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Abstract
We give a simple distributed algorithm for computing adjacency matrix eigenvectors for the
communication graph in an asynchronous gossip model. We show how to use this algorithm
to give state-of-the-art asynchronous community detection algorithms when the communication
graph is drawn from the well-studied stochastic block model. Our methods also apply to a natural
alternative model of randomized communication, where nodes within a community communicate
more frequently than nodes in different communities.

Our analysis simplifies and generalizes prior work by forging a connection between asyn-
chronous eigenvector computation and Oja’s algorithm for streaming principal component anal-
ysis. We hope that our work serves as a starting point for building further connections between
the analysis of stochastic iterative methods, like Oja’s algorithm, and work on asynchronous and
gossip-type algorithms for distributed computation.
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1 Introduction

Motivated by the desire to process and analyze increasingly large networks – in particular
social networks – considerable research has focused on finding efficient distributed protocols
for problems like triangle counting, community detection, PageRank computation, and
node centrality estimation. Many of the most popular systems for massive-scale graph
processing, including Google’s Pregel [19] and Apache Giraph [29] (used by Facebook), employ
programming models based on the simulation of distributed message passing algorithms, in
which each node is viewed as a processor that can send messages to its neighbors.
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Apart from computational benefits, distributed graph processing can also be required
when privacy constraints apply: for example, EU regulations restrict the personal data
sent to countries outside of the EU [8]. Distributed algorithms avoid possibly problematic
aggregation of network information, allowing each node to compute a local output based on
their own neighborhood and messages received from their neighbors.

One of the main problems of interest in network analysis is the computation of the
eigenvectors of a networks’ adjacency matrix (or related incidence matrices, such as the
graph Laplacian). The extremal eigenvectors have many important applications – from graph
partitioning and community detection [13, 23], to embedding in graph-based machine learning
[5, 26], to measuring node centrality and computing importance scores like PageRank [6].

Due to their importance, there has been significant work on distributed eigenvector
approximation. In synchronous message passing systems, it is possible to simulate the well-
known power method for iterative eigenvector approximation [17]. However, this algorithm
requires that each node communicates synchronously with all of its neighbors in each round.

In an attempt to relax this requirement, models in which a subset of neighbors are
sampled in each communication round [18] have been studied. However, the computation
of graph eigenvectors in fully asynchronous and gossip-based message passing systems, in
which nodes communicate with a single neighbor at a time in an asynchronous fashion, is not
well-understood. While a number of algorithms have been proposed, which give convergence
to the true eigenvectors as the number of iterations goes to infinity, strong finite iteration
approximation bounds are not known [14, 24].

Our contributions

In this work, we give state-of-the-art algorithms for graph eigenvector computation in
asynchronous systems with randomized schedulers, including the classic gossip model [7, 12]
and population protocol model [2]. We show that in these models, communication graph
eigenvectors can be computed via a very simple adaption of Oja’s classic iterative algorithm
for principal components analysis [27]. Our analysis leverages recent work studing Oja’s
algorithm for streaming covariance matrix eigenvector estimation [1, 16].

By making an explicit connection between work on streaming eigenvector estimation and
asynchronous computation, we hope to generally expand the toolkit of techniques that can
be applied to analyzing graph algorithms in asynchronous systems.

As a motivating application, we use our results to give state-of-the-art distributed
community detection protocols, significantly improving upon prior work for the well-studied
stochastic-block model and related models where nodes communicate more frequently within
their community than outside of it. We summarize our results below.

Asynchronous eigenvector computation. First, we provide an algorithm (Algorithm 2)
that approximates the k largest eigenvectors v1, ...,vk for an arbitrary communication matrix
(essentially a normalized adjacency matrix, defined formally in Theorem 1).

For an n-node network, the algorithm ensures, with good probability, that each node
u ∈ [n] computes the uth entries of vectors ṽ1, ..., ṽk such that for all i ∈ [k], ‖ṽi − vi‖22 ≤ ε.
Each message sent by the algorithm requires communicating just O(k) numbers, and the
global time complexity is Õ( Λk3

gap ·min(gap,γmix)ε3 ) local rounds, where gap is the minimal
gap between the k largest eigenvalues, γmix is roughly speaking the spectral gap, i.e., the
difference between the largest and second-largest eigenvalue, and Λ is the sum of the k largest
eigenvalues. We note that we use Õ(·) to suppress logarithmic terms, and in particular,
factors of poly logn. See Theorem 6 for a more precise statement.
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For illustration, consider a communication graph generated via the stochastic block model –
G(n, p, q), which has n nodes, partitioned into two equal-sized clusters. Each intracluster edge
added independently with probability p and each intercluster edge is added with probability
q < p. If, for example, p = Ω

(
logn
n

)
and q = p/2, and k = 2, we can bound with high

probability Λ = Θ(1/n), gap = Θ(1/n), and γmix = Θ(1/n), which yields an eigenvector
approximation algorithm running in Õ( nε3 ) global rounds, or Õ( 1

ε3 ) local rounds.

