
Analysing Privacy-Type Properties in
Cryptographic Protocols
Stéphanie Delaune
Univ Rennes, CNRS, IRISA, France
stephanie.delaune@irisa.fr

Abstract
Cryptographic protocols aim at securing communications over insecure networks such as the
Internet, where dishonest users may listen to communications and interfere with them. For
example, passports are no more pure paper documents. Instead, they contain a chip that stores
additional information such as pictures and fingerprints of their holder. In order to ensure privacy,
these chips include a mechanism, i.e. a cryptographic protocol, that does not let the passport
disclose private information to external users except the intended terminal. This is just a single
example but of course privacy appears in many other contexts such as RFIDs technologies or
electronic voting.

Formal methods have been successfully applied to automatically analyse traditional protocols
and discover their flaws. Privacy-type security properties (e.g. anonymity, unlinkability, vote
secrecy, . . .) are expressed relying on a notion of behavioural equivalence, and are actually more
difficult to analyse than confidentiality and authentication properties. We will discuss some recent
advances that have been done to analyse automatically equivalence-based security properties, and
we will review some issues that remain to be solved in this field.

2012 ACM Subject Classification Security and privacy → Logic and verification

Keywords and phrases cryptographic protocols, symbolic models, privacy-related properties,
behavioural equivalence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.1

Category Invited Talk

Funding This work has been partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant agreement
No 714955-POPSTAR) and the ANR project TECAP.

1 Introduction

Cryptographic protocols are widely used today to secure communications with the aim of
achieving various security goals. For instance, TLS (Transport Layer Security) is a protocol
that is widely used to provide authentication and encryption in order to send sensitive data
such as credit card numbers to a vendor. Those protocols use cryptographic primitives as
building blocks such as encryptions, signatures, and hashes.

For a long time, it was believed that designing a strong encryption scheme was sufficient to
ensure secure message exchanges. Starting from the 1980’s, researchers understood that even
with perfect encryption schemes, message exchanges were still not necessarily secure due to
some logical attacks coming from the poor design of the protocol itself. As an example, we can
cite the well-known man-in-the-middle attack on the Needham Schroeder protocol [55] that
has been discovered by Lowe seventeen years after the publication of the original protocol [53].
This is just a single example for which Lowe proposed a simple fix: the second message

© Stéphanie Delaune;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 1; pp. 1:1–1:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephanie.delaune@irisa.fr
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Analysing Privacy-Type Properties in Cryptographic Protocols

{Na, Nb}pub(B) is replaced by {B,Na, Nb}pub(B) in the fixed version of the protocol, i.e. the
name of the sender has been simply added into the ciphertext. Such a modification was
sufficient to discard the man-in-the-middle attack and to prove the protocol secure. Even if
protocols are relatively small programs, they are rather difficult to analyse and the difference
between a secure protocol and an insecure one may be rather subtle. For instance, replacing
the second message by {Na, Nb, B}pub(B), i.e. the name of B is now appended at the end of
the original message, results in a protocol on which a man-in-the-middle attack similar to
the one discovered by Lowe is again possible (see [37] for a description of this attack).

One successful approach when designing and analysing security protocols, is the use of
formal methods. The purpose of formal verification is to provide rigorous frameworks and
techniques to analyse protocols and find their flaws. For example, a flaw has been discovered
in the Single-Sign-On protocol used e.g. by Google Apps. It has been shown that a malicious
application could very easily get access to any other application (e.g. Gmail or Google
Calendar) of their users [7]. This flaw has been found when analysing the protocol using
the Avantssar validation platform [5]. Another example is a flaw on vote secrecy discovered
during the formal and manual analysis of an electronic voting protocol [42]. All these results
have been obtained using formal symbolic models, where most of the cryptographic details are
ignored using abstract structures, and the communication network is assumed to be entirely
controlled by an omniscient attacker. Although less precise than computational models
used by cryptographers, this symbolic approach benefits from automation and can thus
target more complex protocols and scenarios than those analysed using the computational
approach. The techniques used in symbolic models have become mature and several tools for
protocol verification are nowadays available, e.g. Avantssar platform [5], ProVerif [15], and
Tamarin [58].

Most of the results existing in this field focus on reachability properties such as au-
thentication or secrecy: for any execution of the protocol, it should never be the case that
an attacker learns some secret (confidentiality property) or that an attacker makes Alice
think she’s talking to Bob while Bob did not engage a conversation with her (authentication
property). However, privacy properties such as vote secrecy, anonymity, or untraceability
cannot be expressed as reachability properties. Formally the behaviour of a protocol can be
modelled through a process algebra such as the pi-calculus, enriched with terms to model
cryptographic messages. Then, privacy-type properties are expressed relying on a notion of
behavioural equivalence between processes. For example, Alice’s identity remains private if
an attacker cannot distinguish a session where Alice is talking from a session where Bob is
talking. As mentioned above, many results and tools have been developed in the context of
reachability properties. Results for equivalence properties are more rare but a lot of attention
has been devoted to its study during the ten past years.

In this paper, we will review existing results and tools dedicated to the study of equivalence-
based properties. We will present some recent advances that have been done in this area,
and discuss some challenges that remain to be solved.

2 Some examples

We briefly describe in this section some cryptographic protocols on which privacy-type
properties are particularly relevant. For illustrative purposes, we first consider a rather
simple RFID protocol following a description given in [61] before explaining two protocols
coming from the e-passport application: the BAC protocol and its successor the PACE
protocol.

S. Delaune 1:3

Tag
k, id

Reader
k, id

new nR
nR

new nT id⊕ nT , h(nR, k)⊕ nT

id ⊕ (id ⊕ nT) ⊕ (h(nR, k) ⊕ nT)
?=

h(nR, k)

Figure 1 Description of an RFID protocol due to Kim et al. [51].

2.1 A simple RFID protocol
To illustrate our formalism along this paper, we will consider a rather simple RFID protocol
proposed by Kim et al. [51] in 2007. We follow the description given in [61]. In this protocol,
the reader and the tag id share a secret symmetric key k. The protocol does not rely on
any encryption algorithm but instead uses a hash function, denoted h, and the exclusive or
operator, denoted ⊕, which is commutative and associative. Moreover, it has the property
that equal terms cancel each other out, i.e. t⊕ t = 0 where 0 is the neutral element.

The reader starts by sending a nonce, i.e. a fresh random number nR. Once it receives
this first message, the tag generates its own nonce nT and computes its answer relying on
the hash function and the exclusive-or operator. When receiving this second message, the
reader will be able to retrieve nT from the first component by cancelling out the value id.
Then, it will xor this value with the second component and check whether the result is equal
to h(nR, k). Note that since the reader knows nR and k, it can indeed easily compute the
message h(nR, k).

The aim of this protocol is not only to authenticate the tag but also to ensure its
unlinkability. An attacker should not be able to observe whether he has seen the same
tag twice or two different tags. Actually, this unlinkability property is not satisfied. An
attacker can simply send his own nonce n0

R and infer whether the tag in presence is the same
or not from the message he received. For this, the attacker simply apply the exclusive-or
operator on the two components of the message sent by the tag. The result of this operation
is id⊕ h(n0

R, k) and once n0
R is fixed, this value only depends on the identity of the tag.

We will formalise this later on as an indistinguishability property, relying on the notion
of trace equivalence.

