
Spanning Trees With Edge Conflicts and Wireless
Connectivity

Magnús M. Halldórsson
School of Computer Science, Reykjavik University, Iceland
mmh@ru.is

Guy Kortsarz
Rutgers University, Camden, NJ, USA
guyk@camden.rutgers.edu

Pradipta Mitra
Google Research, New York, USA
ppmitra@gmail.com

Tigran Tonoyan
School of Computer Science, Reykjavik University, Iceland
ttonoyan@gmail.com

Abstract
We introduce the problem of finding a spanning tree along with a partition of the tree edges into
fewest number of feasible sets, where constraints on the edges define feasibility. The motivation
comes from wireless networking, where we seek to model the irregularities seen in actual wireless
environments. Not all node pairs may be able to communicate, even if geographically close –
thus, the available pairs are specified with a link graph L = (V,E). Also, signal attenuation need
not follow a nice geometric formula – hence, interference is modeled by a conflict (hyper)graph
C = (E,F ) on the links. The objective is to maximize the efficiency of the communication, or
equivalently, to minimize the length of a schedule of the tree edges in the form of a coloring.

We find that in spite of all this generality, the problem can be approximated linearly in terms
of a versatile parameter, the inductive independence of the interference graph. Specifically, we
give a simple algorithm that attains a O(ρ logn)-approximation, where n is the number of nodes
and ρ is the inductive independence, and show that near-linear dependence on ρ is also necessary.
We also treat an extension to Steiner trees, modeling multicasting, and obtain a comparable
result.

Our results suggest that several canonical assumptions of geometry, regularity and “niceness”
in wireless settings can sometimes be relaxed without a significant hit in algorithm performance.
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1 Introduction

We introduce the problem of finding a spanning tree along with a partition of the tree edges into
fewest number of feasible sets, which are independent sets in a given conflict (hyper)graph.
The motivation comes from wireless networking, where we seek a basic communication
structure while capturing the irregularities seen in actual wireless environments.

A spanning tree is the minimal structure for connecting the given set of nodes into a
mutually communicable network. The cost of a communication spanning tree is the time
required to schedule all the tree edges – the transmission links – while obeying the interference
caused by simultaneous transmissions. The scheduling complexity of the tree represents its
throughput capacity: how much communication can be sustained in the long run. The task
might be to aggregate the data measured at the sensor nodes, or to broadcast using one-to-one
communication to all nodes of the network.

Algorithmic studies of wireless connectivity to date have generally involved strong “nice-
ness” assumptions. One core assumption is that points are located in the Euclidean plane
and all (close enough) pairs of nodes are available as links for use in the spanning tree.
Interference modeling has become progressively more realistic, starting with range-based
graph models to the fractional SINR model of interference, but the common thread is that
interference is a direct function of the geometry. While natural, these assumptions depend
on a simplified view of the nature of wireless communication.

Wireless networking in the real world behaves quite different from these theoretical
models [10, 32, 38] and typically displays a high degree of irregularity. This manifests
in how the strength of signals (and the corresponding interference) often varies greatly
within the same region, and is often poorly correlated with distance [2]. This behavior
holds even in simple outdoor environments, but is magnified inside buildings. It is also
evidenced by fluctuations, sensitivity to environmental changes (even levels of humidity),
and hard-to-explain unreliability.

There has been increased emphasis for greater robustness in the design and analysis of
wireless algorithms to address the observed irregularities. In the world of communications
engineering, the default is to introduce stochastic distributions, e.g., on signal strengths. The
algorithms world prefers more adversarial effects, but that can easily lead to intractability.

The objective of this work is to embrace this irregularity in connectivity problems. We
replace the previous assumptions by the opposite premises:

A link may not be usable even if it should be.
and

Interference need not follow (or even relate to) the underlying geometry.

Technically, the former premise means that the set of usable or available links is now
given as a link graph L = (V,L). We place no restrictions on the structure of this graph.
The second premise implies another graph, this time on top of the links. Namely, the
conflict (hyper)graph C = (L,F ) specifies whether a given pair of links in L can coexist in
the same color (of a spanning tree). In the Connectivity Scheduling problem, we seek a
spanning tree T of L and a coloring of the links of T minimizing the number of colors used.

These formulations naturally raise a number of questions: Can arbitrary sets of avail-
able/usable links actually be handled effectively? Can we disconnect the conflicts/interference
from the geometry? Since the ugly specter of intractability is bound to raise its head some-
where, what are minimal restrictions that keep these problems well-approximable?
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Our Results. Given the generality of the ConnectivityScheduling problem, it is unsur-
prising that it is very hard even to approximate. We show that strong n1−ε-approximation
hardness holds, even for the natural special case of 2-hop interference. Instead, we aim to
obtain approximations in terms of natural instance parameters.