Approximate community detection. Second, we harness our eigenvector approximation
routine for community detection in the stochastic block model with connection probabilities
p, q (we give two natural definitions of this model in an asynchronous distributed system
with a random scheduler; see Theorem 2 and Theorem 3). After executing our protocol
(Algorithm 5), with good probability, all but an ε fraction of the nodes output a correct
community label in Õ

(
1/ε3ρ2) local rounds, where ρ = min

(
q
p+q ,

p−q
p+q

)
. For example, when

q = p/2, this complexity is Õ
(
1/ε3

)
. See Theorem 8 and Theorem 9 for precise bounds.

Exact community detection. Finally, we show how to produce an exact community labeling,
via a simple gossip-based error correction scheme. For ease of presentation, here we just state
our results in the case when q = p/2 and we refer to section 5 (Theorem 10 and Theorem 11)
for general results. Starting from an approximate labeling in which only a small constant
fraction of the nodes are incorrectly labeled, we show that, with high probability, after
O(logn) local rounds, all nodes are labeled correctly.

Related work

Community detection via graph eigenvector computation and other spectral methods has
received ample attention in centralized setting [22, 9, 32]. Such methods are known to recover
communities in the stochastic block model close to the information theoretic limit. Interest-
ingly, many state-of-the-art community detection algorithms in this model, which improve
upon spectral techniques, are based on message passing (belief propagation) algorithms
[11, 25]. However, these algorithms are not known to work in asynchronous contexts.

Community detection in asynchronous distributed systems has received less attention. It
has recently been tackled in a beautiful paper by Becchetti et al. [3]. The algorithm studied
in this paper is a very simple averaging protocol, originally considered by the authors in a
synchronous setting [4]. Each node starts with a random value chosen uniformly in {−1, 1}.
Each time two nodes communicate, they update their values to the average of their previous
values. After each round of communication, a node’s estimated community is given by the
sign of the change of its value due to the averaging update in that round.

Beccheti et al. analyze their algorithm for regular clustered graphs, including regular
stochastic block model graphs, where all nodes have exactly a edges to (randomly selected)
nodes in their cluster and exactly b < a edges to nodes outside their cluster. As discussed
in [3], for regular graphs their protocol can be viewed as estimating the sign of entries in
the second largest adjacency matrix eigenvector. Thus, it has close connections with our
protocols, which explicitly estimate this eigenvector and label communitues using the signs
of its entries.

The results of Becchetti et al. apply with O(polylogn) local rounds of communication
when either a

b = Ω(log2 n), or when a − b = Ω(
√
a+ b). In contrast, our results for the

(non-regular) stochastic block model give O(polylogn) local runtime when p
q = Ω(1) or

n(p− q) = Ω(
√
n(p+ q) logn). Here we assume that q is not too small – see Theorem 9 for

ICALP 2018



159:4 Eigenvector Computation and Community Detection in Asynchronous Gossip Models

details. Note that n·p and n·q can be compared to a and b, since they are the expected number
of intra- and inter-cluster edges respectively. Thus, our results give comparable bounds,
tightening those of Becchetti et al. in some regimes and holding in the most commonly
studied family of stochastic block model graphs, without any assumption of regularity1.

Outside of community detection, our approach to asynchronous eigenvector approximation
is related to work on asynchronous distributed stochastic optimization [31, 10, 28]. Often, it
is assumed that many processors update some decision variable in parallel. If these updates
are sufficiently sparse, overwrites are rare and the algorithm converges as if it were run in
a synchronous manner. Our implementation of Oja’s algorithm falls under this paradigm.
Each update to our eigenvector estimates is sparse – requiring a modification just by the two
nodes that communicate at a given time. In this way, we can fully parallelize the algorithm,
even in an asynchronous system.

2 Preliminaries

2.1 Notation
For integer n > 0, let [n] def= {1, . . . , n}. Let 1n,m be an n×m all-ones matrix and In×n be
an n× n identity. Let ei be the ith standard basis vector, with length apparent from context.
Let V denote a set of nodes with cardinality |V | = n. Let P be the set of all unordered node
pairs (u, v) with u 6= v. |P| =

(
n
2
)
.

For vector x ∈ Rn, ‖x‖2 is the Euclidean norm. For matrix M ∈ Rn×m, ‖M‖2 =
maxx

‖Mx‖2
‖x‖2

is the spectral norm. ‖M‖F =
√∑n

i=1
∑m
j=1 M2

i,j denotes the Frobenius norm.
MT is the matrix transpose of M. When M ∈ Rn×n is symmetric we let λ1(M) ≥ λ2(M) ≥
... ≥ λn(M) denote its eigenvalues. M is positive semidefinite (PSD) if λi(M) ≥ 0 for all i.
For symmetric M,N ∈ Rn×n we use M � N to indicate that N−M is PSD.