2.2 Electronic passport
An e-passport is no more a pure paper document but instead contains an RFID chip that
stores the critical information printed on the passport. The International Civil Aviation
Organisation (ICAO) standard specifies several protocols through which this information
can be accessed. In particular, access to the data stored on the passport are protected by
the Basic Access Control (BAC) protocol, or now its successor the Password Authenticated
Connection Establishment (PACE) protocol.

FSCD 2018

1:4 Analysing Privacy-Type Properties in Cryptographic Protocols

Tag
ke, km

Reader
ke, km

get_Challenge

new nT
nT

new nR, new kR

xenc← {nR, nT , kR}ke
xmac← mac(xenc, km)

〈xenc, xmac〉

new kT

yenc← {nT , nR, kT }ke
ymac← mac(yenc, km)
yseed ← kT ⊕ kR

〈yenc, ymac〉

xseed ← kT ⊕ kR

Figure 2 Basic Access Control protocol.

BAC protocol

This is a password-based authenticated key exchange protocol (see Figure 2) whose security
relies on two master keys, namely ke and km. Actually, before executing the BAC protocol,
the reader optically scans a low entropy secret from which these two keys ke and km are
derived. Thus, these keys are symmetric keys shared between the passport (the RFID tag)
and the reader. Then, the BAC protocol establishes a key seed from which two sessions
keys kenc and kmac are derived. The session keys are then used to prevent skimming and
eavesdropping on the subsequent communication with the e-passport. In particular, they are
used to encrypt and mac the messages exchanged during the execution of the subsequent
protocols.

First, we may note that the nonces nR and nT are not placed in the same order in the
two ciphertexts: {nR, nT , kR}ke and {nT , nR, kT }ke. Actually, this is not an insignificant
choice. This choice prevents a replay attack which would be possible otherwise since it would
be possible for an attacker to answer to the message send by a reader without knowing the
keys ke and km. Indeed, an attacker could simply replay the message he just received, and
this will lead to the computation of the seed xseed = kR ⊕ kR = 0.

Second, the low entropy secret printed in the first page of a passport and from which the
keys ke and km are derived makes the BAC protocol vulnerable to off-line guessing attacks.
Indeed, an attacker who listens to the communication will learn e.g. {nR, nT , kR}ke. Then,
he can simply try to decrypt this ciphertext using all possible values for ke until he finds a
value that allows him to obtain nT (nonce that has been sent in clear and that is therefore
known by the attacker).

Third, we may note that when the passport receives an incorrect message 〈xenc, xmac〉,
the behaviour of the passport is not specified, Due to this, some implementations of the
BAC protocol breaches unlinkability [29]: in the french implementation, the passport tag
replies different error messages depending on whether the problem comes from an incorrect

S. Delaune 1:5

Tag
k

Reader
k

new sT , new nT {sT }k

new nRgnR

gnT

yG ← gen(sT , (gnR)nT)
new n′

T

xG ← gen(sT , (gnT)nR)
new n′

R
x

n′
R

G

y
n′

T

G

x
n′

R

G 6= y
n′

T

G

x′
k ← (yn′

T

G)n′
R = y

n′
Rn′

T

G
y′

k ← (xn′
R

G)n′
T = x

n′
Rn′

T

G
mac(yn′

T

G , x′
k)

mac(xn′
R

G , y′
k)

Figure 3 Password Authenticated Connection Establishment protocol.

mac or an incorrect nonce (i.e. the nonce nT inside the ciphertext is not the one previously
generated by the passport). An attacker could then trace a passport (without knowing the
keys ke and km) in the following way:
1. he listens to a first session between a reader and a tag T and store m = 〈xenc, xmac〉;
2. then, in a different session, he sends the message m and wait for the tag’s response;

a. if he receives a nonce error then he knows that the tag succeeded to mac xenc with
his own key ke and so this tag is T ;

b. if he receives a mac error then he knows that the tag is not T .
This gives the attacker a way to distinguish between two different passports. Such a flaw
does not exist in other implementations where the same error messages is sent in both cases.

PACE protocol

The Password Authenticated Connection Establishment protocol [56] (PACE) has been
proposed by the Bundesamt für Sicherheit in der Informationstechnik (BSI) to replace the
BAC protocol. Similarly to BAC, the purpose of PACE is to establish a secure channel
based on an optically-scanned key k. A description is given in Figure 3. The tag and the
reader perform a first Diffie-Hellman exchange and derive G. Then, they perform a second
Diffie-Hellman exchange based on the parameter G computed at the previous step, and they
derive a session key k′. In a final stage, they confirm the values that have been exchanged
using message authentication codes.

First, we may note that the low entropy of the secret k is not a problem anymore assuming
that the decryption operation on the ciphertext {sT }k will not fail when the key used to
decrypt is not k. This means that the resulting computation sdec({sT }k, kI) will be a valid
message even if k 6= kI , and thus the protocol will pursue its execution normally.

FSCD 2018

1:6 Analysing Privacy-Type Properties in Cryptographic Protocols

Second, we would like to comment on the disequality test performed by the reader. Such a
test is important to prevent an attacker to execute with success the PACE protocol. Without
such a test, an attacker can eavesdrop a message {sT }k from an honest session, and then
reuse it to execute a session with a reader. He simply has to send the ciphertext, and then
answer to the reader by replaying the message he just received. This means that the attacker
would not have to know k to successfully execute the protocol whereas he is supposed to
know it to compute G. Of course, this directly leads to an authentication issue that can be
turned into a linkability attack.

Third, the fact that the format of the two last messages are similar is surprising. Due
to this, an attacker can send {sT }k (eavesdrop during a previous session) to two different
readers and then simply forward the messages from one reader to another. Both readers will
be able to compute the two rounds of Diffie-Hellman, and the mac verification phase will not
prevent this behaviour. Even if in practice, this flaw seems hard to exploit, it could be a
real privacy concern in some other contexts. Actually, as proposed in [48], this flaw can be
fixed by adding tags in the two last messages in order to avoid confusions between reader’s
messages and tag’s messages.

3 Modelling protocols

Several symbolic models have been proposed for cryptographic protocols. The first one has
been described by Dolev and Yao [45] and several other models have been proposed since
then (e.g. strand spaces [59], multiset rewriting [19], spi-calculus [3]). A unified model would
enable better comparisons between the different existing results but unfortunately such a
model does not exist currently. Nevertheless, all existing models share some common features:
messages are modelled using first-order terms, and they propose some constructions for
modelling communication and taking into account the concurrency nature of these programs.

3.1 Messages as terms
In symbolic models, messages are a key concept. Whereas messages are bitstrings in the real-
world (and in the computational approach as well), they are modelled using first-order terms
within the symbolic model. Formally, we consider an infinite set N of names to represent
atomic data such as keys, nonces, and we also consider two infinite sets of variables X
and W. The variables in X are used to model unknown parts of the messages expected by
a participant, whereas variables in W, called handles, are used as pointers. They refer to
messages that have been previously sent on the network and that are therefore known to the
attacker.

To model cryptographic primitives, such as encryptions, signatures, hashes, etc, we rely on
function symbols, namely a signature, that allows one to build terms representing messages
sent over the network by the participants. The set of terms built from a set of atomic data A
by applying function symbols in a signature Σ are denoted T (Σ, A).