We show that the problem is approximable within O(ρ logn)-factor, where ρ is the
inductive independence of the (fractional) conflict graph. This is particularly relevant since ρ
is known to be constant in both of the predominant interference models: the physical (or
SINR) model, and the protocol model. This is attained by a simple greedy algorithm that
can be viewed as a combination of Kruskal’s MST algorithm and a link scheduling algorithm
for the physical model. In contrast, we find that the (perhaps more natural) approach of
selecting and coloring an MST fails badly.

We also generalize the problem to Steiner trees and obtain a similar logarithmic approxi-
mation. The results carry over to the SINR model, where we obtain the first results that
hold for general metric spaces. We also give a supplementary result in the full version (for
space reasons), involving natural geometric interference assumptions, namely that all links of
length smaller than a threshold are available.

Definitions. In line with a modern view of wireless interference, we represent the interference
conflicts by a fractional conflict graph C = (L,W ). Here L is the set of communication links
and W : L× L→ R+ is a function on ordered pairs of links, where W (e, f) represents (or
approximates) the degree to which a transmission on link e interferes with a transmission on
link f . Of particular interest are functions W in terms of geometric relationships involving
link lengths and distances between links. Note that W may be asymmetric. For convenience,
let W (e, e) = 0. We shall write W (S, e) =

∑
f∈SW (f, e) and W (f, S) =

∑
e∈SW (f, e). Let

C[Y ] = (Y,W �Y ) denotes the subgraph induced by a given subset Y ⊆ L.
A set S of links is an independent or a feasible set if W (S, e) ≤ 1, for all e ∈ S. A

coloring of C = (L,W ) is a partition of L into independent sets. Observe that when W

is a 0-1 function, we have the usual independent sets and colorings of graphs. Also, the
formulation with fractional conflicts corresponds to hypergraphs that contain a hyperedge
for each minimal set S′ where W (S′, e) ≥ 1 holds for some e ∈ S′.

We can now state our Connectivity Scheduling problem formally:

Given a link graph L = (V,L) and a fractional conflict graph C = (L,W ), we seek a
spanning tree T of L and a coloring of C[T ], using the fewest number of colors.

A fractional conflict graph C = (L,W ) is said to be ρ-inductive independent, w.r.t. an
ordering ≺ of the links, if for every link e and every feasible set I with e ≺ I, W (I, e) +
W (e, I) ≤ ρ, where e ≺ I means that e precedes each link in I. Here, “inductive” refers
to how the interference is measured only towards later links, and “independence” that it is
towards independent sets. In geometric settings (including range-based and SINR models),
≺ corresponds to a non-decreasing ordering by link length.

For a fractional conflict graph C = (L,W ), let χ(C) denote the smallest number of
independent sets into which L can be partitioned; when C is an ordinary graph, χ(C) is the
chromatic number of C. We view a coloring of C also as a schedule and refer to the colors
also as slots (which could be time slots or frequency bands).

Notable Instantiations. Connectivity Scheduling has a number of special cases of
independent interest, both graph-based and geometric:
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A well-studied setting is where two links conflict if they are incident on a common link,
i.e., when C is the square of the line graph of the link graph L. This case corresponds
to bidirectional version of the classic radio network model. The directed version of
Connectivity Scheduling was treated in [9] as the radio aggregation scheduling
problem.
In range-based or disk models, nodes are embedded in the plane and two links are adjacent
if the distance between (the closest points on) them is less than K times the length of the
longer link, where K is some fixed constant. In a variant, the condition is on distances
between particular nodes on the links. Also, in the the related protocol model, adjacency
occurs if the distance is less than K1 times the length of the longer link plus K2 times
the length of the shorter link, for some constants K1,K2.
The original driving motivation is when nodes and links are embedded in a metric space
and the fractional conflicts follow the geometric SINR model of interference in terms of
the lengths and distances between links. Before this work, only the case when L is the
complete graph over a set of points in a Euclidean metric was considered.
A different geometric version is when we view that no signal gets transmitted between
nodes on unavailable links, perhaps due to an obstacle. The links are then unavailable,
but the nodes also don’t interfere with each other. We refer to this as the Missing Links
version.
A natural special case occurs when link unreliability is restricted by link length, so that
only reasonably long links are unavailable or attenuated, but short links follow the normal
SINR laws (short links are reliable). This is treated in the full version of this paper.
Finally, when the conflict graph C is the line graph of the link graph L, i.e., C = L(L),
we obtain the well-known minimum degree spanning tree (MDST) problem, where given
a graph L, the goal is to find a spanning tree of smallest maximum degree. By König’s
theorem, the chromatic number of the line graph of a tree (in fact, of any bipartite graph)
is equal to the maximum degree of the tree. This problem has more structure that allows
for better solution: while it is NP-hard, it can be approximated within an additive one
[8]. In particular, L(L) is claw-free (does not contain an induced star graph K1,3), which
is stronger than being 2-inductive independent), and is intimately related to L.