2.2 Computational model
We define an asynchronous distributed computation model that encompasses both the well-
studied population protocol [2] and asynchronous gossip models [7]. Computation proceeds
in rounds and a random scheduler chooses a single pair of nodes to communicate in each
round. The choice is independent across rounds, but may be nonuniform across node pairs.

I Definition 1 (Asynchronous communication model). Let V be a set of nodes with |V | = n.
Computation proceeds in rounds, with every node v ∈ V having some state s(v, t) in round t.

Recall that P denotes all unordered pairs of nodes in V . Let w : P → R+ be a
nonnegative weight function. In each round, a random scheduler chooses exactly one
(u, v) ∈ P with probability w(u, v)/

[∑
(i,j)∈P w(i, j)

]
and u, v both update their states

according to some common (possibly randomized) transition function σ. Specifically, they
set s(v, t+ 1) = σ(s(v, t), s(u, t)) and s(u, t+ 1) = σ(s(u, t), s(v, t)).

Note that in our analysis we often identify the weight function w with a symmetric
weight matrix W ∈ Rn×n where Wu,u = 0 and Wu,v = Wv,u = w(u, v)/

[∑
(i,j)∈P w(i, j)

]
.

Let D be a diagonal matrix with Du,u =
∑
v∈V Wu,v. Du,u is the probability that node u

1 We note that the analysis of Bechitti et al. seems likely to extend to our alternative communication
model (Theorem 2), where the communication graph is weighted and regular
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communicates in any given round. Since two nodes are chosen in each round,
∑
u Du,u = 2.

We will refer to D + W as the communication matrix of the communication model.
I Remark (Asynchronous algorithms). Since the transition function σ in Theorem 1 is universal,
nodes can be seen as identical processes, with no knowledge of w or unique ids. We do assume
that nodes can initiate and terminate a protocol synchronously. That is, nodes interact from
round 0 up to some round T , after which they cease to interact, or begin a new protocol.
This assumption is satisfied if each node has knowledge of the global round number but, in
general, is much weaker. For example, in the asynchronous gossip model discussed below, it
is sufficient for nodes to have access to a synchronized clock.

We use algorithm to refer to a sequence of transition functions, each corresponding to
a subroutine run for specified number of rounds. Subroutines are run sequentially. The
first has input nodes with identical starting states (as prescribed by Theorem 1) but later
subroutines start once nodes have updated their states and thus have distinguished inputs.
I Remark (Simulation of existing models). The standard population protocol model [2] is recov-
ered from Theorem 1 by setting w(u, v) = 1 for all (u, v) – i.e., pairs of nodes communicate
uniformly at random. A similar model over a fixed communication graph G = (E, V ) is
recovered by setting w(u, v) = 1 for all (u, v) ∈ E and w(u, v) = 0 for (u, v) /∈ E.

Theorem 1 also encompasses the asynchronous gossip model [7, 12], where each node
holds an independent Poisson clock and contacts a random neighbor when the clock ticks.
If we identify rounds with clock ticks, let λu be the rate of node u’s clock, and let p(u, v)
be the probability that u contacts v when its clock ticks. Then the probability that nodes

u and v interact in a given round is 1
2

[
λu∑
z∈V

λz
· p(u, v) + λv∑

z∈V
λz
· p(v, u)

]
. With w(u, v)

set to this value, Theorem 1 corresponds exactly to the asynchronous gossip model.

2.3 Distributed community detection problem
This paper studies the very general problem of computing communication matrix eigenvectors
with asynchronous protocols run by the nodes in V . One primary application of computing
eigenvectors is to detect community structure in G. Below we formalize this application as
the distributed community detection problem and introduce two specific cases of interest.

In the distributed community detection problem, the weight function w and corresponding
weight matrix W of Theorem 1 are clustered: nodes in the same cluster are more likely to
communicate than nodes in different clusters. The goal is for each node to independently
identify what cluster it belongs to (up to a permutation of the cluster labels).

We consider two models of clustering. In the first (n, p, q)-weighted communication model,
the weight function directly reflects the increased likelihood of intracluster communication.
In the second, G(n, p, q)-communication model, weights are uniform on a graph sampled from
the well-studied planted-partition or stochastic block model [15]. For simplicity, we focus on
the setting in which there are two equal sized clusters, but believe that our techniques can
be extended to handle a larger number of clusters, potentially with unbalanced sizes.

I Definition 2 ((n, p, q)-weighted communication model). An asynchronous model (Theo-
rem 1), where node set V is partitioned into disjoint sets V1, V2 with |V1| = |V2| = n/2. For
values q < p, w(u, v) = p if u, v ∈ Vi for some i and w(u, v) = q if u ∈ Vi and v ∈ Vj for
i 6= j.

I Definition 3 (G(n, p, q)-communication model). An asynchronous model (Theorem 1),
where node set V is partitioned into disjoint sets V1, V2 with |V1| = |V2| = n/2. The weight
matrix W is a normalized adjacency matrix of a random graph G(V,E) generated as follows:

ICALP 2018
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for each pair of nodes u, v ∈ V , add edge (u, v) to edge set E with probability p if u and v
are in the same partition Vi and probability q < p if u and v are in different partitions.