I Example 1. To model the BAC and the RFID protocols described in Section 2, we may
consider the signature:

Σex = {senc, sdec, 〈 〉, proj1, proj2,mac, h,⊕, 0}.

The function symbols senc and sdec (both of arity 2) represent symmetric encryption, whereas
〈 〉 (arity 2) is used to concatenate messages. The two components of such an operator can
be retrieved using the projection functions proj1 and proj2 (both of arity 1). We also consider

S. Delaune 1:7

a function symbol to model an hash function, the symbol h (arity 1), as well as a function
symbol mac (arity 2) to model message authentication codes. Lastly, the function symbol ⊕
(arity 2) is used to model the exclusive-or operator, and the constant 0 is its neutral element.

Then, we assign a meaning to the function symbols through an equational theory. Formally,
we consider a set of equations between terms (without names), and we denote =E the smallest
congruence relation which is closed under the substitution of terms for variables.

I Example 2. Going back to our previous example, we will typically consider the following
set Eex of equations:

proj1(〈x, y〉) = x x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ 0 = x

proj2(〈x, y〉) = y x⊕ y = y ⊕ x x⊕ x = 0
sdec(senc(x, y), y) = x

Considering m = senc(〈nR, 〈nT , kR〉〉, ke), we have that proj1(proj2(sdec(m, ke))) =Eex nT . We
may note that the symbols mac and h are not involved in any equation. Those primitives are
modelled using free function symbols since they are one-way functions which are typically
assumed to be collision resistant.

Sometimes, function symbols are split into two sets: constructors and destructors. In such
a case, a rewriting system is used to assign a meaning to the function symbols. Constructors
symbols, typically senc, 〈 〉, etc are used to build messages, whereas destructor symbols, such
as sdec, proj1, and proj2, are only there to perform computations meaning that a rewriting
rule has to apply to make them disappear. If no rewriting rule applies, and the destructor is
still there, it means that the computation fails, and the resulting term is not considered as a
message. This gives us two slightly different ways to model e.g. symmetric encryption. Both
are useful when modelling protocols depending on the properties of the encryption scheme.
For instance, going back to the PACE protocol, it is important here to model encryption
relying on an equation to take into account the fact that sdec(senc(sT , k), k′) is a computation
that does not lead to a failure but instead gives a result, i.e. a message, and the reader will
proceed with the resulting value.

At a particular point in time, while engaging in one or more sessions of one or more
protocols, an attacker may know a sequence of messages (i.e. terms without variable)
u1, . . . , un. This means that he knows all messages and also their order. When analysing
equivalence-based security properties, it is not enough to say that the attacker knows the set
of terms {u1, . . . , un}. In the applied-pi calculus [2], such a sequence of messages is organised
into a frame, i.e. a substitution of the form:

φ = {w1 7→ u1, . . . , wn 7→ un}.

The handle wi ∈ W enables us to refer to the message ui, and these variables will allow us
to make explicit the order in which these messages are sent. Given a frame φ, we denote
dom(φ) its domain, i.e. dom(φ) = {w1, . . . , wn}.

We need also to consider computations feasible by an attacker. We call such a computation
a recipe. Formally, a recipe is a term built from (public) function symbols and handles
from W.

I Definition 3. Given a frame φ and a term u ∈ T (Σ,N), we say that u is deducible
from φ, denoted φ `E u, when there exists a recipe R, i.e. a term in T (Σ, dom(φ)), such that
Rφ =E u.

FSCD 2018

1:8 Analysing Privacy-Type Properties in Cryptographic Protocols

3.2 Protocols as processes
A popular way to model protocols is to rely on a process algebra. Several calculus have been
proposed to model protocols, e.g. CSP [49], spi-calculus [3], applied-pi calculus [2]. They
have similar constructs as those in the pi-calculus introduced by Milner in 1999 [54]. However,
instead of exchanging atomic data, terms that are exchanged are first-order terms. This
allows us to model in a more faithful way cryptographic protocols that use cryptographic
messages. Typically, considering a set Ch of public channel names, processes are generated
by a grammar as follows:

P,Q := 0 null
| P | Q parallel
| in(c, x).P input
| out(c, u).P output
| !P replication
| new n.P restriction
| if u1 = u2 then P else Q conditional

where u1, u2, u ∈ T (Σ,N ∪ X), c ∈ Ch, and n ∈ N .
Most of the constructions are rather standard in process algebra. As usual, the null

process, denoted 0, represents the process that does nothing. Such a process is often omitted
for sake of conciseness. The process P | Q runs P and Q in parallel meaning that we do
not know in which order the actions of P and Q will be done. All the interleavings should
be considered. The process in(c, x).P waits to receive a message on the public channel c,
and then continues as indicated in P . However, the occurrence of the variable x in P will
be replaced by the received message. The process out(c, u).P outputs the message u on the
public channel c, and then continues as P . The process !P represents an infinite number of
copies of P running in parallel, i.e. P | . . . | P . The restriction newn.P is used to model the
creation in a process of new random numbers (e.g., nonces or key material). The process
if u1 = u2 then P else Q first checks whether u1 is equal to u2 (modulo the equational theory),
and runs P if equality holds or runs Q otherwise. Note that the terms u, u1, and u2 that
occur in the grammar may contain variables. However, these variables will be instantiated
during the execution, and these terms will become ground when the evaluation will take
place.

The constructions newn.P and in(c, x).P are binding constructs, respectively for the
name n and for the variable x, and in both cases the scope of the binding is P .

I Example 4. To illustrate our syntax, we consider the RFID protocol described in Section 2.1.
Using our formalism, the two roles of this protocol are modelled as follows:

Ptag = in(cT , x). newnT . out(cT , 〈id⊕ nT , h(〈x, k〉)⊕ nT 〉). 0
Preader = newnR. out(cR, nR). in(cR, y). if (proj1(y)⊕ id)⊕ proj2(y)

= h(〈nR, , k〉) then 0 else 0.

where cT , cR ∈ Ch, id ∈ N , and x, y ∈ X .
Then, we may consider the process new k. new id.(Ptag | Preader) which corresponds to

one instance of each role. We may also consider more complex scenario. For instance, the
process new k. new id.! (Ptag | Preader) represents multiple instances of the tag id (with key k)
and multiple instances of a reader ready to communicate with tag id. Lastly, the process
! new k. new id.! (Ptag | Preader) represents a situation with many tags (and readers), each of
them being able to execute many instances of the protocol.

S. Delaune 1:9

Then ({if u1 = u2 then P1 else P2}] P;φ) τ−→ (P1] P;φ) when u1 =E u2

Else ({if u1 = u2 then P1 else P2}] P;φ) τ−→ (P2] P;φ) when u1 6=E u2

In ({in(c, z).P}] P;φ) in(c,R)−−−−→ (P{z 7→ u}] P;φ) when φ `E u

Out ({out(c, u).P}] P;φ) out(c,w)−−−−−→ (P] P;φ ∪ {wi+1 7→ u}) where i = |dom(φ)|.

New ({new n.P}] P;φ) τ−→ (P{n 7→ n′}] P;φ) where n′ ∈ N is fresh
Par ({P1 | P2}] P;φ) τ−→ ({P1, P2}] P;φ)
Repl ({!P}] P;φ) τ−→ ({!P, P}] P;φ)

Figure 4 Semantics of our processes.