Related Work. The connectivity problem in the geometric SINR model was first considered
by Moscibroda and Wattenhofer [35]. It was, in fact, the first work on worst-case analysis in
the SINR model. They show that unlike in random networks, the worst-case connectivity
depends crucially on the use of power control, and with optimal power control, O(log4 n)
slots suffice to connect the nodes. They soon improved this to O(log2 n) [36, 34]. Currently,
the best upper bounds known are O(logn) [17] and O(log∗ Λ) [23], where Λ is the ratio
between the longest to the shortest length of a link in a minimum spanning tree (MST), a
structural parameter that is independent of n. Both of these results hold for the MST of the
pointset; there are pointsets where Ω(log∗ Λ) slots are necessary for scheduling an MST [21].

The scheduling complexity of connectivity relates closely to the efficiency of aggregation,
a key primitive for wireless sensor networks. We refer the reader to [26] for bibliography on
aggregation/collection problems.

There are many approaches that have been proposed to model irregularity in wireless
networks. We first examine static cases, or the modeling of non-geometric behavior. The
basic SINR model allows the pathloss constant α to be adjusted [13], giving a first-order
approximation of the signal gain. In the engineering community, it is most common to
assume that the deviations are drawn from a particular stochastic distribution, typically
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assuming independence of events. In the TCS camp, the prevailing approach is to view the
variations as conforming the plane into a non-Euclidean metric space [7, 16], while retaining
some tractable characteristics. This can also entail identifying appropriate parameters [4].

For frequent temporal changes, the standard engineering assumption is Rayleigh fading.
Dams et al. [6] (see also [22]) showed that link scheduling algorithms are not significantly
affected by such variation, assuming independence across time.

For unpredictably changing behavior, there is much research on adapting to new conditions,
particularly with exponential backoff. A theoretic model proposed to specifically capture
unreliability is the dual graph model [33], which extends the radio network model to a pair of
graphs, the reliable and the unreliable links, where the latter are under adversarial control.
The focus there is on distributed algorithms for one-shot problems, like global and local
broadcast problems, where the nodes do not know which links are reliable. As far as we
know, it has not been considered in settings involving a long-term communication structure.

Inductive independence was first defined by [1] and studied by [37] in the graph setting,
while the weighted version was introduced by Hoefer and Kesselheim [25]. It has been used as
a performance measure for various problems related to wireless networks, including admission
control [11], dynamic packet scheduling [31, 15], and spectrum auctions [25, 24, 15].

Outline of the paper. We first examine, in Sec. 2, how the standard approach – finding a
minimum spanning tree – fares for our problem, and show that it can give poor solutions
in every known interference model when there are missing or unreliable links. We then
give in Sec. 3 a greedy algorithm for Connectivity Scheduling achieving O(ρ logn)-
approximation, where ρ is the inductive independence number of the conflict graph. This
dependence on ρ is shown to be essentially tight in Sec. 5. We also obtain a similar
approximation of a Steiner or multicast version of the problem in Sec. 4. Implications of our
results to the SINR (or physical) model are given in Sec. 6. The rest of the paper can safely
be read without any background in that model. We then close with open problems. Missing
proofs, as well as a brief primer on SINR concepts, are given in the full version of the paper.

2 MST Fails

In a basic setting, the nodes are located on the plane, and the interference between two links
is a function of the lengths of links (distance between the two end-nodes), and the distance
between the (endpoints of) links. For instance, in the SINR model, the interference between
two links is a decreasing function of their distance, and an increasing function of the length
of the interfered link. In this setting, the Euclidean minimum spanning tree (MST) over the
set of nodes is a natural candidate for connectivity, since it favors short links and has low
degree (or, more generally, contains few links in the vicinity of any node). Indeed, the MST
of n nodes can be scheduled in O(logn) slots in the Euclidean SINR model [17].

Somewhat surprisingly, we find that when the set of possible links is restricted, the MST
can actually fail quite badly. This holds in every reasonable model of interference.

I Interference Assumption 1. We say that an interference model is reasonable if: a)
incident links cannot be scheduled together, while b) sparse instances of equal length links
can be scheduled in O(1) slots, where a set of length ` links is sparse if any ball of radius `
contains O(1) endpoints of those links.

Every geometrically-defined wireless interference model known satisfies this reasonableness
property. In particular, this holds in the protocol and Euclidean SINR models.