Analysis of community detection in the (n, p, q)-weighted communication model is more
elegant, and will form the basis of our analysis for the G(n, p, q)-communication model, which
more closely matches models considered in prior work on in both distributed and centralized
settings. Formally, we define the distributed community detection problem as follows:

I Definition 4 (Distributed community detection problem). An algorithm executing in the
communication models of Theorem 2 and Theorem 3 solves community detection in T rounds
if for every t ≥ T , all nodes in V1 hold some integer state s1 ∈ {−1, 1}, while all nodes in
V2 hold state s2 = −s1. An algorithm solves the community detection problem in L local
rounds if every node’s state remains fixed after L local interactions with other nodes.

3 Asynchronous Oja’s algorithm

Our main contribution is a distributed algorithm for computing eigenvectors of the commu-
nication matrix D + W. These eigenvectors can be used to solve the distributed community
detection problem or in other applications. Our main algorithm is a distributed, asynchronous
adaptation of Oja’s classic iterative eigenvector algorithm [27], described below:

Algorithm 1 Oja’s method (centralized)
Input: x0, ...,xT−1 ∈ Rn drawn i.i.d. from some distribution D such that for some constant
C, Px∼D[‖x‖22 ≤ C] = 1 and Ex∼D[xxT ] = M. Rank parameter k and step size η.
Output: Orthonormal Ṽ ∈ Rn×k whose columns approximate M’s k top eigenvectors.

1: Choose Q0 with entries drawn i.i.d. from the standard normal distribution N (0, 1).
2: for t = 0, ...., T − 1 do
3: Qt+1 := (I + ηxtxTt )Qt.
4: end for
5: return ṼT := orth(QT ). . Orthonormalizes the columns of QT .

3.1 Approximation bounds for Oja’s method
A number of recent papers have provided strong convergence bounds for the centralized
version of Oja’s method [1, 16]. We will rely on the following theorem, which we prove in
full verison using a straightforward application of the arguments in [1].

I Theorem 5. Let M ∈ Rn×n be a PSD matrix with
∑k

i=1
λi(M)
C ≤ Λ and λk(M)−λk+1(M)

C ≥
gap for some values Λ, gap. For any ε, δ ∈ (0, 1), let ξ = n

δε·gap , η = c1ε
2·gap ·δ2

CΛk log3 ξ
for some

sufficiently small constant c1, and T = c2·(log ξ+1/ε)
C·gap ·η for sufficiently large c2. Then with

probability ≥ 1− δ, Algorithm 1 run with step size η returns ṼT satisfying,

‖ZT ṼT ‖2F ≤ ε.

where Z is an orthonormal basis for the bottom n− k eigenvectors of M.

If ṼT exactly spanned M’s top k eigenvectors, ‖ZT ṼT ‖2F would equal 0. To obtain an
approximation of ε, the number of iterations required by Oja’s method naturally depends
inversely on ε, the failure probability δ, and the gap between eigenvalues λk(M) and λk+1(M).
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3.2 Distributed Oja’s method via random edge sampling
Oja’s method can be implemented in the asynchronous communication model (Theorem 1)
to compute top eigenvectors of the communication matrix D + W, defined in subsection 2.2.

For any pair of nodes (u, v), let eu,v = eu + ev be the vector with all zero entries except
1’s in its uth and vth positions. Given weight function w and associated matrix W, let DW
be the distribution in which each eu,v is selected with probability Wu,v. That is, the same
distribution by which edges are selected to be active by the scheduler in Theorem 1. Noting
that eu,veTu,v is all zero except at its (u, u), (v, v), (u, v), and (v, u) entries, we can see that

E
eu,v∼DW

[
eu,veTu,v

]
=

∑
(u,v)∈P

Wu,v · eu,veTu,v = D + W, (1)

where P denotes the set of unordered node pairs (u, v) with u 6= v. So if we run Oja’s
algorithm with eu,v sampled according to DW, we will obtain an approximation to the top
eigenvectors of D + W. Note that this matrix is PSD, by the fact that each eu,veTu,v is PSD.