Configurations represent processes together with a frame representing the knowledge of
the attacker so far.

I Definition 5. A configuration is a pair (P;φ) where
P is a multiset of ground processes; and
φ = {w1 7→ u1, . . . ,wn 7→ un} is a frame.

The applied-pi calculus, as introduced in [2], does not consider this notion of configurations
but rely instead on a notion of extended processes and a notion of structural equivalence to
identify processes that are equal modulo e.g. associativity and commutativity of the parallel
operator. Our notion of configurations, also used in some other works, can be seen as a more
canonical way to represent an extended process.

Then, we define the operational semantics of our calculus through a labelled transition
system over configurations explaining how a process can evolve (see Figure 4). All the rules
are rather standard and correspond to the informal semantics introduced at the beginning of
this section. For instance, when outputting a message u on the public channel c, the resulting
message is stored into the frame φ and is given to the attacker through the handle wi. The
rule In is more involved. The idea is that the attacker can build any term using his current
knowledge and then send the resulting message to the participant. Therefore, the participant
is ready to accept any term deducible by the attacker form φ. The rules Then and Else
allow one to execute a conditional. Note that the equality is done modulo E. The three
remaining rules allow one to execute a restriction, split a parallel composition, and unfold a
replication. The In and Out rules are the only observable actions.

I Example 6. To continue with our running example, we consider Psame = {Ptag, Ptag}, and
Pdiff = {Ptag, P ′tag} where P ′tag is as Ptag but id and k have been replaced by id′ and k′. Let
φ0 = {w1 7→ id,w2 7→ id′}. We have that:

({Pdiff};φ0)
in(cT ,n

0
R)−−−−−−→ τ−→ ({out(cT , 〈id⊕ nT , h(〈n0

R, k〉)⊕ nT 〉), P ′
tag};φ0)

out(cT ,w3)−−−−−−→ ({P ′
tag};φ0] {w3 7→ 〈id⊕ nT , h(〈n0

R, k〉)⊕ nT 〉})
in(cT ,n

0
R)−−−−−−→ τ−→ ({out(cT , 〈id′ ⊕ n′

T , h(〈n0
R, k′〉)⊕ n′

T 〉).0}, φ0] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉})

out(cT ,w4)−−−−−−→ ({0}, φ0] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉, w4 7→ 〈id′ ⊕ n′

T , h(〈n0
R, k′〉)⊕ n′

T 〉})

We denote φdiff the resulting frame. The same sequence of actions is also feasible starting
from (Psame;φ0). Indeed, we have that:

FSCD 2018

1:10 Analysing Privacy-Type Properties in Cryptographic Protocols

(Psame;φ0) in(cT ,n
0
R)·τ ·out(cT ,w3)·in(cT ,n

0
R)·τ ·out(cT ,w4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (0;φsame)

where φsame = φ0] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉, w4 7→ 〈id⊕ n′T , h(〈n0

R, k〉)⊕ n′T 〉}.

4 Modelling privacy-type properties

In order to express privacy-type properties such as the unlinkability property briefly discussed
in Section 2, we need to formally define the notion of indistinguishability we are interested in.
The notion of trace equivalence is formally introduced in Section 4.1, and then we explain
how to express privacy-type security properties such as vote-privacy, unlinkability, or strong
flavours of secrecy relying on this notion.

4.1 Trace equivalence
To start, we consider two protocols P and Q, and we assume a passive attacker who simply
listens to the communication. We would like to know whether such a passive attacker is
able (by simply listening to the communication) to tell which protocol is currently under
execution: i.e. P or Q. Typically, the attacker will observe two sequences of messages, i.e.
two frames, and he will try to distinguish them. Intuitively, two frames φ and ψ are in static
equivalence if an attacker cannot distinguish them, i.e. any test that holds in φ also holds in
ψ.

I Definition 7. Two frames φ and ψ are in static equivalence, written φ ∼E ψ, if they have
the same domain, i.e. dom(φ) = dom(ψ), and for any recipes R, R′ ∈ T (Σ, dom(φ)), we
have that: Rφ =E R′φ if, and only if, Rψ =E R′ψ.

I Example 8. Consider the two following frames:
φdiff = φ0] {w3 7→ 〈id⊕ nT , h(〈n0

R, k〉)⊕ nT 〉,w4 7→ 〈id′ ⊕ n′T , h(〈n0
R, k′〉)⊕ n′T 〉}, and

φsame = φ0] {w3 7→ 〈id⊕ nT , h(〈n0
R, k〉)⊕ nT 〉,w4 7→ 〈id⊕ n′T , h(〈n0

R, k〉)⊕ n′T 〉}.
The following test holds in φsame: proj1(w3)⊕ proj2(w3) ?= proj1(w4)⊕ proj2(w4).
Indeed, we have that:

[proj1(w3)⊕ proj2(w4)]φsame =Eex (id⊕ nT)⊕ (h(〈n0
R, k〉)⊕ nT) =Eex id⊕ h(〈n0

R, k〉), and
[proj1(w3)⊕ proj2(w4)]φsame =Eex (id⊕ n′T)⊕ (h(〈n0

R, k〉)⊕ n′T) =Eex id⊕ h(〈n0
R, k〉).

However, this test does not hold in φdiff since id 6= id′ and k 6= k′. This means that an attacker
can observe a difference between these two frames by xoring the two components of each
message and checking whether this computation yields an equality, therefore retrieving the
attack described in Section 2.1. Note that such an equality crucially relies on the algebraic
properties of the exclusive-or operator.

Then, trace equivalence is the active counterpart of static equivalence taking into account
the fact that the attacker may interfere during the execution of the process in order to
distinguish between the two situations. Given a configuration K = (P ;φ), we define trace(K)
as follows: trace(K) = {(tr, φ′) | (P;φ) tr−→ (P ′;φ′) for some configuration (P ′;φ′)}.

I Definition 9. Given two configurations KP and KQ, KP vt KQ if for every (tr, φ) ∈
trace(KP), there exists (tr′, ψ) ∈ trace(KQ) such that tr and tr′ are equal up to τ actions,
and φ ∼E ψ. The configuration KP and KQ are in trace equivalence, denoted KP ≈t KQ, if
KP vt KQ and KQ vt KP .

S. Delaune 1:11

4.2 Some security properties
We show here how the notion of trace equivalence can be used to model interesting privacy-
type properties.

Unlinkability

Intuitively, protocols are said to provide unlinkability (or untraceability) according to the
ISO/IEC 15408-2 standard, if they

[...] ensure that a user may make multiple uses of [them] without others being able to
link these uses together.

Formally, this is often defined as the fact that an attacker should not be able to distinguish
a scenario in which the same agent (i.e. the user) is involved in many sessions from one
that involved different agents in each session. Going back to our BAC protocol, this can be
expressed through the following equivalence:

! new ke. new km. ! (Ptag(ke, km) | Preader(ke, km))
≈t

! new ke. new km.(Ptag(ke, km) | Preader(ke, km)).

In case of the french implementation of the BAC protocol, as explained in Section 2.2, it
has been shown that this equivalence does not hold [4].