ICALP 2018
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Figure 1 The construction from Thm. 1

I Theorem 1. For any n, there is an instance of n nodes embedded on the plane together
with a spanning tree that is schedulable in O(1) slots while scheduling the MST requires
Ω(n1/3) slots, in every reasonable interference model.

Proof. Let k ≥ 1 be a number and K = 2k2. Let V = {o} ∪ {vi,j : i = 0, 1, . . . , k − 1, j =
0, 1, . . . ,K − 1} denote the set of n = kK + 1 = 2k3 + 1 nodes. We position the nodes in
the plane using polar coordinates, with the node o as the origin. For node vi,j , angular
coordinate ri,j is 2π · i/k, while its radial coordinate is k + j.

The links are given by L = O ∪ T ∪ Y , where O = {(o, vi,1) : i = 0, . . . , k − 1},
T = {(vi,j , vi,j+1) : i = 0, . . . , k − 1, j = 0, . . . ,K − 2}, Y = {(vi,K−1, vi+1 mod k,K−1) : i =
0, . . . , k − 1}, or the ordinary, the tiny and the yuge links. That is, the link graph is in the
form of a wheel, centered at origin, with k spokes, and K nodes on each spoke (see Fig. 1).
Ordinary links are incident with the origin, while the yuge links form the tire of the wheel.

We observe that d(vi,K−1, vi+1 mod k,K−1) > k = d(o, vi′,1), for any i, i′. Thus, the MST
consists of the ordinary and tiny links, S ∪ L. Since all the ordinary links have an endpoint
in the origin, they must all be scheduled in different slots, implying that the MST requires
k = Θ(n1/3) slots. On the other hand, a more efficient solution is to use the set Q, consisting
of T , Y and one (arbitrary) link from O. This set Q is a union of three sparse subsets, and
therefore can be scheduled in O(1) slots. J

This same example shows why the known results for Euclidean SINR do not carry over to
general metric spaces (even without missing links). Namely, one could simply form a metric
space on the n nodes by shortest-path distances in the link graph.

3 Greedy Algorithm

A natural greedy approach is to find a large feasible subset of edges, assign it a fresh color,
contract it, and iterate on the contracted graph. The key step is obtaining a constant-
approximation for a maximum feasible subset. A logarithmic approximation then follows
from a set cover argument.

We assume in this section that L can have parallel edges but no loops. We assume that the
conflict graph C is ρ-inductive independent for a number ρ > 0, and the corresponding conflict
function W and ordering of edges ≺ are given. In the maximum feasible forest problem, the
goal is to find a maximum cardinality subset of edges of L, which is both independent in C
and acyclic in L.

The algorithm, given as Alg. 1, is a greedy Kruskal-like algorithm that mixes the edge
selection criteria of wireless capacity algorithms [16, 29] with the classic MST algorithm of
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Kruskal, thus the name CapKruskal. It processes the edges in order of precedence ≺ and
adds an edge to the forest if: a) the interference on that edge from previously selected edges
is small, and b) the edge does not induce a cycle (as per Kruskal). We state it in terms of
the classic union-find operations of MakeSet, Connected, and Union.

Algorithm 1 CapKruskal(L, C)
1: MakeSet(v), for each v ∈ V (L)
2: S ← ∅
3: for e = (u, v) in L in ≺ order do
4: if W (S, e) + W (e, S) ≤ 1/2 and not

Connected(u, v) then
5: S ← S ∪ {e}
6: Union(u, v)
7: end if
8: end for
9: return S′ = {e ∈ S : W (S, e) ≤ 1}

Algorithm 2 Conn(L, C)
1: i← 0
2: L0 ← L
3: while Li has an edge do
4: Si ← CapKruskal(Li, C[Li])
5: Li+1 ← Contract(Li, Si)
6: i← i+ 1
7: end while
8: return S0, S1, . . . , Si−1

Recall that a subset S of edges in L is feasible if W (S, e) =
∑
f∈SW (f, e) ≤ 1, for

all e ∈ S. Define the ordered weight function W+ as W+(e, f) = W (e, f) if e ≺ f , and
W+(e, f) = 0, otherwise. Similarly, define W− as W−(e, f) = W (e, f) if f ≺ e, and
W−(e, f) = 0, otherwise. Also define the cumulative versions W+(S, e), W+(e, S) as before.

We say that a set S is semi-feasible if for each e ∈ S,W+(S, e)+W−(e, S) ≤ 1/2. Namely,
the weighted indegree from shorter nodes and to longer nodes is bounded, but the total
indegree of e may not be. By an averaging argument, a semi-feasible set I contains a feasible
subset of at least half its size. Indeed, using semi-feasibility and sum rearrangements, we
have,

∑
e∈S

W (S, e) =
∑
e∈S

(
W+(S, e) +W−(e, S)

)
≤ |S|2 (1)

so for at least half of the links e ∈ S it holds that W (S, e) ≤ 1.