Furthermore, the algorithm can be implemented in our communication model as an
extremely simple averaging protocol. Each iteration of Algorithm 1 requires computing
Qt+1 = (I + ηxtxTt )Qt. If xt = eu,v for eu,v ∼ DW, we can see that computing Qt+1 just
requires updating the uth and vth rows of Qt. Thus, if the n rows of Qt are distributed
across n nodes, this update can be done locally by nodes u and v when they are chosen to
interact by the randomized scheduler. Specifically, letting [q(1)

u , ..., q
(k)
u ] be the uth row of Qt,

stored as the state at node u, applying (I + ηeu,veTu,v) just requires setting for all i ∈ [k]:

q(i)
u := (1 + η)q(i)

u + ηq(i)
v . (2)

Node v makes a symmetric update, and all other entries of Qt remain fixed.
We give the pseudocode for this protocol in Algorithm 2. Along with the main iteration

based on the simple update in (2), the nodes need to implement Step 5 of Algorithm 1, where
QT is orthogonalized. This can be done with a gossip-based protocol, which we abstract as
the routine AsynchOrth. We give an implementation of AsynchOrth in subsection 3.3.
I Remark (Choice of communication matrix). While, as we will show, the eigenvectors of D+W
are naturally useful in our applications to community detection, the above techniques easily
extend to computing eigenvectors of other matrices. For example, if we set eu,v = eu − ev,
Eeu,v∼DW [eu,veTu,v] = D−W = L, a scaled Laplacian of the communication graph.

Algorithm 2 Asynchronous Oja’s (AsynchOja(T, T ′, η))
Input: Time bounds T, T ′, step size η.
Initialization: ∀u, chose [q(1)

u , ..., q
(k)
u ] independently from standard Gaussian N (0, 1).

1: if t < T then
2: (u, v) is chosen by the randomized scheduler.
3: For all i ∈ [k], q(i)

u := (1 + η)q(i)
u + ηq

(i)
v . . Computes of (I + ηeu,veTu,v)Qt.

4: else
5: [v̂(1)

u , ..., v̂
(k)
u ] = AsynchOrth([q(1)

u , ..., q
(k)
u ], T ′). . Implements of ṼT = orth(QT ).

6: end if

Note that in the pseudocode above, when nodes u, v interact in the asynchronous model,
they only need to share their respective values of q(i)

u and q(i)
v for i ∈ [k].

Up to the orthogonalization step, we see that Algorithm 2 exactly simulates Algorithm 1
on input M = D + W. Thus, assuming that AsynchOrth([q(1)

u , ..., q
(k)
u ]) exactly computes
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ṼT = orth(QT ) as in Step 5 of Algorithm 1, the error bound of Theorem 5 applies directly.
Specifically, if we let the local states, [q(1)

1 , . . . , q
(1)
n ], . . . , [q(k)

1 , . . . , q
(k)
n ] correspond to the k

length-n vectors in ṼT , Theorem 5 shows that ‖ZT ṼT ‖2F ≤ ε. In subsection 3.3 we show
that this bound still holds when AsynchOrth computes an approximate orthogonalization.

3.3 Distributed orthogonalization and eigenvector guarantees
In fact, a specific orthogonalization strategy yields a stronger bound, which is desirable in
many applications, including community detection: Algorithm 2 can actually well approximate
each of D + W’s top k eigenvectors, instead of just the subspace they span.

Specifically, let ṽi denote the ith column of ṼT and vi denote the ith eigenvector of
D + W. We want (ṽTi vi)2 ≥ 1− ε for all i. Such a guarantee requires sufficiently large gaps
between the top k eigenvalues, so that their corresponding eigenvectors are identifiable. If
these gaps exist, the guarantee can by using the following orthogonalization procedure:

Algorithm 3 Orthogonalization via Cholesky Factorization (centralized)
Input: Q ∈ Rn×k with full column rank. Output: Orthonormal span for Q, Ṽ ∈ Rn×k.

1: L := chol(QTQ) . Cholesky decomp. returns lower triangular L with LLT = QTQ.
2: return Ṽ := Q(LT )−1 . Orthonormalize QT ’s columns using the Cholesky factor.

I Remark. Algorithm 3 requires an input that is full-rank, which always includes QT in
Algorithms 1 and 2: Q0’s entries are random Gaussians so it is full-rank with probability 1
and each (I + ηxTt xt) is full-rank since η < ‖xt‖. Thus, QT =

∏T−1
t=0 (I + ηxTt xt)Q0 is too.

Ultimately, our AsynchOrth is an asynchronous distributed implementation of Algo-
rithm 3. We first prove an eigenvector approximation bound under the assumption that this
implementation is exact and then adapt that result to account for the fact that AsynchOrth
only outputs an approximate solution.

Pseudocode for AsynchOrth is included below. Each node first computes a (scaled)
approximation to every entry of QTQ using a simple averaging technique. Nodes then locally
compute L = chol

(
QTQ

)
and the uth row of ṼT = Q(LT )−1. In the full version of this

paper [20] we argue that, due to numerical stability of Cholesky decomposition, each node’s
output is close to the uth row of an exactly computed ṼT , despite the error in constructing
QTQ.

Algorithm 4 Asynchronous Cholesky Orthogonalization (AsynchOrth(T ))
Input: Time bound T .
Initialization: Each node holds [q(1)

u , ..., q
(k)
u ]. For all i, j ∈ [k], let r(i,j)

u := q
(i)
u · q(j)

u .
1: if t < T then
2: (u, v) is chosen by the randomized scheduler.
3: for all i, j ∈ [k], r(i,j)

u := r(i,j)
u +r(i,j)

v

2 . . Estimation of 1
nqTi qj via averaging.