I Example 10. To illustrate our notion of trace equivalence, we consider the RFID protocol
given in Section 2.1. In order to simplify the setting, we consider a simple scenario which
consists of two sessions of the role of the tag. We assume that one session is executed by the
tag with identity id and key k, whereas the second one is executed either by the same tag or
another one. We would like to know whether the attacker is able to distinguish these two
situations. This corresponds to the configurations Ksame = (Psame;φ0) and Kdiff = (Pdiff ;φ0)
described in Example 6. Actually, we have that Ksame and Kdiff are not in trace equivalence.
More precisely, we have that Ksame 6vt Kdiff. Indeed, we have shown that:

Ksame
in(cT ,n

0
R)·τ ·out(c,w3)·in(cT ,n

0
R)·τ ·out(cT ,w4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (0, φsame) (see Example 6); and

[proj1(w3)⊕ proj2(w3)=Eex proj1(w4)⊕ proj2(w4)]φsame (see Example 8).
However, the only configuration (P ′, φ′) such that (up to some τ actions)

Kdiff
in(c,n0

R)·out(c,w3)·in(c,n0
R)·out(c,w4)−−−−−−−−−−−−−−−−−−−−−−−→ (P ′, φ′)

is (0, φdiff) and we have seen that proj1(w3)⊕ proj2(w3) ?= proj1(w4)⊕ proj2(w4) does not hold
in φdiff (see Example 8).

This corresponds to the attack scenario briefly described in Section 2.1.

Vote secrecy

In the context of electronic voting, privacy means that the vote of a particular voter is not
revealed to anyone. This is one of the fundamental security properties that an electronic
voting system has to satisfy.

Vote secrecy is typically defined (see e.g. [44]) by the fact that an observer should not
observe when two honest voters swap their votes, i.e. distinguish between a situation where

FSCD 2018

1:12 Analysing Privacy-Type Properties in Cryptographic Protocols

Alice votes yes and Bob votes no and a situation where these two voters have swapped their
vote. This security property is formally expressed as follows:

S[V (A, yes) | V (B,no)] ≈t S[V (A,no) | V (B, yes)].

Ideally, such an equivalence should be established considering an empty context S.
However, very often such a property holds under some trusted assumptions. For instance, we
may have to trust the tallying authority. The context S makes explicit all these assumptions.

Strong flavours of secrecy

The notion of secrecy usually considered by symbolic approaches is a weak form of secrecy
expressed as a non-deducibility property. However, relying on trace equivalence, we can also
express strong forms of secrecy. Intuitively, strong secrecy means that an attacker cannot see
any difference when the value of the secret changes [14]. One way to express this it to let the
attacker choose the values of the secret:

in(c, x1).in(c, x2).P (x1) ≈t in(c, x1).in(c, x2).P (x2).

Intuitively, in the equivalence above, P (x) is the protocol in which the value of the secret is
replaced by x, i.e. by a value chosen by the attacker. Another flavour of secrecy of interest is
real-or-random secrecy. The idea is to let the attacker interact with the protocol, and once
the secret value has been established, typically a fresh session key k, we want to see if the
attacker is able to distinguish the real situation (the one in which the fresh established key k
will be used) from an ideal situation in which the key k is replaced by fresh random value r.
If the adversary is unable to distinguish these two scenarios, we say that the protocol satisfies
real-or-random secrecy of the secret key.

The notion of trace equivalence can also be used in presence of low entropy secret such
as the values ke and km in the BAC protocol to check resistance of the protocol to off-line
guessing attacks. This can be modelled relying on trace equivalence by checking whether the
attacker can see the difference between a scenario where the real password is revealed at the
end, and another one where a wrong password is revealed (see e.g. [36]).

5 Verifying equivalence-based properties

The formal symbolic approach allows one to benefit from existing verification tool that rely
on various techniques ranging from model-checking to resolution, and rewriting techniques.
This is appealing as manual proofs are tedious and error-prone. However, verifying in such
a setting the most simple form of secrecy (expressed as a non-deducibility of a term) is a
difficult problem which is well-known to be undecidable. Privacy-type properties are actually
more difficult to handle and have been shown undecidable even for some classes where secrecy
is actually decidable [32].

5.1 Warm-up
Several papers are devoted to the study of the intruder deduction problem, i.e. the problem
of deciding whether a term (typically the secret) is deducible from a given set of terms
representing the knowledge of the attacker. This problem has been shown decidable (often
in PTIME) for various equational theories, e.g. homomorphic encryption, blind signatures,
various equational theories with an associative and commutative symbol (AC). However,

S. Delaune 1:13

Theory E Deduction Static Equivalence
subterm convergent PTIME [1]
blind sign., addition, decidable [1]

homo. encryption

ACU NP-complete decidable [1]
PTIME [39]

ACUN/AG PTIME [27] PTIME [1, 39]
ACUh NP-complete [52] decidable [39]

ACUNh/AGh PTIME [43] decidable [39]
AGh1 . . . hn decidable [39] decidable [39]

Figure 5 Some decidability and complexity results for deduction and static equivalence.

when considering equivalence-based properties, the natural question we have to solve is not to
decide whether a term is deducible or not, but rather whether two frames are indistinguishable
or not. This problem can be formally stated as follows:

Static equivalence problem:
Input Two frames φ and ψ having the same domain.
Output Are φ and ψ in static equivalence, i.e. φ ∼E ψ ?

Again depending on the equational theory under study, this problem may or may not be
decidable. Actually, even if such a problem is often more complex to solve than the intruder
deduction problem, this problem is now well-understood. Efficient (often PTIME) algorithms
and tools (e.g. FAST [35], and KISS [33]) have been developed to solve this problem for
various equational theories. Some existing results for deduction and static equivalence are
briefly summarised in Figure 5. Moreover, thanks to the combination result provided in [39],
deduction and static equivalence are also decidable for the union of any disjoint theories of
this tabular.

5.2 Bounded number of sessions
When analysing a protocol, a reasonable assumption under which the verification problem
has been shown decidable is the so-called bounded number of sessions assumption. This
amounts to consider processes without replication. Note that processes without replication
allows us to consider traces of bounded length, but the problem remains difficult: the labelled
transition system representing all the possible interactions of the honest participants with the
attacker is still infinitely branching. This issue has been tackled in various ways using forms
of symbolic execution and the development of dedicated procedures. Obtaining a symbolic
semantics to avoid potentially infinite branching of execution trees due to inputs from the
environment is often a first step towards automation of equivalence.

Some theoretical results. Under such an assumption, the problem of deciding trace equi-
valence has been first shown decidable in [50], where a fragment of the spi-calculus (no
replication, no else branch) is considered. In 2005, Baudet designs a constraint solving
procedure that is not only able to solve satisfiability problems (sufficient for reachability

FSCD 2018

1:14 Analysing Privacy-Type Properties in Cryptographic Protocols

properties) but also to establish equivalences (i.e. two systems have the same sets of solu-
tions), which are needed when one wants to verify equivalence-based security properties [13].
Few years later, a shorter proof of this result was proposed by Chevalier and Rusinowitch
in [28]. In this work, it is shown that when two processes are not in trace equivalence, then
there exists a small witness of this fact. The main issue with the results mentioned so far is
practicality. Consequently, they have not been implemented.

Since then, a lot of progress has been made leading to more efficient procedures imple-
mented in various verification tools. We review the most popular ones and briefly explain
their features.