I Theorem 2. Let F be a maximum feasible forest of L. Then CapKruskal(L, C) outputs
a feasible forest of size Ω(|F |/ρ).

Proof. Let S and S′ be the sets computed in CapKruskal(L, C). By definition, S′ is
feasible. To argue that S′ is large, we examine an arbitrary feasible forest, break it into
three parts, and show that none of the parts can be too large compared to S′. This will
hold, in particular, for the optimal feasible forest. By (1), we can focus on bounding |S|, as
|S′| ≥ |S|/2.

Let I be a feasible forest. Observe that the selection condition of the algorithm is
equivalent to W+(S, e) +W−(e, S) ≤ 1/2, since the edges are considered in the order of ≺.
Let IR be those edges e in I that failed the degree condition (W+(S, e) +W−(e, S) > 1/2),
and IT those edges e = (u, v) in I that failed the connectivity condition (Connected(u, v)).
The rest, IS = I \ (IR ∪ IT ) are contained in S. We bound these sets in terms of S.

Since IT contains only edges inside components that S also connects (recalling that I
induces a forest), |IT | ≤ |S|. Also, clearly IS ⊆ I ∩S ⊆ S, so |IS | ≤ |S|. To bound the size of
IR, observe first that by the definition of ρ-inductive independence,W−(IR, f)+W+(f, IR) ≤
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ρ, for every edge f ∈ S. This implies that

W−(IR, S) +W+(S, IR) =
∑
f∈S

[
W−(IR, f) +W+(f, IR)

]
≤ ρ · |S|.

On the other hand, by the selection criteria,

W+(S, IR) +W−(IR, S) =
∑
e∈IR

[
W+(S, e) +W−(e, S)

]
>
∑
e∈IR

1
2 = |IR|2 .

Thus, |IR| ≤ 2ρ · |S| and |I| ≤ (2ρ+ 2)|S| ≤ 4(ρ+ 1)|S′|. J

Connectivity Scheduling Algorithm. The algorithm Conn repeatedly calls CapKruskal
to obtain a large independent set of links and assigns it to a new color class. These links are
then contracted and the process repeated until we have obtained a spanning tree.

The contraction of an edge is defined in the standard way, except we discard loops. Note
that contraction leaves the conflict graph C intact. The operation Contract(L, S) contracts
all edges in S of a link graph L and outputs the resulting graph.

The pseudocode of the algorithm is given in Alg. 2. The proof of the following theorem,
which is relegated to the full version, follows the classic set cover argument [27].

I Theorem 3. Conn terminates in O(ρ logn) · χ rounds, where χ is the number of colors
needed for coloring an optimum spanning tree.

4 Multicast Tree Schedules

A natural generalization of Connectivity Scheduling is to allow for a set of optional
nodes that can be used in the tree construction but need not. Formally, the node set V
contains a subset X of terminals and we seek a Steiner tree that spans all the terminals.
As before, we ask also for the shortest schedule of the tree links. We refer to this as the
Steiner Connectivity Scheduling.

It is not hard to construct examples for which optimal multicast trees are arbitrarily
better than trees that use only the terminals, even in a geometric setting. One instance can
be obtained from the example of Sec. 2 by restricting the terminals to only the origin and
the nodes incident on yuge links.

We give an algorithm for Steiner Connectivity Scheduling with unweighted conflict
graph C, and analyse it in terms of a parameter similar to ρ but involving clique covers
rather than independence (this setting is also applicable to the SINR model, see Sec. 6).
An unweighted graph C = (L,E) is η-simplicial if there is an ordering ≺ of L such that for
each link v ∈ L, the subgraph induced by v’s neighbors that are later in the ordering can be
covered with η cliques. We refer to neighbors later in the ordering as post-neighbors. As
before, in the geometric setting, the ordering is given by link length. Observe that ρ ≤ η,
while the best bound in the other direction is η ≤ ρ logn.

Our algorithm is a reduction to a multi-dimensional version of the Steiner tree (MMST)
problem, recently treated by Bilò et al. [3]. In MMST, each edge of the input graph has
an associated d-dimensional weight vector, where the weight of edge e along dimension i
indicates how much of the i-th resource is required by e. The objective is to find a tree that
minimizes the `p-norm of its load vector, where the load vector of a Steiner tree is the sum of
the weight vectors of its edges. We use the `∞-norm, as we want to minimize the maximum
use of a resource. They give a greedy O(log d)-approximation algorithm for that case.
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Given an instance of Steiner Connectivity Scheduling with link graph L and
conflict graph C, our reduction is as follows. Each link e in L is itself (or corresponds to) a
resource, so there are n (=number of edges) resources. The weight of link f along dimension
e is 1 if f is a post-neighbor of e in the conflict graph C, and 0 otherwise.