4: else
5: Form Ru ∈ Rk×k with (Ru)i,j = (Ru)j,i := n · r(i,j)

u . . Approximation of QTQ.
6: Lu := chol(Ru).
7: [v̂(1)

u , ..., v̂
(k)
u ] := [q(1)

u , ..., q
(k)
u ] · (LTu )−1. . Approximation of uth row of Q(LTu )−1.

8: end if

Ultimately in [20] we prove the following result when Algorithm 4 is used to implement
AsynchOrth as a subroutine for Algorithm 2, AsynchOja(T, T ′, η):
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I Theorem 6 (Asynchronous eigenvector approximation). Let v1, ...,vk be the top k eigenvec-
tors of the communication matrix D + W in an asynchronous communication model, and
let Λ, gap, γmix be bounds satisfying: Λ ≥

∑k
j=1 λj(D + W), gap ≤ minj∈[k][λj(D + W)−

λj+1(D + W)], and γmix ≤ min
[ 1
n , log

(
λ−1

2 (I− 1
2D + 1

2W)
)]
.

For any ε, δ ∈ (0, 1), let ξ = n
δε·gap . Let η = c1ε

2·gap ·δ2

Λk3 log3 ξ
for sufficiently small c1, and T =

c2·(log ξ+1/ε)
gap ·η , T ′ = c3(log ξ+1/ε)·λ1(D+W)

gap ·γmix for sufficiently large c2, c3. For all u ∈ [n], i ∈ [k],
let v̂(j)

u be the local state computed by Algorithm 2. If V̂ ∈ Rn×k is given by (V̂)u,j = v̂
(j)
u

and v̂i is the ith column of V̂, then with probability ≥ 1− δ − e−Θ(n), for all i ∈ [k]:∣∣v̂Ti vi
∣∣ ≥ 1− ε and ‖v̂i‖2 ≤ 1 + ε.

4 Distributed community detection

From the results of section 3, we obtain a simple population protocol for distributed community
detection that works for many clustered communication models, including the (n, p, q)-
weighted communication and G(n, p, q)-communication models of Definitions 2 and 3.

In particular, we show that if each node u ∈ V can locally compute the uth entry of an
approximation v̂2 to the second eigenvector of the communication matrix D + W, then it
can solve the community detection problem locally: u just sets its state to the sign of this
entry.

Algorithm 5 Asynchronous Community Detection (AsynchCD(T, T ′, η))
Input: Time bounds T, T ′, step size η.

1: Run AsynchOja(T, T ′, η) (Algorithm 2) with k = 2.
2: Set χ̂u := sign(v̂(2)

u ).

Here χ̂u ∈ {−1, 1} is the final state of node u. We will claim that this state solves the
community detection problem of Theorem 4. We use the notation χ̂u because we will use χ to
denote the true cluster indicator vector for communities V1 and V2 in a given communication
model: χu = 1 for u ∈ V1 and χu = −1 for u ∈ V2.

In particular, we will show that if η is set so that AsynchOja outputs eigenvectors with
accuracy ε, then a 1−O(ε) fraction of nodes will correctly identify their clusters. In section 5
we show how to implement a ‘cleanup phase’ where, starting with ε set to a small constant
(e.g. ε = .1), the nodes can converge to a state with all cluster labels correct with high
probability.

4.1 Community detection in the (n, p, q)-weighted communication
model

We start with an analysis for the (n, p, q)-weighted communication model. Recall that in this
model the nodes are partitioned into two sets, V1 and V2, each with n/2 elements. Without
loss of generality we can identify the nodes with integer labels such that 1, . . . , n/2 ∈ V1 and
n/2 + 1, . . . , n ∈ V2. We define the weighted cluster indicator matrix, C(p,q) ∈ Rn×n:

C(p,q) def=
[
p · 1n

2×
n
2

q · 1n
2×

n
2

q · 1n
2×

n
2

p · 1n
2×

n
2

]
. (3)
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p and q can be arbitrary, but we will always take p > q > 0. It is easy to check that C(p,q) is
a rank two matrix with eigendecomposition:

C(p,q) = n

2

v1 v2

[p+ q 0
0 p− q

] [
vT1
vT2

]
where v1 = 1n×1√

n
, v2 = χ√

n
. (4)

So, if all nodes could compute their corresponding entry in the second eigenvector of C(p,q),
then by simply returning the sign of this entry, they would solve the distributed community
detection problem (Theorem 4). If they compute this eigenvector approximately, then we
can still show that a large fraction of them correctly solve community detection. Specifically:

I Lemma 7. Let v2 be the second eigenvector of C(p,q) for any p > q > 0. If ṽ2 satisfies:∣∣ṽT2 v2
∣∣ ≥ 1− ε and ‖ṽ2‖2 ≤ 1 + ε. (5)

for ε ≤ 1, then sign(ṽ2) gives a labeling such that, after ignoring at most 5εn nodes, all
remaining nodes in V1 have the same labeling, and all in V2 have the opposite.