Spec. This tools implements a decision procedure for the notion of open bisimulation: a
notion that is strictly stronger than trace equivalence [60]. Processes given in input are written
in the spi-calculus syntax and else branches are not allowed. Regarding the cryptographic
primitives, the tool has been recently extended to deal with asymmetric primitives, and
therefore is now able to handle all the standard primitives.

Akiss. The procedure described in [20] deals with rich user-defined term algebras provided
that they can be defined using a convergent rewriting system enjoying the finite variant
property [34].This includes all the standard primitives, but also some other primitives such
blind signatures, and trapdoor commitment used e.g. in electronic voting protocols. However,
due to some approximations, this procedure is only able to check trace equivalence for the
class of determinate processes. Moreover, its termination is only guaranteed for subterm
convergent equational theories. Regarding the input syntax, processes are written as linear
roles and originally the tool only allows inputs, outputs, and equality tests. Recently, some
extensions have been implemented. In particular, the procedure has been extended to deal
with the exclusive-or operator [8], and various RFID protocols have been analysed such as
the RFID protocol presented in Section 2.1. The tool has also been extended to deal with
else branches [47].

Apte/DeepSec. The tool Apte [21] implements the decision procedure described in [23].
Such a procedure deals with all the standard cryptographic primitives. Actually, the procedure
presented in [23] allows for slightly more general processes than those presented in Section 3
since it deals with private channels and internal communications. This procedure has been
extended to deal with some forms of side-channel attacks regarding the length of messages [25],
and the computation time [24]. Recently, getting some inspiration from the Apte tool, a
new verification tool DeepSec has been implemented [26]. It deals with a large variety
of cryptographic primitives that encompasses all the standard primitives. Moreover, it is
significantly more efficient than other existing tools, namely Spec, Akiss, and its predecessor
Apte.

SAT-Equiv. Following an approach originally developed for checking reachability proper-
ties [6], SAT-Equiv relies on more general verification techniques, namely graph planning
and SAT-solving [38]. The procedure deals with symmetric encryption and pairs, and only
consider simple processes (each process in parallel works on a dedicated channel) without
else branches. However, an extension is currently under preparation and the tool will be
able to cover all standard primitives soon. In order to benefit from graph planning and
SAT-solvers, the size of messages has to be bounded and this bound needs to be practical.
The soundness of the tool is based on a typing result [30] guaranteeing the existence of a

S. Delaune 1:15

witness of non-equivalence where messages comply to a certain format (induced by a typing
system). The resulting implementation, SAT-Equiv, outperforms other existing tools. It
can analyse several sessions (typically more than 20 for rather simple protocols) where most
existing tools have to stop after few sessions. Termination has been established, and this
is the most efficient tool able to decide trace equivalence. However, the class of processes
that it is able to consider is rather limited (e.g. no else branch, simple processes satisfying a
type-compliance assumption).

5.3 Unbounded number of sessions
The decidability results and the tools mentioned so far only consider a bounded number
of sessions, and thus assume that the protocol is executed a limited number of times. The
problem is that even if the protocol has been proved secure for n sessions, there is no
guarantee that the protocol will remain secure if it is executed one more time.

Some theoretical results. It is well-known that replication allowing us to model an un-
bounded number of sessions leads to undecidability even when considering a simple secrecy
property. The first decidability result for trace equivalence has been obtained for a rather
restricted class: the class of ping-pong protocols built using standard primitives (but without
pairs) [32]. This result has been obtained through a characterisation of equivalence of
protocols in terms of equality of languages of (generalised, real-time) deterministic pushdown
automata.

Assuming finitely many nonces and keys, another decidability result has been obtained
in [30] for the class of simple processes built using symmetric encryptions and pairs. Such
a decidability result is based on a typing result which means that messages comply to a
certain format. A well-known class of protocols that satisfies such a requirement, is the class
of tagged protocols. The typing result mentioned above has also been used to establish the
first decidability result in presence of fresh nonces [31]. This decidability result inherits the
restrictions of the typing result (symmetric encryption only, type-compliance) on which it is
based. Additionally, a notion of dependency graph allowing one to represent the dependencies
between the actions of the protocols is carefully designed. In case this graph is acyclic, a
bound on the length of an attack trace can be deduced, giving us an algorithm to decide
trace equivalence.

ProVerif, Tamarin, and Maude-NPA. Since the problem of checking trace equivalence
for rich class of protocols is undecidable, many works aim at developing procedures that
are sound but not complete w.r.t. trace equivalence. In particular, several tools consider
the notion of diff-equivalence (a notion stronger than trace equivalence). This notion has
been introduced in [16] and implemented in the ProVerif tool. Since then, this notion of
diff-equivalence has been integrated in Tamarin [12] and Maude-NPA [57]. Due to the fact
that the equivalence under study is the so-called notion of diff-equivalence, these tools are
not well-suited to analyse some privacy-type properties such as unlinkability, or vote secrecy.

To extend the scope of the ProVerif tool, several extensions have been recently proposed
to go beyond diff-equivalence, e.g. [22, 17]. For instance, ProSwapper [17] allows one to go
beyond diff-equivalence by rearranging automatically processes before launching ProVerif.
This front end is particularly relevant to analyse vote secrecy. ProVerif has also been used as
a back end to analyse anonymity and unlinkability properties [48]. This approach proposes
sufficient conditions that are actually checkable using ProVerif, and from which the security of
the protocol can be established. This method allows to automatically verify unlinkability and

FSCD 2018

1:16 Analysing Privacy-Type Properties in Cryptographic Protocols

anonymity of some protocols that were out of the scope of existing tools, e.g. unlinkability
of the fixed version of the BAC protocol has been established for the first time relying on
this technique, and some of the weaknesses presented in Section 2.2 on the PACE protocol
have been discovered using this method.

Whereas ProVerif and Maude-NPA are completely automatic, Tamarin provides two
ways of constructing proofs: an efficient, fully automated mode that uses heuristics to guide
proof search and an interactive mode. Regarding the cryptographic primitives, these tools
support a rich term algebra including all the standard primitives. In addition, Tamarin
also supports Diffie-Hellman exponentiation, and recently exclusive-or has been added into
the tool. The Maude-NPA tool also supports a rich term algebra but the tool suffers from
termination issues, especially when considering the exclusive-or operator. Despite some
non-termination issues that may happen from time to time, these tools are efficient. For
instance, ProVerif generally concludes within few seconds. These good performances are due
to some well-chosen over-approximations that are done on the protocols at the beginning of
the security analysis that may lead sometimes to false attacks.

Type-Eq. Recently, an approach based on type systems has been developed and implemented
in the tool Type-Eq [40, 41]. This approach is very efficient and can prove security of protocols
that require a mix of bounded and unbounded number of sessions This tool only consider
the standard cryptographic primitives, and requires the user to enter all the information
regarding types. While this approach allows to go beyond diff-equivalence, e.g. allowing else
branches to be matched with then branches, it is not yet possible to analyse e.g. unlinkability
of the BAC protocol.

6 Some challenges

In the past ten years, equivalence-based properties have received a lot of attention and we now
have tools to check automatically privacy-type security properties when considering rather
simple protocols. However, new applications are coming or are already there (electronic
voting, contactless payment, keyless systems, . . .) and these applications often rely on
security protocols that can not be analysed relying on existing verification tools due to
various reasons.