Suppose now that the MMST algorithm of [3] returns a tree T with `∞-norm Z. Then,
the sum of the tree edges along each dimension is at most Z, namely, each link (whether in
T or not) has at most Z post-neighbors in T . In particular, C[T ] is Z-inductive, and can
then be colored greedily using Z + 1 colors.

On the other hand, consider an optimal tree T ∗ and let Z∗ denote the infinity norm
of its load vector. From [3], we know that Z = O(logn) · Z∗. Let f be a link with Z∗

post-neighbors in T ∗, and let Nf be its set of post-neighbors in T ∗. By assumption, C[Nf ]
can be covered with η cliques, and thus Nf contains a clique of size at least |Nf |/η = Z∗/η.
It follows that the length of the schedule of the optimal tree is at least the chromatic number
of C[Nf ], which is at least Z∗/η. Thus, our solution yields a O(η logn)-approximation.

I Theorem 4. There is a O(η logn)-approximation algorithm for Steiner Connectivity
Scheduling, where conflicts are given by a η-simplicial graph.

It is a folklore that η ≤ 6 in disk graphs.

I Corollary 5. There is a O(logn)-approximation algorithm for Steiner Connectivity
Scheduling, where conflicts are given by a disk graph.

5 Hardness of Approximation

It is easy to see that with an arbitrary conflict graph C, the problem is hard to approximate.
For instance, if the link graph L is already a spanning tree, Connectivity Scheduling
becomes simply the classical graph coloring problem (of C). We show below that the hardness
extends to other more restricted settings. These results also show that near-linear dependence
on ρ, the inductive independence, is unavoidable.

We first show that hardness holds when C is the square of the line graph of L (for general
L), C = L2(L), then extend the construction to the case when L is a complete graph and C is
general (Thm. 7), and to signal strength models (Sec. 6). This corresponds to (bidirectional)
2-hop interferences: two transmission links conflict if they are incident on a common edge.
The reduction is from the Distance-2 Edge Coloring problem in general graphs, also
known as Strong Edge Coloring: Given a graph L, find a partition of the edge set into
induced matchings, i.e., induced subgraphs where every vertex is of degree 1.

I Theorem 6. The Connectivity Scheduling problem is hard to approximate within a
n1−ε-factor, for any ε > 0, even when C = L2(L).

Proof. Given an instance of Strong Edge Coloring with graph G′ = (V ′, E′), we
construct an instance of Connectivity Scheduling problem with the graph L constructed
as follows. Consider a bipartite graph G′′ = (V1, V2, E), as follows. For each vertex v in V ′,
there are two vertices v1, v2 in V = V1 ∪ V2, where vi ∈ Vi, i = 1, 2. If uv ∈ E′ then v1u2
and v2u1 are in E. Link graph L is obtained from G′′ by taking a complete binary tree with
|V2| leaves and identifying each leaf with a vertex of V2. The conflict graph is given by a
simple graph C with vertex set E, where e1, e2 ∈ E are adjacent in C if and only if they form
an induced matching in G′, i.e., there is no edge in G′ connecting an endpoint of e1 to an
endpoint of e2. This completes the construction.
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First, let us show that a strong edge coloring of G′ can be used to construct a spanning
tree in L with a similar coloring number. Consider a strong coloring that partitions the
edges of G′ into c color classes E1, E2, . . . , Ec. Each class Ei induces a pair of feasible slots
Si, S′i in L, where Si = {v1u2 : uv ∈ Ei} and S′i = {u1v2 : uv ∈ Ei}. Indeed, since Ei is an
induced matching in G′, each of the slots Si, S′i is also an induced matching in L (and hence
independent in C). Note that the edges in these slots cover all vertices of L, except for the
binary tree. We also add O(logn) slots to the schedule, two for each layer in the binary tree.
The number of slots used then is O(c+ logn). This gives us a connected subgraph of L that
can be scheduled in O(c+ logn) slots.

Next, consider a spanning tree of L with a corresponding schedule of the edges in slots
S1, S2, . . . , St. Ignoring all edges within the binary tree, we obtain a partition of the edges
of the bipartite graph G′′ between V1 and V2. We claim that each class corresponds to an
induced matching in G′, leading to a strong edge coloring of G′ with t colors.

Consider a pair of edges v1u2 and w1x2 in the same feasible slot. Since they are feasible,
there are no edges v1x2 nor w1u2 in L, and thus no edges vx nor wu in E. Then vu and wx
form an induced matching in G′.