A proof can be found in [20]. With Theorem 7 in place, we can then apply Theorem 6 to
prove the correctness of AsynchCD (Algorithm 5) for the (n, p, q)-weighted communication
model

I Theorem 8 (ε-approximate community detection: (n, p, q)-weighted communication model).
Consider Algorithm 5 in the (n, p, q)-weighted communication model. Let ρ = min

(
q
p+q ,

p−q
p+q

)
.

For sufficiently small constant c1 and sufficiently large c2 and c3, let

η = c1ε
2δ2ρ

log3
(
n
εδρ

) , T =
c2n

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3n
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2 .

With probability 1 − δ, after ignoring εn nodes, all remaining nodes in V1 terminate in
some state s1 ∈ {−1, 1}, and all nodes in V2 terminate in state s2 = −s1. Suppressing
polylogarithmic factors in the parameters, the total number of global rounds and local rounds
required are: T + T ′ = Õ

(
n

ε3δ2ρ2

)
and L = Õ

(
1

ε3δ3ρ2

)
.

Proof. In the (n, p, q)-weighted communication model the weight and degree matrices are:

W = 4
n2(p+ q)− 2np · (C

(p,q) − p · In×n) and D = 2
n
· In×n.

Thus, referring to the eigendecomposition of C(p,q) shown in (4), the top eigenvector of D+W
is v1 = 1n×1/

√
n with corresponding eigenvalue: λ1 = 4

n2(p+q)−2np ·
(
n(p+q)

2 − p
)

+ 2
n = 4

n .

The second eigenvector is the scaled cluster indicator vector v2 = χ/
√
n with eigenvalue

λ2 = 4
n2(p+ q)− 2np ·

(
n(p− q)

2 − p
)

+ 2
n

= 4
n
· p

p+ n
n−2 · q

.

Finally, for all remaining eigenvalues of D + W, {λ3, ..., λn}, λi = 2
n −

4p
n2(p+q)−2np . We can

bound the eigenvalue gaps:

λ1 − λ2 ≥
4
n
− 4
n
· p

p+ q
= 4q
n(p+ q) λ2 − λ3 = 2(p− q)

n(p+ q)− 2p ≥
2(p− q)
n(p+ q)
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Let ρ = min
(

q
p+q ,

p−q
(p+q)

)
. We bound the mixing time of W + D by noting that λ2(I−

1/2D + 1/2W) ≤ 1− 2q
n(p+q) . Then using that log(1/x) ≥ 1−x for all x ∈ (0, 1], log(λ−1

2 (I−
1/2D+1/2W) ≥ 2q

n(p+q) ≥
2ρ
n . We then apply Theorem 6 with k = 2, Λ = 4

n + 4
n

p
p+ n

n−2 q
≤ 8

n ,

gap = 4
n · min

(
q
p+q ,

p−q
2(p+q)

)
≥ 2ρ

n , and γmix = 2ρ
n . With these parameters we set, for

sufficiently small c1 and large c2, c3,

η = c1ε
2δ2 · ρ

log3
(
n
εδρ

) , T =
c2 · n ·

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3 · n ·
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2

where to bound T ′ we use that λ1(D+W)
gap ≤ 2

ρ . Let V̂ ∈ Rn×k be given by (V̂)u,j = v̂
(j)
u where

v̂
(j)
u are the states of AsynchOja(T, T ′, η) and let v̂2 be the second column of V̂. With these
parameters, Theorem 6 gives with probability ≥ 1− δ that

∣∣v̂T2 v2
∣∣ ≥ 1− ε and ‖v̂2‖2 ≤ 1 + ε.

Applying Theorem 7 then gives the theorem if we adjust ε by a factor of 1/5. Recall that
the second eigenvector of D + W is identical to that of C(p,q). Additionally, in expectation,
each node is involved in L = 2(T+T ′)

n interactions. This bound holds for all nodes within
a factor 2 with probability 1 − δ by a Chernoff bound, since L = Ω(log(n/δ)). We can
union bound over our two failure probabilities and adjust δ by 1/2 to obtain overall failure
probability ≤ δ. J

4.2 Community Detection in the G(n, p, q)-communication model
In the G(n, p, q)-communication model, nodes communicate using a random graph which
is equal to the communication graph in the (n, p, q)-weighted communication model in
expectation. Using an approach similar to [30], which is a simplifies the perturbation
method used in [21], we can prove that in the G(n, p, q)-communication model W is a small
perturbation of C(p,q) and so the second eigenvector of D + W approximates that of C(p,q) –
i.e., the cluster indicator vector χ. We defer this analysis to the full version [20], stating the
main result here:

I Theorem 9 (ε-approximate community detection: G(n, p, q)-communication model). Consider
Algorithm 5 in the G(n, p, q)-communication model. Let ρ = min

(
q
p+q ,

p−q
p+q

)
. For sufficiently

small constant c1 and sufficiently large c2 and c3 let

η = c1ε
2δ2ρ

log3
(
n
εδρ

) , T =
c2n

(
log3

(
n
εδρ

)
+ log( n

εδρ )
ε

)
ε2δ2ρ2 , T ′ =

c3n
(

log
(
n
εδρ

)
+ 1

ε

)
ρ2 .