State-explosion problem. Systems we are interested in are highly concurrent and all the
existing methods and tools which naively explore all possible symbolic interleavings are
causing the so called state-explosion problem. This problem seriously limits the practical
impact of tools such as Akiss, Spec, Apte and, to a lesser extent, DeepSec. Actually,
recent works [9, 10] have partially addressed this issue by developing dedicated partial order
reduction (POR) techniques to dramatically reduce the number of interleavings to explore.
They have been implemented in Apte, Akiss, and DeepSec, and brought significant speed-up.
However, these techniques can only be applied on action-deterministic processes, and this is
not sufficient to analyse e.g. unlinkability. To mitigate this problem, it should be possible to
leverage classical POR techniques for use in the specific security setting. A recent result in
this direction has been obtained in [11] regarding the persistent and sleep sets techniques,
and other POR techniques deserve attention to obtain performance gains.

Cryptographic primitives. Most of the tools deal with standard primitives, i.e. encryptions,
signatures, and hashes. However, many protocols, such as RFID protocols or electronic
voting protocols rely on primitives that do not fall into this class. For instance, protocols

S. Delaune 1:17

that contain some time-critical steps often rely on low-level operator to reduce computation
(and communication) time. As demonstrated by some recent works (e.g. [8]), dealing with a
simple operator such as the exclusive-or and its algebraic properties in the symbolic setting is
actually challenging. Electronic voting protocols have to achieve antagonist security properties
and they often rely on exotic cryptographic primitives to try to achieve them, e.g. blind
signatures, zero-knowledge proofs, homomorphic encryptions, . . . To avoid missing attacks,
these primitives together with their algebraic properties have to be modelled faithfully when
performing the formal security analysis.

Mutable global states. Many modern protocols involve a notion of state meaning that
some data are conveyed from one session to another through e.g. a register. This is the
case for instance of many RFID protocols as those presented in [18, 61]. Several protocols
proposed by the 3rd Generation Partnership Project (3GPP) as a standard for 3G and 4G
mobile network communications are also stateful. For instance, the Authentication and Key
Agreement (AKA) protocol relies on a state to store a counter across different sessions, and a
state is also used in a crucial way to store temporary identifiers (namely TMSI) in the TMSI
reallocation procedure. Moreover, these protocols are supposed to guarantee unlinkability.
Existing results regarding the formal verification of such protocols model states in a very
abstract way, considering for instance that the client and the server already (magically) share
a fresh name instead of modelling the sequence number mechanism. Recent advances have
been made in this direction though an extension of the Tamarin prover [46]. Nevertheless,
methods for checking trace equivalence on stateful protocols are in their infancy.

References
1 M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational the-

ories. Theoretical Computer Science, 387(1-2):2–32, 2006.
2 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In

Proc. 28th Symposium on Principles of Programming Languages (POPL’01), pages 104–
115. ACM Press, 2001.

3 Martín Abadi and Andrew D Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proc. of the 4th ACM conference on Computer and communications security,
pages 36–47. ACM, 1997.

4 Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd Computer Security Foundations
Symposium (CSF’10), pages 107–121. IEEE Computer Society Press, 2010.

5 A. Armando et al. The AVANTSSAR platform for the automated validation of trust and
security of service-oriented architectures. In Proc. 18th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’12), volume 7214,
pages 267–282. Springer, 2012.

6 Alessandro Armando, Roberto Carbone, and Luca Compagna. SATMC: a SAT-based
model checker for security-critical systems. In Proc. 20th international Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14), pages
31–45. Springer, 2014. doi:10.1007/978-3-642-54862-8_3.

7 Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar, and Llanos To-
barra Abad. Formal analysis of saml 2.0 web browser single sign-on: Breaking the saml-
based single sign-on for google apps. In Proc. 6th ACM Workshop on Formal Methods in
Security Engineering (FMSE 2008), pages 1–10, 2008.

8 David Baelde, Stéphanie Delaune, Ivan Gazeau, and Steve Kremer. Symbolic verification
of privacy-type properties for security protocols with xor. In Proc. 30th IEEE Computer

FSCD 2018

http://dx.doi.org/10.1007/978-3-642-54862-8_3

1:18 Analysing Privacy-Type Properties in Cryptographic Protocols

Security Foundations Symposium (CSF’17), pages 234–248. IEEE Computer Society Press,
2017.

9 David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction for security
protocols. In Proc. 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of LIPIcs, pages 497–510. Leibniz-Zentrum für Informatik, 2015.

10 David Baelde, Stéphanie Delaune, and Lucca Hirschi. A reduced semantics for deciding
trace equivalence. Logical Methods in Computer Science, 2017.

11 David Baelde, Stéphanie Delaune, and Lucca Hirschi. POR for Security Protocols Equival-
ences - Beyond Action-Determinism. arXiv, 2018. arXiv:1804.03650.

12 David Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs of observa-
tional equivalence. In Proc. 22nd Conference on Computer and Communications Security
(CCS’15), pages 1144–1155. ACM, 2015.

13 Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In Proc.
12th ACM conference on Computer and communications security (CCS’05), pages 16–25.
ACM, 2005.

14 Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In Proc. . 2004
Symposium on Security and Privacy, pages 86–100. IEEE Computer Society Press, 2004.

15 Bruno Blanchet. An automatic security protocol verifier based on resolution theorem prov-
ing (invited tutorial). In Proc. 20th International Conference on Automated Deduction
(CADE-20), July 2005.

16 Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of selected
equivalences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

17 Bruno Blanchet and Ben Smyth. Automated reasoning for equivalences in the applied pi
calculus with barriers. In Proc. 29th Computer Security Foundations Symposium (CSF’16),
2016.

18 Mayla Brusó, Konstantinos Chatzikokolakis, and Jerry Den Hartog. Formal verification
of privacy for RFID systems. In Proc. 23rd Computer Security Foundations Symposium
(CSF’10), pages 75–88. IEEE Computer Society Press, 2010.

19 I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-notation for
protocol analysis. In Proc. 12th Computer Security Foundations Workshop (CSFW’99),
pages 55–69. IEEE Computer Society Press, 1999.

20 Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of equivalence
properties of cryptographic protocols. In Proc. European Symposium on Programming
(ESOP’12), pages 108–127. Springer, 2012.

21 Vincent Cheval. Apte: an algorithm for proving trace equivalence. In Proc. 20th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’14), volume 8413 of LNCS, pages 587–592, 2014.

22 Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with
ProVerif. In Proc. 2nd Conference on Principles of Security and Trust (POST’13), volume
7796 of LNCS, pages 226–246. Springer, 2013.

23 Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Trace equivalence decision:
Negative tests and non-determinism. In Proc. 18th ACM Conference on Computer and
Communications Security (CCS’11), pages 321–330. ACM Press, 2011.

24 Vincent Cheval and Véronique Cortier. Timing attacks in security protocols: symbolic
framework and proof techniques. In Proc. 4th Conference on Principles of Security and
Trust (POST’15), pages 280–299. Springer, 2015.

25 Vincent Cheval, Véronique Cortier, and Antoine Plet. Lengths may break privacy – or
how to check for equivalences with length. In Proc. 25th International Conference on

http://arxiv.org/abs/1804.03650

S. Delaune 1:19

Computer Aided Verification (CAV’13), volume 8044 of LNCS, pages 708–723. Springer
Berlin Heidelberg, 2013.

