words that are generated by two LMCs. In a more general version of LMCs,
the end-of-word probabilities are zero, so that the LMC generates infinite words. The
production of finite words w € ¥* can be simulated by producing w$$$--- where $ is an
end-of-word symbol. It follows that the undecidability and hardness results of this paper
apply equally to infinite-word LMCs. In fact, all these results strengthen those from [5],
where the total variation distance between infinite-word LMCs is studied. The PSPACE
approximation algorithm in this paper (Theorem 11) applies only to finite words, and the
author does not know if it can be generalized to infinite-word LMCs. Whether the non-strict
threshold-distance problem is decidable is open, both for finite- and for infinite-word LMCs.

Another direction concerns LMCs that are not hidden, i.e., where each emitted label
identifies the next state; or, slightly more general, deterministic LMCs, i.e., where each state
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and each emitted label identify the next state. The reduction that shows square-root-sum
hardness in [5, Theorem 15] also applies to the threshold-distance problem for deterministic
finite-word LMCs, but the author does not know a hardness result for approximating the
distance between deterministic LMCs.
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