If min[q,p−q]√
p+q ≥ c4

√
log(n/δ)
ε
√
n

for large enough constant c4, then, with probability 1 − δ, after
ignoring εn nodes, all remaining nodes in V1 terminate in some state s1 ∈ {−1, 1}, and all
nodes in V2 terminate in state s2 = −s1. Supressing polylogarithmic factors, the total number
of global rounds and local rounds required are: T + T ′ = Õ

(
n

ε3δ2ρ2

)
and L = Õ

(
1

ε3δ3ρ2

)
.

If for example, p, q = Θ(1) and thus the G(n, p, q) graph is dense, we can recover the
communities with probability 1− δ up to O(1) error as long as q ≤ p− c

√
log(n/δ)/n for

sufficiently large constant c. Alternatively, if p, q = Θ (log(n/δ)/n), so the G(n, p, q) graph is
sparse, we require q ≤ cp for sufficiently small c.
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5 Cleanup Phase

After we apply Theorem 9 (respectively, Theorem 8) an ε-fraction of nodes are incorrectly
clustered. The goal of this section is to provide a simple algorithm that improves this
clustering so that all nodes are labeled correctly after a small number of rounds.

For the (n, p, q)-weighted communication model, doing so is straightforward. After
running Algorithm 2 and selecting a label, each time a node communicates in the future it
records the chosen label of the node it communicates with. Ultimately, it changes its label to
the majority of labels encountered. If ε is small enough so p(1− ε) > q + εp, this majority
tends towards the node’s correct label. The number of required rounds for the majority to
be correct, with good probability for all nodes, is a simple a function of p, q, and ε.

The G(n, p, q)-communication model is more difficult. Theorem 9 does not guarantee
how incorrectly labeled nodes are distributed: it is possible that a majority of a node’s
neighbors fall into the set of εn “bad nodes”. In that case, even after infinitely many rounds
of communication, the majority label encountered will not tend towards the node’s correct
identity.

As a remedy, we introduce a phased algorithm (Algorithm 6) where each node updates
its label to the majority of labels seen during a phase. We show that in each phase the
fraction of incorrectly labeled nodes decreases by a constant factor. Our analysis establishes
a graph theoretic bound on the external edge density of most subsets of nodes. Specifically,
for all subsets S below a certain size, we show that, with high probability, there are at most
|S|/3 nodes which have enough connections to S so that if an adversary gave all nodes in S
incorrect labels, it could cause these nodes to have an incorrect majority label. This bound
guarantees that at most |S|/3 bad labels ‘propagate’ to the next phase of the algorithm.

Algorithm 6 Cleanup phase (pseudocode for node u)
Input: Number of phases k and number of rounds per phase r.
Output: Label χ̂u ∈ {−1, 1}

1: for Phase 1 to k do
2: for Round i = 1 to r do
3: Si := χ̂v, where χ̂v denotes the ith sample of node u.
4: end for
5: χ̂u := 1 if

∑r
i Si ≥ 0, χ̂u := −1 otherwise.

6: end for

I Theorem 10. Consider the (n, p, q)-weighted communication model. Assume that a fraction
of at most ε ≤ 1/64 of the nodes are incorrectly clustered after Algorithm 2. As long as
p′ = (1− ε)p and q′ = q + εp satisfy p′ > q′, Algorithm 6 ensures that all nodes are correctly
labeled with high probability after O( p lnn

(
√
p′−
√
q′)2

) local rounds. In particular, for q ≤ p/2 and
ε < 1/8, the number of local rounds required is O(logn).

I Theorem 11. Consider the G(n, p, q)-communication model. Let ∆ = p
2−

q
2−
√

12p lnn/n−√
12q lnn/n. Assume that ∆ = Ω(lnn/n) and at most ε ≤ ∆/24p nodes are incorrectly

clustered after Algorithm 2. As long as p′′ = p
2 −

√
6p lnn
n − ∆

12 and q′′ = q
2 +

√
6q lnn
n + ∆

12
satisfy p′′ > q′′, Algorithm 6 ensures that all nodes are correctly labeled with high probability
after O( p ln2 n

(
√
p′′−
√
q′′)2

) local rounds. In particular, for q ≤ p/2 the number of local rounds

required is O(log2 n).
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Note that if p − q = Ω(
√

logn/n), then ∆ simplifies to ∆ = Θ(p − q). Incidentally,
p− q = Ω(

√
logn/n) is sometimes tight because, in this regime, clustering correctly can be

infeasible: some nodes will simply have more neighbors in the opposite cluster. Consider for
example when p = 1/2 +

√
lnn/(10n) and q = 1/2.
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