26 Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Deepsec: Deciding equivalence
properties in security protocols - theory and practice. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P’18). IEEE Computer Society Press, 2018. Accepted for
publication.

27 Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security of proto-
cols with Diffie-Hellman exponentiation and product in exponents. In Proc. 23rd Conference
on Foundations of Software Technology and Theoretical Computer Science (FST&TCS’03),
volume 2914 of LNCS, pages 124–135. Springer-Verlag, 2003.

28 Yannick Chevalier and Michael Rusinowitch. Decidability of symbolic equivalence of deriv-
ations. Journal of Automated Reasoning, 48(2):263–292, 2012.

29 Tom Chothia and Vitaliy Smirnov. A traceability attack against e-passports. In Proc. 14th
International Conference on Financial Cryptography and Data Security (FC’10), 2010.

30 Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Typing messages for free in se-
curity protocols: the case of equivalence properties. In Proc. 25th International Conference
on Concurrency Theory (CONCUR’14), volume 8704 of LNCS, pages 372–386. Springer,
2014.

31 Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace equival-
ence for protocols with nonces. In Proc. 28th Computer Security Foundations Symposium
(CSF’15), pages 170–184. IEEE Computer Society Press, 2015.

32 Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. From security protocols to
pushdown automata. ACM Transactions on Computational Logic, 17(1:3), 2015.

33 Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing knowledge in se-
curity protocols under convergent equational theories. Journal of Automated Reasoning,
48(2):219–262, 2012.

34 Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How to get rid
of some algebraic properties. In Proc. International Conference on Rewriting Techniques
and Applications (RTA’05), pages 294–307. Springer, 2005.

35 Bruno Conchinha, David A. Basin, and Carlos Caleiro. FAST: an efficient decision proced-
ure for deduction and static equivalence. In Proc. 22nd International Conference on Re-
writing Techniques and Applications, RTA 2011, volume 10 of LIPIcs, pages 11–20. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

36 Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol security
against off-line dictionary attacks. Electonic Notes in Theoretical Computer Science, 121:47–
63, 2005.

37 Véronique Cortier. Vérification automatique des protocoles cryptographiques. Thèse de
doctorat (PhD thesis), Laboratoire Spécification et Vérification, ENS Cachan, France, mar
2003.

38 Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. Sat-equiv: an efficient tool for
equivalence properties. In Proc. 30th IEEE Computer Security Foundations Symposium
(CSF’17). IEEE Computer Society Press, aug 2017.

39 Véronique Cortier and Stéphanie Delaune. Decidability and combination results for two
notions of knowledge in security protocols. Journal of Automated Reasoning, 48(4):441–487,
2012.

40 Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A type system for
privacy properties. In 24th ACM Conference on Computer and Communications Security
(CCS’17), pages 409–423. ACM, October 2017.

FSCD 2018

1:20 Analysing Privacy-Type Properties in Cryptographic Protocols

41 Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. Equivalence
properties by typing in cryptographic branching protocols. In Proc. 7th International
Conference on Principles of Security and Trust (POST’18), pages 160–187, April 2018.

42 Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of ballot secrecy.
In Proc. 24th Computer Security Foundations Symposium (CSF’11), pages 297–311. IEEE
Computer Society Press, 2011.

43 Stéphanie Delaune. Easy intruder deduction problems with homomorphisms. Information
Processing Letters, 97(6):213–218, 2006. URL: http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/SD-ipl05.pdf.

44 Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisimulation for the
applied pi calculus. Journal of Computer Security, 18(2):317–377, mar 2010.

45 D. Dolev and A. C. Yao. On the security of public key protocols. In Proc. 22nd Symposium
on Foundations of Computer Science (FCS’81), pages 350–357. IEEE Computer Society
Press, 1981.

46 Jannik Dreier, Lucca Hirschi, Saša Radomirovic, and Sasse Ralf. Automated unbounded
verification of stateful cryptographic protocols with exclusive OR operations. In Proc.
31st IEEE Computer Security Foundations Symposium (CSF’18). IEEE Computer Society
Press, 2018.

47 Ivan Gazeau and Steve Kremer. Automated analysis of equivalence properties for security
protocols using else branches. In Proc. 22nd European Symposium on Research in Computer
Security (ESORICS’17), volume 10493 of Lecture Notes in Computer Science, pages 1–20.
Springer, sep 2017. doi:10.1007/978-3-319-66399-9_1.

48 Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying privacy-
type properties: the unbounded case. In Proc. 37th Symposium on Security and Privacy
(S&P’16), 2016.

49 C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.
doi:10.1145/359576.359585.

50 Hans Hüttel. Deciding framed bisimilarity. Electronic Notes in Theoretical Computer
Science, 68(6):1–18, 2003.

51 Il-Jung Kim, Eun Young Choi, and Dong Hoon Lee. Secure mobile RFID system against
privacy and security problems. In Third International Workshop on Security, Privacy and
Trust in Pervasive and Ubiquitous Computing, SECPerU 2007, Istanbul, Turkey, July 19,
2007, pages 67–72. IEEE Computer Society, 2007.

52 Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for AC-like equa-
tional theories with homomorphisms. In Proc. 16th International Conference on Rewriting
Techniques and Applications (RTA’05), volume 3467 of LNCS, pages 308–322. Springer,
2005.

53 G. Lowe. An attack on the Needham-Schroeder public key authentication protocol. In-
formation Processing Letters, 56(3):131–133, 1995.

54 Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999.

55 R. Needham and M. Schroeder. Using encryption for authentification in large networks of
computers. Communications of the ACM, 21(12):993–999, 1978.

56 Technical advisory group on machine readable travel documents (tag/mrtd). URL: http:
//www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf.

57 Sonia Santiago, Santiago Escobar, Catherine Meadows, and José Meseguer. A formal
definition of protocol indistinguishability and its verification using Maude-NPA. In Security
and Trust Management, pages 162–177. Springer, 2014.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/SD-ipl05.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/SD-ipl05.pdf
http://dx.doi.org/10.1007/978-3-319-66399-9_1
http://dx.doi.org/10.1145/359576.359585
http://www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf
http://www.icao.int/Meetings/TAG-MRTD/TagMrtd22/TAG-MRTD-22_WP05.pdf

S. Delaune 1:21

58 Benedikt Schmidt, Simon Meier, C. J. F. Cremers, and David Basin. Automated analysis of
Diffie-Hellman protocols and advanced security properties. In Proc. 25th Computer Security
Foundations Symposium (CSF’12), pages 78–94. IEEE Computer Society Press, 2012.

59 F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(1):191–230, 1999.

60 Alwen Tiu. A trace based bisimulation for the spi calculus. In Programming Languages
and Systems, pages 367–382. Springer, 2007.

61 Ton van Deursen and Sasa Radomirovic. Attacks on RFID protocols. IACR Cryptology
ePrint Archive - Report 2008/310, 2008. URL: http://eprint.iacr.org/2008/310.

FSCD 2018

http://eprint.iacr.org/2008/310

	Introduction
	Some examples
	A simple RFID protocol
	Electronic passport

	Modelling protocols
	Messages as terms
	Protocols as processes

	Modelling privacy-type properties
	Trace equivalence
	Some security properties

	Verifying equivalence-based properties
	Warm-up
	Bounded number of sessions
	Unbounded number of sessions

	Some challenges