Hence, the optimum number of colors in strong edge coloring of G′ is within a constant
factor plus a logarithmic term of the optimal number of slots needed for scheduling a spanning
tree in L. Since the former is hard to approximate within n1−ε-factor [5], so is the latter. J

I Theorem 7. For general graphs C, the Connectivity Scheduling problem is hard to
approximate within a n1−ε-factor, for any ε > 0, even if the link graph L is complete.

Proof. We modify the instance of Thm. 6, by adding to L all edges that were not there and
make them adjacent (in C) to all other edges in the graph. If these new edges are used in a
spanning tree, they have to be scheduled separately in individual time slots. Thus, using
them can only increase the length of any schedule. J

6 Implications to Signal Strength Models

We consider in this section the implementation and implication of our results to signal
strength models, most importantly metric SINR model.

SINR-feasibility, besides the underlying metric, also depends on the transmission power
control regime. Different power control methods give different notions of feasibility. Never-
theless, it is known that for most interesting cases, SINR-feasibility has constant-inductive
independence property. In particular, power control is usually split into two modes:
fixed monotone power schemes, where links use only local information, such as the link
length, to define the power level, and global power control, where all power levels are con-
trolled simultaneously to give larger independent sets. The former includes the uniform
power mode, where all links use equal power. Another technical issue is directionality of
links, which is not explicitly addressed by our general results, but will be addressed below.

Let us start the discussion from Euclidean metrics (or more generally doubling metrics).
For the global power control mode, [29] introduced a weight function W and proved that with
this function, the conflict graph of any set of links is constant-inductive independent (see [29,
Thm. 1]), so our results apply here directly (except for directionality issues, addressed below).
Similarly, for fixed monotone power schemes (excluding uniform power), [15] showed that
in order to get constant-inductive independence, one may take the natural weight function,
affectance (also called relative or normalized interference) [15, Thm.3.3]. In all cases, the
ordering ≺ corresponds to a non-decreasing order of links by length.
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For general metric spaces, a slightly more technical definition of inductive independence
is used, where a fractional conflict graph C = (L,W ) is (ρ, γ)-inductive independent, w.r.t.
an ordering ≺ of the links, if for every link e and every feasible set I ∈ F with e ≺ I,
there is a subset I ′ ⊆ I of size |I ′| ≥ |I|/γ, such that W (I, e) + W (e, I) ≤ ρ. The old
definition corresponds to the setting γ = 1. It is easily verified that Thms. 2 and 3 extend
to cover this new definition, with approximation ratios multiplied by a factor of γ. Now,
the counterparts of the results from the previous paragraph in general metrics can be found
in [18, Lemmas 2,4] and [30, Thm. 1, Lemma 3], where it is shown that with appropriate
weight functions, feasibility for any fixed monotone power scheme (including uniform power),
as well as feasibility with global power control, can be expressed by a fractional conflict
graph, which is (O(1), O(1))-inductive independent.

The claims above concern settings where the links have fixed directions. In particular, if
we apply Thm. 3 to the weighted functions from the previous paragraph, then we should
add “there exists a direction of links, such that...” to the claim. This issue is easily resolved
for the global power control mode, where the weight function of [29] does not depend on
directions. Namely, it gives a schedule, such that whatever direction is assigned to the links,
one can find a power assignment that makes it work (the power assignment could be different
for different orientations of links).

For oblivious powers, the following trick applies. It is known that for a set of links with
some direction and an oblivious power assignment, and with the weight function W defined
in terms of the affectances, if W (e, S) ≤ 1/2 for all e ∈ S (call this dual-feasibility), then
there is another oblivious power assignment (called the dual of the original one) that makes
S feasible with the reversed directions of links [28]. Thus, we would like to have schedules
with slots S being also dual-feasible. To this end, it is enough to modify CapKruskal, so
that the threshold 1/2 in the acceptance condition is replaced with 1/4, and the output set
S′ is given by S′ = {e ∈ S : (W (S, e) ≤ 1) ∧ (W (e, S) ≤ 1/2)}. Very similar methods then
show that this again gives an O(ρ)-approximation to the maximum feasible forest problem.
The rest of the analysis is left intact, so we obtain an O(logn)-approximation as before, but
with schedule slots that are both feasible and dual-feasible. Then we can replace each slot
with its two copies and revert the directions of links in one of the copies. Every link thus
gets scheduled in both directions, while the schedule length increases by a factor of two.

Summarizing the observations above, we state the following theorem.

I Theorem 8. There is an O(logn)-approximation to Connectivity Scheduling problem
in the SINR model in arbitrary metric spaces. This holds both in the case of fixed monotone
power assignments, and for arbitrary power control. It holds even when only a subset of the
node-pairs are available as links (but interferences follow the metric SINR definitions).

These are the first results that hold in general metrics. They are necessarily relative
approximations, since in general metric spaces, there is no good upper bound on the
connectivity number, even for complete graphs. Two simple examples are the metric induced
by the star K1,t with unit-length edges, and the unit metric formed by distances on the
unit-length clique metric.

For the case of points in the plane (i.e., a complete link graph with conflicts induced by
distances), connectivity can be achieved in O(logn) slots [17]. Since it is not known if O(1)
slots always suffice, this result is not directly implied by Thm. 3. However, it was also shown
in [17] that the MST contains a feasible forest of Ω(n) edges. The rest of our analysis (using
constant-inductive independence) then implies a result matching [17].

I Corollary 9. Let P be a set of points in the plane. Then, Conn finds and schedules a
spanning tree of P in O(logn) slots.
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Steiner trees. In the geometric SINR model with a fixed monotone power scheme (with not
all links available), we reduce the problem to a graph question as follows. It was observed in
[14] that links of the same length class behave approximately like unit-disk graphs, where a
length class refers to links whose lengths differ by at most a factor of 2. Namely, there are
constants c1 and c2 such that for a set S of links of length approximately `, if all links are of
mutual distance greater than c2`, then they form a feasible set, whereas any pair of links in
S of distance at most c1` must be scheduled separately.

We modify the reduction to MMST to that of the graph construction so that weight of
link f along dimension e is 1 only if f is a post-neighbor of e in C and f and e are of the
same length class. We then take the resulting tree and schedule the length classes separately,
at an extra cost of O(log Λ) (the number of length classes).

I Corollary 10. There is a O(log Λ logn)-approximation algorithm for Steiner Connec-
tivity Scheduling in the geometric SINR model, under any fixed monotone power scheme.

Using power control, we can do considerably better. The main result of [19] shows
that for any set L of links, there is an unweighted conflict graph C(L), such that every
independent set in C is feasible, and the chromatic number of C is at most O(log∗∆) factor
away from the optimum schedule length of L (using global power control). Moreover, C is
constant-simplicial [19, Prop. 1].

I Corollary 11. There is a O(logn log∗ Λ)-approximation algorithm for Steiner Connec-
tivity Scheduling in the geometric SINR model with global power control.

A similar result with O(log log Λ)-factor holds also for certain monotone power schemes
(but not, for instance, uniform power) [20].

Hardness. A special Missing Links variant of the geometric case is where the nodes/links
are embedded in the plane and all interferences are either zero or follow the SINR model
(with either fixed power or global power control).

I Theorem 12. The geometric Missing Links variant is n1−ε-hard to approximate, for any
ε > 0. It is also Λ2−ε-hard, where Λ is the ratio between the longest to the shortest node
distance. This holds even if all unavailable links are missing links.

Proof. We embed the instance of Thm. 6 in the plane. The nodes of V1 are located in a unit
square in a mesh pattern, 1/

√
n apart in

√
n columns

√
n abreast. At a unit distance, a

similar unit square holds the nodes of V2. The length of an edge in L (in distance in the
plane) is then between 1 and 4.

An induced matching in L corresponds to a set of links with no mutual interference. On
the other hand, a pair of links that are incident on a common edge or share a vertex, will
receive interference from each other according to the SINR formula (using the shared edge
or each other). Given that distances along available edges vary only by a constant factor,
the interference between the links is a constant (specifically, at least 1/4α, where α is the
“pathloss” constant of the SINR model). Thus, in the setting where the SINR threshold is
at least the reciprocal of that constant (i.e., β ≥ 4α), feasible sets are necessarily induced
matchings in L. We can then conclude by recalling a “signal-strengthening” result [12] that
shows that varying the threshold by a constant factor only affects the schedule length by a
constant factor.

The longest node distance is at most logn, which is from the root of the binary tree to
its leaves, while the shortest distance is 1/

√
n. Thus, Λ ≤ 4

√
n logn, and n1−ε ≥ Λ2−ε′ , for

some ε′ ≥ ε/3.
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We can restrict the available edges incident to (non-leaf) nodes on the binary tree to
the tree edges alone. Thus, non-leaf nodes in the tree must be connected via the tree edges.
Then, all unavailable edges are missing edges. J

7 Open Issues

Many related problems are left addressing; we list the most prominent ones.
Latency minimization: Bounding the time it takes for a packet to filter through the tree
from a leaf to a root (and back). This requires optimizing both the height of the tree as
well as the ordering of the links in the schedule.
Directed case: Finding an arborescence. This requires new techniques, as our argument
crucially depends on the graph being undirected.
Distributed algorithms: This relates also to the issue of detecting or learning whether a
link is usable/reliable or not.
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